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Abstract. Motivated by developments in renewable energy and smart grids, we formulate
a stylized mathematical model of a transport network with stochastic load fluctuations.
Using an affine control rule, we explore the trade-off between the number of controllable
resources in a lossy transport network and the performance gain they yield in terms of
expected power losses. Our results are explicit and reveal the interaction between the level
of flexibility, the intrinsic load uncertainty, and the network structure.
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1. Introduction
A transport network is an abstract model describing a structure in which some commodity is transferred from
the “source” nodes of the network to the “sink” nodes according to a specified routing that is determined by
some external principle or design (see Daganzo 1997, Whittle 2007). Examples of transport networks are road
networks, railways, pipes, and power grids.

In this work, we focus in particular on lossy transport networks where a fraction of the transported good is
inevitably lost, having in mind as primary application power systems in which part of the transported
electricity is lost because of heat dissipation in the transmission lines.

The main question that we want to address in the present paper is how these transportation losses can be
reduced in the scenario in which we have no direct control on the routing but some of the nodes of the
network have controllable loads. This is the case for power systems in which the line flows are determined by
physical laws but at the same time feature an increasing number of controllable energy resources, like energy
storage devices, smart buildings and appliances, and electric vehicles.

In the present work, we consider a probabilistic model to describe the stochastic fluctuations of the load in
(a subset of) the nodes of the network. This is instrumental to model the stochastic load fluctuations because of
power demand uncertainty and intermittent generation by renewable energy sources. The current power grids
were originally built around conventional power generation systems; therefore, they are not equipped to cope
with this massive amount of uncertainty, especially in power supply. Managing this uncertainty on such a
large scale with existing methods will soon become crucial: in the next decades, power grids will have to
become more flexible and robust to reduce the likelihood of contingencies and blackouts, whose social and
economic impact is enormous.

As mentioned earlier, next to the increasing renewable penetration, there is another powerful trend that is
driving this pervasive evolution of the power system: the advent of distributed energy resources. At a high
level, all these resources can be seen as “virtual storage/batteries,” in the sense that they can dynamically
reduce their power consumptions and even inject electricity in the power grid when necessary (see Taylor and
Mathieu 2015, Mathias et al. 2017, Barooah 2019). Even if at the present stage these resources are not fully
incorporated, they have a huge potential: if their penetration increases and we can actively and optimally
control them, then they can make power grids more flexible and at the same time effectively mitigate the
volatile nature of renewable power generation and allow a higher share of renewable energy sources.

34

http://pubsonline.informs.org/journal/stsy
mailto:a.zocca@vu.nl
https://orcid.org/0000-0001-6585-4785
https://orcid.org/0000-0001-6585-4785
mailto:bert.zwart@cwi.nl
https://orcid.org/0000-0001-9336-0096
https://orcid.org/0000-0001-9336-0096
https://doi.org/10.1287/stsy.2019.0063
https://doi.org/10.1287/stsy.2019.0063
https://creativecommons.org/licenses/by/4.0/


The controllable loads that we consider in this work should be seen as an abstraction of more concrete
examples, such as (i) actual energy storage that is neither full nor empty; (ii) distribution grids with ample
flexible and/or deferrable load (Meyn et al. 2013, 2015; Mathias et al. 2016, 2017); or (iii) conventional
generators that can provide balancing services.

The stochastic network model considered in this paper aims to understand the potential that these con-
trollable resources can have in mitigating the load uncertainty and in particular the transportation losses due
to the stochastic load fluctuations in the network nodes. Specifically, we consider a network with random
sources and sinks modeled by an undirected connected weighted graph G consisting of n nodes and m edges
to which are associated nonnegative weights β ∈ Rm+ and investigate how much could the average total loss be
reduced by operating optimally the subset B ⊆ V of nodes with controllable loads.

The metric we consider here to quantify the transportation losses due to stochastic fluctuations is a quadratic
function of the load profile that has been introduced in Johnson and Chertkov (2010) as proxy for the total
power losses in AC power grids, as we will review in more detail in the next section. Such a metric generalizes
the notion of total effective resistance Rtot(G) of the graph G, also known as Kirchhoff index. This is a key quantity
that measures how well connected and robust a network is and for this reason has been extensively studied
and rediscovered in various contexts, such as complex network analysis (Ellens et al. 2011) and theoretical
chemistry (for an overview, see Zhou and Trinajstić 2008 and references therein).

In this paper, we address the question of how to optimally operate distributed energy resources to minimize
power losses in power systems. Because of imperfect sensing and delayed communication, a real-time perfect
coordination between network nodes based on the realized fluctuations is unfeasible. We thus consider a static
decentralized policy that amounts to an affine control rule for the controllable loads, which is inspired by the
Automatic Generation Control mechanism, currently used in power systems (Wood et al. 2014). This control
mechanism prescribes that in case of a power imbalance, all the generators have to either increase or decrease
their power generation proportionally to their participation factors, which are static nonnegative scalars set
beforehand based on economic principles.

In the present work, we envision a scenario where not just a few big conventional generators but sev-
eral other distributed energy resources could also join this effort to balance power fluctuations. We thus
formulate a constrained optimization problem to find the optimal static load-sharing factors for the controllable
loads. We prove that the solution is unique and gives a closed-form expression for such an optimal control
from which reflects the interplay between the network structure, the location of the controllable nodes, and the
correlation structure of the load fluctuations.

In particular, our result shows how the correlation structure between load fluctuations affects the optimal
operations of the network resources; this is extremely relevant in power grids with geographically close wind
or solar farms, whose power outputs are obviously highly correlated. These insights are derived without
making Gaussian assumptions on the distribution of the fluctuations.

We then use this explicit solution to explore the trade-off between the number of controllable resources
available in a network and the performance gain they yield, quantified as transportation loss reduction. The
analysis builds on and extends that of Zocca and Zwart (2016), which considered the scenario with only two
controllable loads. In particular, the authors show therein that the expected total loss due to fluctuations can
be reduced by 25% in a line network by adding one controllable storage device. In the present paper, we
extended that insight by showing that for large graphs the total expected loss can be reduced on average by a
factor (1 + 1/k)/2 in the scenario where k controllable loads are available. The key insight is larger values of k
yield diminishing improvements in terms of total expected loss.

This suggests that, even if power grids are becoming locally more robust, transportation losses can be
reduced by up to 50% and the number of controllable loads or balancing services k quantify how close one can
get to this reduction. Though our model is stylized, it provides a simple quantitative estimate on the value of
balancing services in a scenario where each node in the network is self-sufficient on average.

We remark that our stylized model is “static,” in the sense the optimal control we derive does rebalance the
total power mismatch in the network in any scenario but does not depend on the realized load fluctuations.
Indeed, it depends only on the network structure, on the location of the controllable loads, and on their
average covariance structure of the load fluctuations. For this reason, our model is not specific for a precise
timescale and provides insights into the value of balancing services both in real-time operations as well as
long-term planning.

Our work provides a new mathematical approach that can be of help for the design of future power grids
and of control schemes for distributed energy resources. In this respect, it complements a large body of
literature on optimal topology design for power grids (Ghosh et al. 2008, Johnson and Chertkov 2010,
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Deka et al. 2017) and on optimal control of multiple controllable devices and/or generators where often the
designed participation factors are also affine in the stochastic load fluctuations (see, e.g., Kanoria et al. 2011;
Sjodin et al. 2012; Apostolopoulou et al. 2014; Bienstock et al. 2016; Lubin et al. 2016; Roald et al. 2016a, b;
Sundar et al. 2016; Chertkov and Dvorkin 2017; Guggilam et al. 2017a; Guggilam et al. 2017b; Matke et al.
2017). Optimal policies for storage management, especially aiming at the mitigation of the uncertainties in
wind generation, have been explored in Bejan et al. (2012), Gast et al. (2012, 2014), and Van De Ven
et al. (2013), where, however, the physical network is not modeled explicitly. Optimal storage placement
can increase network reliability, as shown in Bhaumik et al. (2016) by simulation techniques. Storage can also
be used for arbitrage, exploiting temporal price differences (Cruise et al. 2014, Cruise and Zachary 2018) and
the impact of storage on energy markets has been studied in Gast et al. (2013) and Cruise et al. (2018).

The rest of the paper is organized as follows. We provide a detailed model description in Section 2. In
Section 3, we investigate the optimal load sharing factors in several scenarios. These results are applied in
Section 4 where a scaling law is presented for large networks. A more general optimization problem, which
takes into account economic factors and/or further limitations of the controllable loads, is presented in
Section 5. In Section 6, we report several numerical experiments and, lastly, Section 7 concludes.

2. Model Description
In this paper, we model a lossy transport network as a weighted graph (G,w), where the graph G is a simple
undirected graph G � (V,E) with |V| � n nodes labelled as V � {1, . . . , n}, and |E| � m edges and β ∈ Rm+ is the
collection of edge weights. In the context of power grids, the nodes of G are often referred to as buses and the
edges as transmission lines and the quantity βi,j is the susceptance of the transmission line � � (v,w) ∈ E con-
necting buses i and j. Missing edges can be thought as edges with zero weight.

The weighted Laplacian matrix of the graph G, often referred to also as the susceptance matrix of G in the case
of a power system, is the matrix L ∈ Rn×n defined for every i, j � 1, . . . ,n as

Li,j :�
∑
k ��i

βi,k if i � j,

−βi,j if i �� j.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
It is well known that L is a real symmetric positive semidefinite matrix. By construction, all the rows of L sum
up to zero and thus the matrix L is singular. Under the assumption that G is a connected graph, the eigenvalue
zero has multiplicity one and the corresponding eigenvector is equal to the vector with all unit entries, which
we denote by 1 ∈ Rn.

Let L+ ∈ Rn×n be the Moore-Penrose pseudoinverse of the weighted Laplacian matrix L. Using the eigenspace
structure of L, the pseudoinverse L+ can be defined as

L+ :� L + 11T

n

( )−1
− 11T

n
.

The matrix L+ is also real, symmetric, and positive semidefinite. For the proof of these properties of the
matrices L and L+ and for further spectral properties of graphs, we refer the reader to Van Mieghem (2011) and
Ranjan et al. (2014).

Denote by p ∈ Rn the load profile at the network nodes, where pi is the load at node i for every i � 1, . . . ,n. In
the context of power grids, the i-th entry of the vector p models the power generated (if pi > 0) or consumed (if
pi < 0) at node i. We say that a load profile p ∈ Rn is balanced if 1Tp � 0.

Given a network with a balanced load profile p ∈ Rn, we define its total loss H � H(p) as

H :� 1
2
pTL+p.

The scalar quantity H is a quadratic form of the load profile vector p and, as such, is always nonnegative,
thanks to the fact that L+ is a positive semidefinite matrix.

The total aggregated loss H will be central in our analysis, being the most natural choice for an effi-
ciency metric in lossy transport networks such as power systems. More specifically, H has been shown by
Johnson and Chertkov (2010) to be a good approximation for total power loss in AC power grids, as we will
briefly outline.

AC current flows are described in terms of complex amplitudes and lines with complex impedances. In
power transmission networks operating in stationary conditions (i) all voltages are mostly constants and
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(ii) we can ignore reactive power flows and line conductances because they are an order of magnitude smaller
than the active power flows and line susceptances, respectively. Under these two assumptions, it is reasonable
to consider the linearized version of the AC Kirchhoff equations for the power flows, that is, the so-called DC-
approximation, called in this way because it resembles in structure the equations describing a resistive net-
work with DC flows (cf. Wood et al. 2014, chapter 6). If p denotes the vector of active power injections in the
network nodes, by keeping only the leading term of such a DC-approximation, the power flows f ∈ Rm on
the network lines are given by

f � ΛL+p, (1)
where L is the weighted Laplacian matrix derived looking only the imaginary part of the network admittance
matrix and Λ ∈ Rm×n is the corresponding weighted edge-vertex incidence matrix

Λ�,i �
β� if � � i, j

( )
,

−β� if � � j, i
( )

,
0 otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Because the power loss on each line � is proportional to β−1� f 2� , the aggregated power loss is (up a constant
factor capturing the conductance-to-admittance ratio of the lines) equal to

H � 1
2

∑
�∈E

β−1� f 2� �
1
2
f Tdiag β1, . . . , βm

( )−1f � 1
2
pTL+ΛTdiag β1, . . . , βm

( )
ΛL+p � 1

2
pTL+p,

where we used the fact that L � ΛTdiag(β1, . . . , βm)−1Λ and L+LL+ � L+. Therefore, modulo a trivial rescaling,
the quantity H is an approximation for the total power losses calculated using only the leading order DC-
approximation of the AC network flows.

The quantity H has also been considered as a scalar measure of the network tension in Lai and Low (2013)
and Guo et al. (2017), where it is shown to be monotone along a cascade failure, as long as the network
remains connected. Lastly, as we will show later, H can also be seen as a generalized total effective resistance
in the sense that it quantifies how robust the network G is against a stochastic load profile with a predefined
covariance structure.

2.1. Stochastic Fluctuations and Load-Sharing Factors
In this work, we are particularly interested in a transport network with a stochastic load profile, which means
that we take p to be a multivariate random variable.

More precisely, we assume p to be of the form p � µ +ω, where µ ∈ Rn is the nominal load profile in the
network and ω is a n-dimensional random vector modeling the fluctuations. We henceforth assume that
Eω � 0 and that ω has finite second moment. We further denote by

∑ ∈ Rn×n the covariance matrix of the load
fluctuations, namely,

∑
i,j � cov(ωi,ωj) � E[ωiωj] < ∞. Nodes in which there are no stochastic load fluctua-

tions can be modeled by setting all the entries equal to zero in the corresponding row and the column of the
matrix

∑
. We denote by S ⊆ V the subset of nodes with stochastic load fluctuations, and we will henceforth

assume that |S| ≥ 1.
We further assume that the nominal load profile is balanced on average, namely, 1Tµ � 0; this assumption is

reasonable, as after every 5–15 minutes, the setpoint µ is adjusted by solving the so-called Optimal Power
Flow (OPF) problem, which specifically constraints the net total power to be equal to zero. This assumption,
however, does not guarantee that every stochastic realization of the load profile is balanced: indeed, the total
mismatch 1Tp in the network is a random variable, which can be expressed as the net sum of fluctua-
tions, namely,

1Tp � 1T p − µ
( ) � 1Tω � ∑n

i�1
ωi.

Let σ2 :� Var(∑n
i�1 ωi) be the variance of the sum of the load fluctuations, which also rewrites as

σ2 � ∑n
i,j�1

∑
i,j

� 1T
∑

1 � tr
∑

11T
( )

. (2)

Because we assumed that there is at least one node with stochastic load fluctuations, we have σ2 > 0.
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In order to cope with the stochastic fluctuations and, in particular, to keep the network balanced, we assume
that load at each node is controllable: for every i � 1, . . . ,n, node i can deal with (either generate or store) a
controllable fraction αi ∈ R of the realized total mismatch 1T(p − µ) � ∑n

i�1 ωi. In other words, we assume that
although using the load-sharing factors α � (α1, . . . ,αn) ∈ Rn, the net load profile p(α) is given by

p α( ) � p1 − α1
∑n
i�1

ωi, . . . ,pn − αn
∑n
i�1

ωi

( )
� µ1 +ω1 − α1

∑n
i�1

ωi, . . . ,µn +ωn − αn
∑n
i�1

ωi

( )
.

For any j � 1, . . . ,n, the term αj
∑n

i�1 ωi corresponds to the power generated or stored in the corresponding
controllable load when using an affine control responsive to stochastic load fluctuations. We can rewrite the
net power load profile p(α) in vector form as

p α( ) � Cαp � Cα µ +ω
( ) � µ + Cαω, (3)

where Cα ∈ Rn×n is the matrix defined as

Cα :� I − α 1T �

1 − α1 −α1 . . . −α1
−α2 1 − α2 −α2 . . . −α2

. .
. . .

. . .
.

..

. ..
.

−αn . . . −αn 1 − αn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The last equality in (3) follows from the fact that 1Tµ � 0, because Cαµ � (I − α 1T)µ � µ − 0 · α � µ. When the
load-sharing factors α are used, the total mismatch in the network is equal to

1Tp α( ) � 1TCα µ +ω
( ) � 1T I − α 1T

( )
ω � 1T − 1Tα

( )
1T

( )
ω.

From this expression, it is immediate to derive the condition on α that guarantees that the net load profile p(α)
is balanced for any realization ω, which is stated in the next lemma.

Lemma 1 (Stochastic Load Profile Balance Condition). Consider a network with balanced nominal load profile 1Tµ � 0 and
controllable loads using load-sharing factors α ∈ Rn. The stochastic load profile p(α) is balanced for every realization of the
fluctuations if and only if

1Tα � ∑n
i�1

αi � 1. (4)

2.1.1. Model Discussion. Before presenting our results in the next section, we briefly discuss here the moti-
vation behind the assumptions on the distribution of ω and the motivation for considering an affine static
control policy for the fluctuations.

First of all, the random variable
∑n

j�1 ωj, which describes the net power mismatch, can have any sign. We
thus tacitly assume that our controllable nodes can respond to both positive and negative fluctuations,
meaning that they can both store energy in excess or provide energy if the network needs it. For the sake of
generality, we impose no further constraints on the random variable

∑n
j�1 ωj; thus, the power absorbed/

injected by controllable node i, that is, αi
∑n

j�1 ωj, could theoretically take very large (positive and negative)
values. This may seem a dubious and unrealistic assumption, but it is not for various reasons, which we now
outline. Firstly, in normal operating conditions and on short timescales, the quantity

∑n
j�1 ωj is typically

“small.” Indeed, our model is particularly relevant for a prompt response on short timescales, in which large
unforeseen power fluctuations are highly unlikely. If an extremely large net power fluctuation occurs, it would be
physically impossible for controllable loads and storage devices to resolve this imbalance by themselves; the
network operator needs to take specific ad hoc emergency actions anyway. In particular, the real-time energy
market and a consequent Optimal Power Flow routine on the 5–15 minutes scale will allow for a new safe
setpoint µ and for energy reserves to be used/bought. Secondly, because a detailed statistical modeling of
demand fluctuations or renewable power production is not within the scope of this paper, we consider a
general multidimensional distribution for the stochastic fluctuations ω1, . . . ,ωn. It is, however, very reasonable
to assume that the support of these random variables is bounded, because, for instance, renewable energy
sources cannot produce a negative amount of power nor produce beyond a specific power rating (above which
automatic protective relay mechanisms are automatically triggered causing so-called power curtailment).
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Lastly, a controllable load that at a specific moment does not have the two-directional flexibility (i.e., that cannot
both store and release energy) can temporarily “go offline”; we can account for it by adding the constraint
αi � 0 for the corresponding network node.

An affine control modeled using the load-sharing factors α ∈ Rn is clearly a simplification, especially when
the controllable loads model energy storage. Indeed, it does not incorporate many details, such as possible
ramping constraints or the current state of charge. In our model, such details are omitted on purpose to have a
mathematically tractable optimization problem and to better identify the interplay between load uncertainty
and storage operations. A further simplification we make is that we allow to choose α without invoking line
limits, as we also do this for mathematical tractability; but the extension we present in Section 5 accounts for
these limits and several others.

We remark that these assumptions on the stochastic fluctuations ω and on the affine control of the de-
viations from the nominal setpoints are fairly common in power systems operations (see, e.g., Bienstock et al.
2014; Roald et al. 2016a, b).

2.2. Expected Total Loss: Definition and Properties
For any 1 ≤ k ≤ n, we can model a network where exactly k nodes have controllable loads by imposing that the
remaining n − k nodes have load-sharing factors equal to zero, so that for any such node pi � pi(α). Using the
net load profile p(α), the total loss rewrites as

H α( ) � 1
2
p α( )TL+p α( );

therefore, {H(α)}α∈Rn is a family of random variables parametrized by the control α. Being a quadratic form
and being L+, a positive semidefinite matrix, it immediately follows that H(α) is a nonnegative random
variable for any α ∈ Rn.

The next proposition, which is proved in Appendix A, shows how, leveraging the properties of the matrices
L+ and Cα, the expected total loss EH(α) rewrites as the sum of two contributions, one stochastic and one
deterministic, which is not affected by the control α. Furthermore, it rewrites the expected total loss as a
quadratic function of the load-sharing vector α.

Proposition 1. Consider a network with a balanced nominal load profile µ and zero-mean stochastic fluctuations ω with
covariance matrix

∑
. Then, the expected total loss using the control α is given by

EH α( ) � EHs α( ) + 1
2
µTL+µ, (5)

where EHs(α) is the expected total loss due to the stochastic fluctuations. Furthermore, EHs(α) ≥ 0 for every α ∈ Rn,
and the following identity holds:

EHs α( ) � σ2

2
αTL+α

( )
− 1T

∑
L+α + 1

2
tr

∑
L+

( )
. (6)

The first important remark is that the expected total loss EH(α) is a quadratic form in the vector α ∈ Rn

because it can be rewritten as

EH α( ) � σ2

2
αTAα − bTα + c, (7)

where A � L+ is a positive semidefinite matrix, σ2 > 0, b � L+∑1 ∈ Rn, and c � tr(∑L+)/2 + 1
2µ

TL+µ ∈ R+.
Furthermore, we can already conclude that the nominal load profile µ has no impact on the optimal control α,
because it appears only in the constant term c.

Before investigating what is the optimal load-sharing vector for a given network and covariance structure of
the noise, we argue here why the quantity EH(α) can be seen as a generalized notion of effective resistance. In
order to do so, we will first recall some classical definitions.

The effective resistance Ri,j between a pair of nodes i and j of the network G is defined as the electrical
resistance measured across nodes i and j when we look at G as the electrical network in which resistors with
conductance β−11 , . . . , β−1m are placed at the corresponding network edges. Equivalently,

Ri,j :� ei − ej
( )TL+ ei − ej

( ) � L+i,i + L+j,j − 2L+i,j,
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where ei denotes the vector with a one in the i-th coordinate and zeros elsewhere. The total effective resistance
of a graph G is then defined as

Rtot G( ) :� 1
2

∑n
i,j�1

Ri,j.

The same quantity is also known as the Kirchhoff index when the network G is such that all the edge weights
are equal to one. As mentioned in the introduction, the total effective resistance has been used in various
contexts (Zhou and Trinajstić 2008, Ellens et al. 2011) to quantify how well connected a given network is. In the
context of electrical networks, the total effective resistance Rtot(G) is shown in Ghosh et al. (2008) to be
proportional to the average power dissipated in a resistive DC network (G,w) when random independent and
identically distributed (i.i.d.) currents with zero mean and unit variance are injected at the nodes.

We can look at the network (G,w,α) with controllable loads introduced earlier as a flexible transport
network, where the load-sharing factors α1, . . . ,αn can be tuned to respond optimally to specific stochastic
load fluctuations. In this respect, we claim that the quantity EHs(α) can be seen as a (rescaled) generalized total
effective resistance that measures how “robust” the network (G,w,α) is against stochastic load fluctuations
with covariance structure

∑
. To further corroborate this claim, we now show that the expected total loss

reduces to the classical total effective resistance Rtot(G) in the special case where the load-sharing factors are all
equal, that is, αi � 1/n for every i � 1, . . . , n, and the stochastic load fluctuations are i.i.d. random variables
with zero mean and unit variance, that is,

∑ � I. Using (6), the expected total loss due to fluctuations re-
writes as

EHs
1
n
1

( )
� n
2n2

1TL+1
( ) − 1TL+1 + 1

2
tr L+( ) � 1

2
tr L+( ) � Rtot G( )

2n
, (8)

where, in the last step, we use the well-known identity Rtot(G) � n · tr(L+) proved by Klein and Randić (1993)
that relates the total effective resistance of a graph with its spectrum.

Rayleigh’s monotonicity principle (Doyle and Snell 2000) states that the pairwise effective resistance Ri,j is a
nonincreasing function of the edge weights and, as a consequence, the total effective resistance Rtot(G) also is.
The following proposition, proved in Appendix A, shows that a similar property also holds for H(α): re-
gardless of the load-sharing vector α, the total power loss does not increase when edges are added or weights
are increased.

Proposition 2 (Monotonicity of Total Power Loss). Let G be a weighted connected graph and let G′ the graph obtained from G
by increasing the weight of edge e � (i, j) by β > 0 or by adding the edge e � (i, j) with weight β > 0. For any load-sharing
vector α ∈ Rn and any realization of the stochastic load fluctuations ω, the following inequality holds

HG′
α( ) ≤ HG α( ),

and, in particular, EHG′ (α) ≤ EHG(α).

3. Optimal Load-Sharing Control
In this section, we consider the problem of minimizing the expected total loss EH(α) given a network G and a
stochastic load covariance structure

∑
.

Let B ⊆ V be the subset of k nodes with controllable loads. We focus first on the scenario in which not all the
nodes have controllable loads and thus assume 1 ≤ k < n. Besides the constraint (4), we further add n − k
constraints on the optimal load-sharing vector α ∈ Rn to account for the absence of controllable loads in the
nodes in V \ B, obtaining the following constrained optimization problem in Rn:

min
α∈Rn

EHs α( )
s.t. 1Tα � 1,

αv � 0, ∀ v ∈ V \ B.
(9)

Note we consider only the expected total loss due to stochastic load fluctuations in the objective function,
because in view of (5) it differs only by a constant from the expected total loss.

Zocca and Zwart: Optimization of Stochastic Lossy Transport Networks and Applications to Power Grids
40 Stochastic Systems, 2021, vol. 11, no. 1, pp. 34–59, © 2021 The Author(s)



We henceforth assume that the k nodes with the controllable loads are those with labels 1, . . . , k, that is,
B � {1, . . . , k}. We can make this assumption without loss of generality, as it amounts to relabeling the network
nodes. If this is the case, the rows and columns of matrices L, L+, and ∑

and the entries of the vector µ are also
rearranged accordingly.

Let PB ∈ {0, 1}n×k be the binary matrix that maps any k-dimensional vector α̃ ∈ Rk to the n-dimensional vector
PBα̃ � (α̃1, . . . , α̃k, 0, . . . , 0) ∈ Rn. Such a matrix can be defined component-wise as (PB)i,j :� δ{i�j}δ{i≤k}, for i �
1, . . . ,n and j � 1, . . . , k, and has the following structure:

PB � Ik
O

( )
,

where Ik is the k × k identity matrix and O ∈ Rn−k×k is a matrix with all entries equal to zero.
In our first main result, which is proved in Appendix B, we present a closed-form expression for the optimal

load-sharing factors of k controllables.

Theorem 1 (Optimal Load-Sharing Between k < n Controllables). Consider a network with balanced nominal load profile
1Tµ � 0 in which the nodes in B � {1, . . . , k} have controllable loads. The solution of the optimization problem (9) is the load-
sharing vector α∗ � (α̃∗ 0), with

α̃∗ � 1
tB

L+B
( )−11 + Ik − 1

tB
L+B
( )−111T( )

L+B
( )−1PT

BL
+
∑
1

σ2
∈ Rk, (10)

where L+B is the k × k principal submatrix of L+, that is, L+B :� PT
BL

+PB, and tB :� 1T(L+B)−11 > 0.

If all the nodes with stochastic load fluctuations have controllable loads, that is, S ⊆ B, then

α̃∗ �
∑
1

σ2
, (11)

and, in particular, α̃∗v � 0 for every v ∈ B \ S.
The involved expression (10) for the optimal load-sharing factors reflects the interplay that exists between

the network structure, the location of the controllable loads B, and the correlation structure of the load
fluctuations in determining the losses.

In the special case where all the nodes with stochastic load fluctuations have controllable loads, there is a
nice interpretation for the optimal load-sharing factors: indeed α∗i is proportional to how much the stochastic
fluctuations of node i contribute in relative terms to the variance of the total mismatch, because

α∗i �
1
σ2

eTi
∑

1 � 1
σ2

∑n
j�1

∑
i,j

� Var ωi( ) +∑
j ��i Cov ωi,ωj

( )
Var

∑n
i�1 ωi

( )
� Var ωi( ) +∑

j��i Cov ωi,ωj
( )∑n

k�1 Var ωk( ) +∑
j ��k Cov ωk,ωj

( )( ) . (12)

We further remark that in the case of i.i.d. stochastic fluctuations in all the nodes, the second term in (10)
vanishes, because the vector Σ1 lies in the null space of L+ (being a multiple of 1); therefore, the optimal control
is equal to

α̃∗ � L+B
( )−11
1T L+B

( )−11 .
In particular, it does not depend on the variance of the load fluctuations but only on the network structure and
on the location B of the controllable loads, both encoded in the matrix L+B .

3.1. Full Controllability
In this subsection, we focus on the special case where the load is controllable in every node, that is, B � V,
which is not covered in Theorem 1. Indeed, the proof method does not work in this scenario because of the
noninvertibility of the graph Laplacian L and for this reason is treated separately here.
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The problem of minimizing the expected loss EH(α) when all the nodes have controllable loads can be
written as an optimization problem on Rn with a single constraint, namely,

min
α∈Rn

EH α( )
s.t. 1Tα � 1. (13)

As mentioned earlier, thanks to Proposition 1, we can immediately conclude that the optimal load-sharing
vector does not depend on the vector µ, which appears only in the constant term in the equality (5) for the
expected loss.

The next theorem, whose proof is presented in Appendix C, derives an analytical expression for the optimal
solution of this optimization problem.

Theorem 2 (Optimal Load-Sharing Between n Controllables). Consider a network G with n nodes and a balanced nominal
load profile 1Tµ � 0. The solution of the optimization problem (13) is the load-sharing vector α∗ given by

α∗ �
∑
1

σ2
.

The highlight of this result is that in the scenario where all nodes have controllable loads, the optimal control
α∗ does not depend on the graph structure but only on the covariance structure of the fluctuations. The same
interpretation as in the special case S ⊆ B of Theorem 1 holds here for the optimal load-sharing factors: α∗i is
proportional to how much the stochastic fluctuations of node i contribute in relative terms to the variance of
the total mismatch (see (12)). In particular, when a node i does not have stochastic load fluctuations, then it is
optimal not to use the controllable load in that node, because α∗i � 0 in view of the fact that the i-th row of

∑
is

identically zero.

It immediately follows from Theorem 2 that when the stochastic load fluctuations are independent and
identically distributed, the optimal load-sharing factors are all equal, namely,

α∗ � 1
n
1.

Furthermore, the expected total loss due to stochastic fluctuations when using the optimal load-sharing factors
rewrites as

EHs α
∗( ) � 1

2
tr

∑
L+

( ) − 1
σ2

1T
∑

L+
∑

1
( )

.

In this special case, the fact that EHs(α∗) ≥ 0 can equivalently be proved as follows:

1T
∑

L+
∑

1 � tr
∑

L+
∑

J
( ) ≤ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tr
∑

L+
( )2( )

tr
∑

11T
( )2( )√

≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tr

∑
L+

( )2tr ∑
11T

( )2√
� tr

∑
L+

( )
tr

∑
11T

( ) � σ2tr
∑

L+
( )

,

where both the inequalities leverage in a crucial way that all the matrices
∑
, 11T, and L+ are positive

semidefinite. The first inequality follows from the fact that, in the space of positive semidefinite matrices, trace
is a proper inner-product and thus obeys the Cauchy-Schwarz inequality,

tr AB( ) ≤ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tr A2( ) tr B2( )√ ∀A,B positive semi-definite matrices.

The second inequality follows from the fact that tr(A2) ≤ tr(A)2 for any positive semidefinite matrix A, obtained
by applying the Cauchy-Schwarz inequality with A � B.

4. Scaling Properties of the Expected Total Loss
In this section, we explore the relation between the expected total loss and the number of controllable loads. Even if the
intuition suggests that the expected total loss should be a decreasing function in the number of controllable loads, this fact
may not be true in general, as the total loss depends both on the location of the controllable loads as well as on theload-
sharing factors. For instance, in Section 6, we present a counterexample of a network in which by adding the one
controllable load and readjusting the load-share factors to be all equal, the expected total power loss increases.
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To get rid of these heterogeneities and obtain a more transparent result for the impact of the number of
controllable loads, we calculate the expected total loss for a fixed number of controllable loads averaging on all
their possible locations and assuming they share the load equally. Consider an integer 1 ≤ k ≤ n and denote by
Bk ⊂ Rn the collection of load-sharing vectors with exactly k nonzero identical entries (and thus equal to 1/k, in
view of (4)), namely,

Bk :� 1
k

∑
i∈B

ei : B ⊆ V, |B| � k

{ }
,

where ei ∈ Rn is the vector with the i-th entry equal to one and zero elsewhere.
Let Hk denote the expected total loss due to stochastic load fluctuations averaging over all their possible

locations of k controllable nodes share the load equally, that is,

Hk :� 1
|Bk |

∑
α∈Bk

EHs α( ).

This average consists of |Bk | � (nk) terms, one for each possible arrangements of k controllable nodes in a
network with n nodes. The following theorem states an explicit expression for Hk that makes the dependence
on the number of controllable node k very explicit, showing in particular that Hk is, up to a constant,
proportional to 1/k. The proof of the theorem is presented in Appendix D.

Theorem 3 (Average Total Loss with k Controllable Loads). Consider a network G of n nodes with balanced nominal profile
load, that is, 1Tµ � 0. Then,

Hk � C1 + C2

k
,

where C1,C2 ∈ R are two constants that do not depend on k given by

C1 � C1 G( ) :� 1
2
tr

∑
L+

( )
− σ2

tr L+( )
2n n − 1( ) and C2 � C2 G( ) :� σ2

tr L+( )
2 n − 1( ) .

Both the constants C1(G) and C2(G) depend on the graph structure via L+, on its size n, and on the covariance
matrix

∑
. We remark that the constant C2 is always strictly positive, as tr(L+) > 0 (L+ being a positive

semidefinite matrix) and σ2 > 0, in view of (2).

We are interested in understanding how the expected total loss scales for large graphs. Assume we can
take a sequence of graphs {Gn}n∈N of growing size, |Vn| � n, and of covariance matrices {∑n}n∈N with total
variance σ2n � 1T

∑
n1, so that the limit

γ :� lim
n→∞

n − 1( ) tr ∑
nL+n

( )
σ2n tr L+n

( )
exists. Note that the fact that inequality Hn ≥ 0 holds for every n ∈ N (see Proposition 1) guarantees that γ ≥ 0.
Under these assumptions, Theorem 1 readily implies that as the graph size n grows large, the relative gain of
having k controllable loads with respect to a single one scales as

lim
n→∞

Hk

H1
� 1

1 + γ−1

( )
+ 1

1 + γ

( )
1
k
.

In the scenario where the load fluctuations are independent and identically distributed, regardless of the graph
structure, this asymptotic scaling reads

lim
n→∞

Hk

H1
� 1
2
+ 1
2k

. (14)
as

γ � lim
n→∞

n − 1( ) tr ∑
nL+n

( )
σ2n tr L+n

( ) � lim
n→∞

n − 1( ) σ2n tr L+n
( )

nσ2n tr L+n
( ) � lim

n→∞
n − 1
n

� 1.
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In Subsection 6.6, we show numerically that the way the expected total loss scales on average with the number
of controllable loads as stated in Theorem 3 is pretty accurate in general, even without averaging over all
possible locations of the controllable loads.

5. Extensions
5.1. Generalized Model
The optimization problems (9) and (13) considered in Section 3 focus on the network efficiency but do not
prevent the excessive usage of specific controllable loads nor account for economic factors. In this section, we
present a more general optimization problem that addresses both these issues and that further includes
additional constraints typical of the OPF problem, which network operators use to set the operational set-
points of power systems every 5–15 minutes.

Let P be a positive definite n × n matrix, R ∈ Rn×n, and q ∈ Rn. Introducing a nonnegative real number ξ ≥ 0,
we can consider the following generalized optimization problem:

min
α∈Rn

EH α( ) + ξαTPα, (15)
s.t. 1Tα � 1, (16)

αv � 0, ∀ v ∈ V \ B, (17)
Rα ≤ q, (18)
| f � α( )| ≤ fmax

� , ∀� ∈E. (19)
This optimization problem differs from that in (9) in two ways, namely, its objective function (15) has an extra
term and it has two new sets of constraints (18) and (19).

The term αTPα can be seen as a penalty or cost term and the scalar ξ ≥ 0 weights its relative importance with
respect to the average total loss EH(α). More specifically, by taking P to be a diagonal matrix with nonnegative
entries, the additional term αTPα � ∑n

i�1 Pi,iα
2
i in the objective function penalizes excessive usage (i.e., large

load-sharing factor) of the controllable loads with large coefficients Pi,i. This means that we can model less
flexible or more costly controllable loads by tuning the corresponding terms Pi,i > 0 accordingly.

The additional constraint (18) can be used to set any desired upper and/or lower bounds on the load-
sharing factor of any particular node. In particular, we could restrict the load-sharing factors for some of the
nodes v ∈ B to be nonnegative, αv ≥ 0, or their absolute values |αv| < εv with ad hoc constants εv > 0.

Lastly, the constraint (19) captures the physical limits of the lines, by imposing the power flow f �(α) on any
given network line � ∈ E stays below the corresponding capacity fmax

� > 0 of that line. As outlined in Section 2,
using the linear approximation (1), the power flows f (α) � ΛL+p(α) are linear in the load profile p(α) and,
ultimately, linear also in the load-sharing factors α.

Clearly (15) is still a convex optimization problem: all the constraints are still linear in α and the objective
function rewrites as a quadratic form with the matrix L+ + ξP appearing in the leading term that is positive
definite in view of the assumption made on the matrix P and Proposition 1. It is impossible, however, to derive
the optimal control α∗ in closed form for the generalized problem (15) and thus we cannot explore its structure
as we did in the previous sections, but we present some numerical results in next section.

Nonetheless, we argue that the original problem (9) still gives valuable insight as the line capacity limits
appearing in (19) are often redundant. Indeed, the OPF problem automatically sets a nominal setpoint µ so
that all the nominal power flows f are within their limits and the optimal control α∗ should decrease the
largest line flows (in absolute value) f (α) even further, as it is intuitive from the expression H(α) �
1
2
∑

�∈E β−1� f 2�(α) (cf. Section 2).
Moreover, even if we set a specific load-sharing factor αv to be nonnegative or smaller than εv with

constraint (18), the controllable load in that node should still be capable of both storing and to outputting a
possibly very large amount of power, as we outlined at the end of Subsection 2.1. Alternatively, a chance-
constraint for the stochastic effort αi

∑
j ωj of node i could be included in the optimization problem like it has

been done in (Bienstock et al. 2014). However, additional assumptions on the multivariate distribution of ω
must be made to rewrite the constraint so that the resulting optimization problem is still convex. Other chance-
constraints for line limits could be obtained using concentration inequalities as in (Nesti et al. 2017) or using
decay rates and large deviation theory as in (Nesti et al. 2018).
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We conclude by deriving the optimal control α∗ when considering the optimization problem with aug-
mented objective function (15) in the special case where all the nodes have controllable loads, that is, B � V,
but ignoring the constraints (18) and (19). In this scenario, the optimal solution can still be calculated in closed
form as

α∗ � σ2

2
L+ + ξP

( )−1
I + 1

t
11T

σ2

2
L+ + ξP

( )−1( )
L+

∑
1 + 1

t
σ2

2
L+ + ξP

( )−1
1,

with t :� 1T(σ22 L+ + ξP)−11 > 0. This expression can be obtained in a similar way of that in Theorem 1,
leveraging the fact that the matrix L+ + ξP is positive definite.

5.2. Variance of the Aggregated Total Loss
It could be of interest choosing the load-sharing factors α1, . . . ,αn not only to minimize the expected ag-
gregated total loss EH(α) but also its variance Var(H(α)). Aiming to possibly include this in our optimization,
we need a closed-form expression for the variance of a quadratic form of a random vector. Unfortunately, this
is known only in the case in which the random vector has a multivariate Gaussian distribution. Under this
additional assumption, the variance of the aggregated total loss can be calculated explicitly as follows:

Var H α( )( ) � Var Hs α( )( ) � Var
1
2
ωTCT

α L
+Cαω + µTL+Cαω

( )
� 1
4
Var ωTCT

α L
+Cαω

( ) + Var µTL+Cαω
( ) + Cov ωTCT

α L
+Cαω,µTL+Cαω

( )
� 1
2
tr

(
CT
αL

+Cα

∑( )2) + µTL+Cα

∑
CT
αL

+µ.

The last step follows from standard results for quadratic forms of multivariate Gaussian random variables
(Rencher and Schaalje 2008, theorems 5.2c and 5.2d) and the fact that Eω � 0.

Following similar steps to those in the proof of Proposition 1 in Appendix A, the expression for Var(H(α))
can be further rewritten as a polynomial of degree four in the load-sharing factors α1, . . . ,αn. This new term
could potentially be included in the objective function of the optimization problem (15), but the resulting
problem is not guaranteed to still be convex in general.

6. Numerical Examples
In this section, we present some numerical results. First of all, in Subsection 6.1, we compare the performance
of our static optimal load-sharing factors α∗ with that of idealized real-time load-sharing factors α(ω) that
dynamically respond to fluctuations. Then, in Subsections 6.2 and 6.3, we study the impact of the covariance
matrix and of the relative position of the nodes affected by fluctuations and those housing controllable loads.
We present two examples to illustrate that (i) optimal load-sharing factors have opposite signs in Subsec-
tion 6.4 and (ii) expected total loss is not always decreasing in the number of controllable loads in Subsection 6.5.
Lastly, in Subsection 6.6, we corroborate the accuracy of the scaling limit derived in Section 4.

6.1. Real-Time Adaptive Load-Sharing Factors
We briefly consider here the scenario in which it is possible to (i) have exact knowledge about the realized
fluctuations ω and (ii) have instantaneous coordination between controllable loads. In this setting, a cen-
tralized controller could dynamically change the load-sharing factors depending on the realization of the
noise ω, trying to minimize the total loss. In this case, the total aggregated power loss H̃(α,ω) � 1

2 (µ −
Cαω)TL+(µ − Cαω) is not a random variable but simply a quadratic form in α. Thus, for every realization of the
noise ω, we can find the optimal load-sharing factors α∗(ω) ∈ Rn that solve

min
α∈Rn

H̃s α,ω( )
s.t. 1Tα � 1,

αv � 0, ∀ v ∈ V \ B.
(16)
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From our previous analysis, it is easy to see that this is still a convex optimization problem in α with a
quadratic objective function and linear equality constraints. Its solution can be obtained from the corre-
sponding Karush-Kuhn-Tucker conditions

− 1Tω
( )

L+ µ +ω − 1Tω
( )

α
( ) + π1 + ν � 0

1Tα � 1,
αv � 0, ∀ v ∈ V \ B,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
where π ∈ R is the dual variable corresponding to the constraint 1Tα � 1 and ν ∈ Rn is the vector whose
nonzero entries are equal to the dual variables of the constraints αv � 0, that is, νv � ν ∈ R if v ∈ V \ B and zero
otherwise. In the special case B � V, the vector ν is equal to 0; and the system of equations above can be solved
explicitly leveraging the spectral structure of L+ to obtain

αi � 1Tω
( )−1

µi +ωi
( ) � µi +ωi∑n

j�1 ωj
.

This result corresponds to the unrealistic scenario in which the response of the controllable loads is such that
the net load profile pi(α) becomes zero in every node (and no power flows in the lines).

Figure 1. The IEEE 14-Bus Test Network with Three Controllable Loads B � {2, 6, 9} (Depicted as Squares) and All 14 Nodes
Affected by Stochastic Fluctuations, That Is, S � V, with Correlations Captured by the Matrix

∑

Figure 2. Traces of the Optimal Dynamic Load-Sharing Factors for the Three Controllable Loads B � {2, 6, 9} in the IEEE
14-Bus Test Network of Figure 1 Over 100 Realizations of the Fluctuations ω
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We thus focus the case where B ⊊ V and compare numerically the performance of the optimal static load-
sharing factors α∗ against the dynamically changing α∗(ω) for the same realizations of the fluctuations ω. We
consider the IEEE 14-bus test network, a standard test case used for simulations in the power grid literature
(Zimmerman et al. 2011), with correlated noise (see Figure 1).

The resulting static optimal control for this network and correlation structure is α̃∗ � (α̃∗2 , α̃∗6 , α̃∗9) �(0.3510, 0.2805, 0.3685). We sample 100 realizations of ω from a multivariate Gaussian distribution with mean 0
and correlation matrix

∑
; for each of them, we calculate the total aggregated loss using α̃∗ and finding the

optimal dynamic load-sharing factors α̃∗(ω). For these realizations, the average total loss using the dynamical
control is equal to 18,250.8, whereas it results in a 20% higher average total loss, namely, 21,985.1, when using
the static control. However, as shown in Figure 2, the dynamic control α̃∗(ω) takes incredibly large (both
positive and negative) values, which are highly unrealistic to be implemented in practical settings.

6.2. Impact of Covariance Structure
The next two figures illustrate how the covariance structure influence the optimal control for a small network
of 14 nodes, the IEEE 14-bus test network. Figure 3(a) covers the case in which all the nodes have stochastic
load fluctuations, that is, S � V, whereas in Figure 3(b) we present a scenario where S ⊊ V, where only the
nodes in black are affected by fluctuations. In both figures, the nodes with controllable loads are B � {2, 6, 9}
and are drawn as squares.

For these two networks, we compare the optimal static control α∗ for the three controllable loads in the
various cases in which we vary the covariance structure of the noise (see Figure 4). The correlation matrix

∑
c in

Figure 5(c) has been generated at random; the correlation matrix
∑

b used in case (b) is obtained using the
diagonal entries of

∑
c; and that in case (a) is equal to

∑
a � σ2I14, with σ2 � 1T

∑
c1 � 1T

∑
b1 � 255.75. In this

way, all the three correlation matrices have been rescaled so that their total variance is equal in all three cases,
namely, σ2a � σ2b � σ2c . The correlation matrices for the second network are displayed in Figure 6; they have
been obtained analogously; but only a subset of |S| � 9 nodes is affected by stochastic fluctuations, and the
other ones have corresponding rows and columns equal to zero.

Figure 3. The IEEE 14-Bus Test Network with Three Controllable Loads B � {2, 6, 9} (Depicted as Squares)
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6.3. Relative Position of Controllable Loads and Stochastic Nodes
As suggested by Theorem 1, the relative position of the nodes affected by fluctuations and that of the
controllable loads play a crucial role in terms of the achievable total power loss, as we will illustrate in the
following example on a ring network. Figure 7 visualizes the optimal load-sharing factors in the scenario
where there are |B| � 6 controllable nodes and |S| � 4 nodes affected by fluctuations. The subset of nodes
affected by fluctuation is fixed, S � {1, 4, 7, 10}, as well as the covariance matrix; but the location of the
controllable loads, that is, the subset B, changes.

Figure 7(a) presents the scenario in which S ⊂ B (i.e., all the stochastic nodes have controllable loads) and the
optimal control α∗ for all other nodes in B \ S � {5, 11} are equal to zero, as prescribed by Theorem 1. In the
other two cases, in Figure 7, (b) and (c), we picked two different subsets B of controllable loads such that S �⊂ B
and S ⊂ Bc, respectively. The corresponding values of the expected loss are higher in these cases than in case
(a) and suggest that it may be optimal to place the controllable loads in the nodes affected by stochastic
fluctuations. Lastly, note in Figure 7(b) that the load-sharing factors for node one and seven are much larger
than the other nodes in B, because these two nodes are affected by stochastic fluctuations but the remaining
four are not.

Figure 5. Scatter Plots of the CorrelationMatrices in Three Different Scenarios and Resulting Optimal Load-Sharing Factors for
the Three Controllable Loads in B � {2, 6, 9} for the Network in Figure 3(a)

Figure 4. Values of the Optimal Load-Sharing Factors α̃∗ with Different Noise Correlation Structures
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6.4. Negative Load-Sharing Factors
The fact that a load-sharing factor is nonnegative means that the corresponding node absorbs part of the
power excess (if

∑n
i�1 ωi > 0) and balance out shortages (if

∑n
i�1 ωi < 0). In most of the related work in primary

response mechanisms and automatic generation controls for power grids, the participation factors (that
our load-sharing factors generalize) are in fact taken to be nonnegative, that is, αv ≥ 0 for all v ∈ B.
This assumption tacitly implies that all the controllable generators and storage have “coordinated” actions,
that is, they either all increase or all decrease their power output.

In our formulation of the optimization problems (9) and (13), we do not make such an assumption and load-
sharing factors can also be negative, as long as the condition (4) is met. This is crucial, as for certain covariance
structures of the load fluctuations (especially when there are strong negative correlations), it is optimal to have
negative load-sharing factors in some nodes: we illustrate this fact for a small network in Figure 8.

Figure 7. Different Locations of Controllable Loads B (Depicted as Squares with Area Proportional to the Optimal Load-
Sharing Factors α∗) and Corresponding Expected Total Loss

Figure 6. Scatter Plots of the CorrelationMatrices in Three Different Scenarios and Resulting Optimal Load-Sharing Factors for
the Three Controllable Loads in B � {2, 6, 9} for the Network in Figure 3(b)
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Table 1 lists the optimal load-sharing factors α∗ corresponding to a different set of controllable loads in the
network in Figure 8 where the load fluctuations covariance structure is assumed to be

∑ �
1 0 0 −0.5
0 1 0 −0.5
0 0 1 −0.5

−0.5 −0.5 −0.5 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The best way for the controllable loads to respond to the negative correlations that the load fluctuations
have in this network is having the controllable load in node four taking actions “mirroring” those of the
other three nodes, in the sense that α∗4 < 0, whereas the load-sharing factors of the other nodes in B are
always positive.

6.5. Nonmonotonicity of Expected Power Loss When Adding Controllable Loads
An extra controllable load always reduces the expected total power loss if the corresponding optimal load-sharing
vector α∗ is selected, because it corresponds to removing one constraint in the optimization problem (9). However,
if the chosen load-sharing factors of the augmented subset of controllable loads are not the optimal ones,
adding an extra controllable load does not necessarily reduce the expected total power loss. We illustrate this fact with an
example in which the control is always assumed to be equal-share between the controllable loads in B, that is, α̃ � 1

|B| 1.
Consider the network given in Figure 9 and assume that the stochastic loads are i.i.d. with unit variance.

Table 2 lists the expected total power losses for some subsets B of controllable loads and compares them
with those for some augmented subset B ∪ {4}. It is evident that in every one of these case, adding an

Table 1. Sets of Controllable Loads for the Network in Figure 8 and Corresponding
Optimal Load-Sharing Factors

B α∗(B)
{1, 4} (6/5, 0, 0,−1/5)
{1, 2, 4} (2/3, 2/3, 0,−1/3)
{1, 2, 3, 4} (1/2, 1/2, 1/2,−1/2)

Figure 8. A Small Network Modeled by a Graph with n � 4 Nodes and m � 4 Edges with Unit Weights

Figure 9. A Small Network Modeled by a Graph with n � 7 Nodes and m � 9 Edges with Unit Weights
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additional controllable load in node four without optimally readjusting the load-sharing factors results in a
higher expected total loss.

6.6. Empirical Evidence of the Scaling Law
The scaling law derived in Section 4, despite having been obtained by averaging over the possible locations of
the controllable loads, still gives precious insight about how the average total loss decreases with the number
of controllable loads. Aiming to corroborate this fact, we consider the IEEE RTS 96-bus test network
(Zimmerman et al. 2011) and track the average total loss while adding one by one controllable loads in
random locations and assuming equal share among them.

As illustrated by Figure 10, the theoretical scaling for the expected total loss scales with the number of
controllable loads stated in Theorem 3, while averaging all possible locations, is also in fact very accurate for a
single instance where new controllable locations are randomly added.

7. Concluding Remarks
In this paper, we consider a stochastic lossy transport network in which some nodes have controllable loads
and derive a closed-form expression for the optimal control when aiming to minimize the average total loss.
The model is inspired by power systems where distributed energy resources can be used as virtual storage to
mitigate the fluctuations in the power generated by renewable energy sources and in power demand. Our
analysis unveils the complex interplay between the network structure, the location of the controllable loads,
and the covariance structure of the power fluctuations and gives insight into how much the average total loss
can be reduced by adding a given number of controllable loads to the network.

We derived explicit optimal load-sharing factors for controllable loads in various scenarios. Our analysis,
even if it uses a stylized mathematical model, suggests that the optimal displacement and operations of
distributed energy resources must account for the possible correlations of the power fluctuations. For this
reason, it complements the recent efforts in the electrical engineering community in upgrading the existing
models for power grids to account both for the intrinsic volatility of renewable energy generation and storage
capabilities (see, e.g., Kanoria et al. 2011; Lin and Bitar 2016a, b, 2017; Lorca et al. 2016; Lorca and Sun 2017).

Lastly, we presented a more general optimization problem that can be instrumental to explore numerically
the trade-off between the best operations for the network and the corresponding cost or penalties for the
excessive usage of the controllable nodes. This is particularly relevant for the design of primary response

Figure 10. Theoretical Scaling (in Red) of the Expected Total Loss as Predicted by Theorem 3 vs. Empirical Total Loss (in Black)
While Adding Controllable Loads One by One in Random Locations

Table 2. Expected Total Power Losses for the Network in Figure 9 Assuming Equal Load-
Sharing Factors for Some Subsets B of Controllable Loads and Then for the Subsets
Augmented with an Extra Node, Namely, B ∪ {4}
B EH(B) EH(B ∪ {4})
{2} 2.6875 3.0625
{2, 5} 2.0625 2.1319
{2, 6, 7} 1.7986 1.8438
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mechanisms and automatic generation controls for power grids (Apostolopoulou et al. 2014, Lubin et al. 2016,
Roald et al. 2016a, Sundar et al. 2016, Chertkov and Dvorkin 2017, Guggilam et al. 2017a, b).

Appendix A. Properties of the Total Power Loss

Proof of Proposition 1. Using the expression for Cα given in (3), we can rewrite H(α) as

H α( ) � 1
2

µ + Cαω
( )TL+ µ + Cαω

( ) � 1
2
µTL+µ + 1

2
ωTCT

αL
+Cαω + µTL+Cαω.

Note that one of the terms on the right-hand side, namely, 12µ
TL+µ, is not random and does not depend on the control α. Define

the random variable

Hs α( ) :� H α( ) − 1
2
µTL+µ � 1

2
ωTCT

αL
+Cαω + µTL+Cαω, (A.1)

which describes precisely the contribution of the stochastic fluctuations to the transportation losses. From the fact that L+ is a
positive semidefinite matrix it follows that

1
2
ωTCT

αL
+Cαω � 1

2
Cαω( )TL+ Cαω( ) ≥ 0 ∀ω ∈ Rn. (A.2)

Combining (A.1) and (A.2), and the fact that E(µTL+Cαω) � µL+CαEω � 0, yields that

EHs α( ) � E
1
2
ωTCT

αL
+Cαω

( )
≥ 0.

Applying a classic result for quadratic forms of a random vector (see, e.g., Mathai and Provost 1992, corollary 3.2b.1), we derive

E
1
2
ωTCT

αL
+Cαω

( )
� 1
2
tr CT

αL
+Cα

∑( )
. (A.3)

Because Eω � 0, it follows that E(µTL+Cαω) � µTL+CαEω � 0; thus, identity (A.1) can be rewritten as

EHs α( ) � 1
2
tr CT

αL
+Cα

∑( )
.

We now derive identity (6). Recall the following well-known properties of the trace of a matrix:
i. The trace is invariant under cyclic permutations, that is, for any r ∈ N,

tr A1 . . .Ar( ) � tr A2 . . .ArA1( ) � . . . � tr ArA1 . . .Ar−1( ).
ii. The trace of a matrix and of its transpose coincide, that is, tr(A) � tr(AT).
iii. The trace of the outer product of two vectors is their inner product, namely,

tr vwT( ) � tr v ⊗w( ) � vTw.

First note that we can rewrite

CT
αL

+Cα � I − α 1T
( )T

L+ I − α 1T
( )

� I − 1αT
( )

L+ − L+α 1T
( )

� L+ − L+α 1T − 1αTL+ + 1αTL+α 1T . (A.4)
The aforementioned properties of the trace yield

tr
∑

L+α 1T
( ) (ii)� tr

∑
L+α 1T

( )T( )
� tr 1αTL+

∑( ) (i)� tr
∑

1αTL+
( )

, (A.5)

and

tr
∑

1αTL+
( )

� tr
∑

1 L+α( )T
( )

� tr
∑

1
( )

⊗ L+α
( )( ) (iii)� ∑

1
( )T

L+α
( ) (iii)� 1T

∑
L+α. (A.6)
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By combining all these equalities and exploiting the linearity of the trace operator, we obtain

tr
∑

CT
αL

+Cα

( ) (20)� tr
∑

L+
( )

− tr
∑

L+α 1T
( )

− tr
∑

1αTL+
( )

+ tr
∑

1αTL+α 1T
( )

(21)� tr
∑

L+
( )

− 2 · tr ∑
1αTL+

( )
+ αTL+α

( )
· tr ∑

1 1T
( )

(22)� tr
∑

L+
( )

− 2 · 1T
∑

L+α
( )

+ σ2 αTL+α
( )

,

where we also used the fact that αTL+α is a scalar in the second step and identity (2) in the third step. □

Proof of Proposition 2. Assume that e � (i, j) ∈ (V × V) is the edge with weight β > 0 that has been added to G or whose edge
weight has been increased by β > 0 and letme � (ei − ej) ∈ Rn be the corresponding nonweighted incidence vector. In both cases,
the Laplacian matrix of the newly obtained graph G′ can be written as

LG′ � LG + βmemT
e

and, using the generalized version of the Sherman-Morrison formula in (Meyer 1973), we get

L+G′ � L+G − 1
β−1 +mT

e L
+
Gme

L+GmemT
e L

+
G.

We can thus rewrite the total loss corresponding to any net load profile p(α) as

HG′
α( ) � 1

2
p α( )TLG′p α( )

� 1
2
p α( )TL+G p α( ) − 1

2 β−1 +mT
e L

+
Gme

( )p α( )TL+GmemT
e L

+
G p α( )

� HG α( ) − mT
e L

+
Gp α( )( )2

2 β−1 +mT
e L

+
Gme

( ) ,
and conclude by noticing that mT

e L
+
Gme ≥ 0 and (mT

e L
+
Gp(α))2 ≥ 0. □

Appendix B. Proof of Theorem 1
In this proof, we use the so-called block matrix inversion formula, which is stated in the next lemma.

LemmaB.1 (Block Matrix Inversion Formula). Consider a matrix with the block structure
(
A B
C D

)
. If bothA andD − CA−1B are

nonsingular matrices, then

A B
C D

( )−1
� A−1 − A−1B D − CA−1B

( )−1CA−1 −A−1B D − CA−1B
( )−1

− D − CA−1B
( )−1CA−1 D − CA−1B

( )−1
( )

.

For any vector α ∈ Rn that is such that αi � 0 for every node i ∈ V \ B, there exists a unique k-dimensional vector α̃ ∈ Rk such
that α � PBα̃. Using this correspondence and the fact that the nominal load profile is balanced, that is, 1Tµ � 0, we can rewrite

EHs α( ) � EH PBα̃( ) (5)� σ2

2
α̃TPT

BL
+PBα̃

( ) − 1T
∑

L+PBα̃ + 1
2
tr

∑
L+

( )
.

Therefore, the n-dimensional optimization problem (9) rewrites as a k-dimensional optimization problem with a single con-
straint, namely,

min
α̃∈Rk

σ2

2
α̃TPT

BL
+PBα̃

( ) − 1T
∑

L+PBα̃

s.t. 1Tα̃ � 1. (B.1)
The matrix L+B :� PT

BL
+PB ∈ Rk×k is positive definite, as for any vector v ∈ Rk, v �� 0,

vTL+Bv � vTPT
BL

+PBv � v 0( ) L+ v
0

( )
> 0,
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where the last inequality follows from the fact that the vector (v 0) is not amultiple of the vector 1 and thus does not lie in the null
space of L+. The optimization problem in (B.1) has then a unique solution, because the correspondingHessian is positive definite.

Let γ ∈ R be the Lagrange multiplier γ associated with the unique equality constraint of the optimization problem (B.1). The
associated Lagrangian associated is

L α̃, γ
( ) � σ2

2
α̃T PT

BL
+PB

( )
α̃ − PT

BL
+∑1

( )T
α̃ − γ 1Tα̃ − 1

( )
.

Setting b :� PT
BL

+∑1 ∈ Rk, the optimality conditions read

σ2L+B α̃ − γ1 � b,
1Tα̃ � 1,

{
or, equivalently, in matrix form

σ2L+B −1
1T 0

( )
α̃

γ

( )
� b

1

( )
. (B.2)

Being positive definite, L+B is invertible and its inverse is also positive definite, which means that tB :� 1T(L+B)−11 > 0. In view of
the fact that σ2t−1B �� 0 and L+B are invertible, we can use the block matrix inversion formula given in Lemma B.1 to obtain

σ2L+B −1
1T 0

( )−1
�

1
σ2

L+B
( )−1 I − 1

tB
11T L+B

( )−1( )
1
tB

L+B
( )−11

1
tB
1T L+B

( )−1 σ2

tB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The solution of the linear system (B.2) then reads

α̃

γ

( )
� σ2L+B −1

1T 0

( )−1
b
1

( )
�

1
σ2

L+B
( )−1 I − 1

tB
11T L+B

( )−1( )
1
tB

L+B
( )−11

1
tB
1T L+B

( )−1 σ2

tB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

b
1

( )
;

thus, the optimal load-sharing vector α̃ ∈ Rk is given by

α̃∗ � L+B
( )−1
σ2

I − 1
tB
11T L+B

( )−1( )
b + 1

tB
L+B
( )−11

� 1
tB

L+B
( )−11 + L+B

( )−1 I − 1
tB
11T L+B

( )−1( )
b
σ2

� 1
tB

L+B
( )−11 + L+B

( )−1− 1
tB

L+B
( )−111T L+B

( )−1( )
PT
BL

+
∑
1

σ2

� 1
tB

L+B
( )−11 + I − 1

tB
L+B
( )−111T( )

L+B
( )−1PT

BL
+
∑
1

σ2
.

We now focus on the special case where S ⊆ B and prove identity (11). Rewrite L+ as a block matrix

L+B L+C
L+C
( )T L+Bc

( )
,

with L+B ∈ Rk×k, L+C ∈ Rk×n−k, and L+Bc ∈ Rn−k×n−k. Note that L+B and L+Bc are symmetric matrices, because L+ is symmetric. This is
consistent with the former definition of L+B , because

PT
BL

+PB � Ik |O( )L+ Ik |O( )T� Ik |O( )T L+B L+C
L+C
( )T L+Bc

( )
Ik |O( ) � L+B .
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We start by noticing that

L+B
( )−1PT

BL
+ � L+B

( )−1 Ik |O( ) L+B L+C
L+C
( )T L+Bc

( )
� L+B

( )−1 L+B | L+C
( ) � Ik | L+B

( )−1L+C( )
∈ Rk×n.

From the assumption S ⊆ B it follows that the covariance matrix can be rewritten as

∑ �
∑
B

O

O O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where
∑

B ∈ Rk×k is itself a covariancematrix (hence, a symmetric positive semidefinitematrix). Trivially, 1T(∑B|O)1 � tr(∑B11T) �
tr(∑11T) � σ2. Furthermore,

L+B
( )−1PT

BL
+∑ � L+B

( )−1PT
BL

+
∑
B

O

O O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � Ik | L+B

( )−1L+C( ) ∑
B

O

O O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ∑

B

⃒⃒⃒
O

( )
.

The optimal control α̃∗ then rewrites as

α̃∗ � L+B
( )−1
tB

1 + Ik − L+B
( )−111T

tB

( )
L+B
( )−1PT

BL
+
∑
1

σ2

� L+B
( )−1
tB

1 + Ik − L+B
( )−111T

tB

( ) ∑
B

⃒⃒⃒
O

( )
1
σ2

� L+B
( )−1
tB

1 + ∑
B

⃒⃒⃒
O

( )
1
σ2

− L+B
( )−1
tB

1
1T

∑
B|O( )1
σ2

� L+B
( )−1
tB

1 +
∑
1

σ2
− L+B

( )−1
tB

1

�
∑
1

σ2
. □

Appendix C. Proof of Theorem 2
We already rewrote in (7) the objective function of the optimization problem (13) as a quadratic form in α,

EHs α( ) � σ2

2
αTAα − bTα + c,

where A � L+, b � L+∑1 ∈ Rn, and c � tr(∑L+)/2 ∈ R+. Note that, for the purpose of solving the optimization problem (13),
we can ignore the constant term c.

Denote by 0 � λ1 < λ2 < . . . < λn the eigenvalues of the weighted Laplacian matrix L and let v1, v2, . . . , vn be the cor-
responding orthonormal basis of eigenvectors. Consider the representation of the vector α ∈ Rn in this basis, namely,

α � a1v1 + a2v2 + . . . + anvn, (C.1)
with a1, . . . , an ∈ R. In view of the fact that the rows of L sum up to zero, it immediately follows that v1 � 1̅

n̅
√ 1. From the

constraint (4), that is, 1Tα � 1, it immediately follows that a1 � 1/
̅̅
n

√
. Indeed,

a1 ·
̅̅
n

√ � a1 · 1
T1̅̅
n

√ � a11Tv1 � a11Tv1 + a2vT1v2 + . . . + anvT1vn � 1T a1v1 + a2v2 + . . . + anvn( ) � 1Tα � 1.

Defining the real coefficients κ2, . . . , κn as

κi :�
∑

1, vi
〈 〉

� 1T
∑

vi, i � 2, . . . , n,

and using the representation (C.1), the two terms of the quadratic form above rewrites as

αTL+α � a1v1 + a2v2 + . . . + anvn( )TL+ a1v1 + a2v2 + . . . + anvn( ) � a21v
T
1L

+v1 +
∑n
i�2

a2i v
T
i L

+vi �
∑n
i�2

a2i
λi

,
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and

bTα � 1T
∑

L+α � 1T
∑

L+ a1v1 + a2v2 + . . . + anvn( ) � ∑n
i�2

ai
λi

1T
∑

vi �
∑n
i�2

ai
κi

λi
,

where we used twice the fact that L+v1 � 0. The objective function thus can be rewritten as

EH α( ) � σ2

2
αTAα − bTα � σ2

2

∑n
i�2

a2i
λi

−∑n
i�2

ai
κi

λi
�: g a2, . . . , an( ). (C.2)

The optimization problem (13) is therefore equivalent to a unconstrained minimization problem in n − 1 variables, a2, . . . , an,
which can be expressed using the newly introduced function g : Rn−1 → R. The gradient of g can be calculated as ∇g(a2, . . . , an) �
(σ2λi

ai − κi
λi
)i�2,...,n, and the Hessian is the diagonal matrix H(g) � σ2 · diag(λ−1

2 , . . . , λ−1
n ). The Hessian H(g) is constant as it does

not depend on a2, . . . , an and is a positive definite matrix, because all its diagonal terms are positive, in view of the fact
that λi > 0 for i � 2, . . . , n and that σ2 > 0. The problem is then strictly convex, and any stationary point satisfying
∇g(a2, . . . , an) � 0 would then be a minimum for the function g. Solving the optimality condition ∇g(a2, . . . , an) � 0 yields

a∗i � κi

σ2
, i � 2, . . . ,n.

Consequently, the optimal load-sharing factor vector α∗ is unique and is given by

α∗ � 1̅̅
n

√ v1 + 1
σ2

∑n
i�2

κivi � 1
n
1 + 1

σ2
∑n
i�2

κivi.

Lastly, setting v1 :� 1̅
n̅

√ 1 and κ1 :� 〈∑1, v1〉 � 1T
∑
v1 � 1T

∑ 1̅
n̅

√ 1, the vector α∗ rewrites as

α∗ � κ1

σ2
1̅̅
n

√ 1 + 1
σ2

∑n
i�2

κivi � 1
σ2

∑n
i�1

κivi

( )
� 1
σ2

∑n
i�1

∑
1, vi

〈 〉
vi

( )
�

∑
1

σ2
. □

Appendix D. Proof of Theorem 3
The starting point of the proof is two identities that leverage the properties of the pseudoinverse L+ of the graph Laplacian. Firstly,

∑
B⊆V : |B|�k

L+
∑
i∈B

ei

( )
� L+

∑
B⊆V : |B|�k

∑
i∈B

ei

( )
� L+

∑n
i�1

∑
B⊆V : |B|�k

ei1 i∈B{ }

( )

� L+
∑n
i�1

ei
∑

B⊆V : |B|�k
1 i∈B{ }

( )
� L+

∑n
i�1

ei
n − 1
k − 1

( )( )

� n − 1
k − 1

( )
L+

∑n
i�1

ei

( )
� n − 1

k − 1

( )
L+1 � 0, (D.1)

where we use the fact that in a graph with n nodes, each node belongs to exactly (n−1k−1) subsets of k nodes. We further claim that

∑
B⊆V : |B|�k

∑
i∈B

ei

( )T
L+

∑
i∈B

ei

( )
� n − 2

k − 1

( )
tr L+( ), (D.2)

with the convention that (n−2n−1) � 0. Because

∑
i∈B

ei

( )T
L+

∑
i∈B

ei

( )
� ∑

i∈B
eTi L

+ei +
∑

i,j∈B, i ��j
eTi L

+ej,

we can rewrite the left-hand side of (D.2) as

∑
B⊆V : |B|�k

∑
i∈B

ei

( )T
L+

∑
i∈B

ei

( )
� ∑

B⊆V : |B|�k

∑
i∈B

eTi L
+ei

( )
+ ∑

B⊆V : |B|�k

∑
i,j∈B, i ��j

eTi L
+ej

( )
. (D.3)
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The first term on the right-hand side of (D.3) can be rewritten as

∑
B⊆V : |B|�k

∑
i∈B

eTi L
+ei

( )
� ∑n

i�1
eTi L

+ei
∑

B⊆V : |B|�k
1 i∈B{ }

( )
� ∑n

i�1

n − 1
k − 1

( )
eTi L

+ei � n − 1
k − 1

( )∑n
i�1

eTi L
+ei

� n − 1
k − 1

( )∑n
i�1

L+i,i �
n − 1
k − 1

( )
tr L+( ),

whereas the second term on the right-hand side of (D.3) is equal to

∑
B⊆V : |B|�k

∑
i,j∈B, i ��j

eTi L
+ej

( )
� ∑

i ��j
eTi L

+ej
∑

B⊆V : |B|�k
1 i∈B, j∈B{ }

( )
� ∑n

i�1

n − 2
k − 2

( )
eTi L

+ej

� n − 2
k − 2

( )∑
i ��j

eTi L
+ej � − n − 2

k − 2

( )
tr L+( ).

In the last step, we used the fact that
∑

i ��j eTi L+ej � −tr(L+), which immediately follows from

∑
i ��j

eTi L
+ej + tr L+( ) � ∑

i ��j
eTi L

+ej +
∑
i
L+i,i �

∑
i ��j

eTi L
+ej +

∑
i
eTi L

+ei �
∑n
k�1

ek

( )T
L+

∑n
k�1

ek

( )
� 1TL+1 � 0.

Hence, (D.3) rewrites as

∑
B⊆V : |B|�k

∑
i∈B

ei

( )T
L+

∑
i∈B

ei

( )
� n − 1

k − 1

( )
− n − 2

k − 2

( )( )
tr L+( ) � n − 2

k − 1

( )
tr L+( ),

which concludes the proof of identity (D.2).
Each load-sharing vector α ∈ Bk can be written as α � 1

k
∑

i∈B ei, for some B ⊆ V, |B| � k. By Proposition 1, the expected
total loss due to stochastic fluctuations when using this load-sharing vector is given by

EHs α( ) � σ2

2
1
k

∑
i∈B

ei

( )T
L+

1
k

∑
i∈B

ei

( )
− 1T

∑
L+

1
k

∑
i∈B

ei

( )
+ 1
2
tr

∑
L+

( )
.

Therefore,

Hk � 1
2
tr

∑
L+

( ) + 1
|Bk |

∑
B⊆V : |B|�k

σ2

2
1
k

∑
i∈B

ei

( )T
L+

1
k

∑
i∈B

ei

( )
− 1T

∑
L+

1
k

∑
i∈B

ei

( )[ ]
.

Using (D.1) and (D.2), we get

Hk � 1
2
tr

∑
L+

( ) + σ2
tr L+( )
2

n−2
k−1
( )
k2 n

k

( ) � 1
2
tr

∑
L+

( ) + σ2
tr L+( )
2

n − k
k · n n − 1( )

� 1
2
tr

∑
L+

( ) + σ2
tr L+( )

2n n − 1( )
1 − k

n
k
n

� 1
2
tr

∑
L+

( ) + σ2
tr L+( )
2 n − 1( )

1
k
− 1
n

( )
. □
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