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Abstract
We consider the hard-core model on finite triangular lattices

with Metropolis dynamics. Under suitable conditions on the

triangular lattice sizes, this interacting particle system has

3 maximum-occupancy configurations and we investigate its

high-fugacity behavior by studying tunneling times, that is, the

first hitting times between these maximum-occupancy con-

figurations, and the mixing time. The proof method relies on

the analysis of the corresponding state space using geometri-

cal and combinatorial properties of the hard-core configura-

tions on finite triangular lattices, in combination with known

results for first hitting times of Metropolis Markov chains in

the equivalent zero-temperature limit. In particular, we show

how the order of magnitude of the expected tunneling times

depends on the triangular lattice sizes in the low-temperature

regime and prove the asymptotic exponentiality of the rescaled

tunneling time leveraging the intrinsic symmetry of the state

space.
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1 INTRODUCTION

The hard-core model was introduced in the chemistry and statistical physics literature to describe the

behavior of a gas whose particles have non-negligible radii and cannot overlap [10, 21, 22].

A finite undirected graph Λ = (V ,E) describes the spatial structure of the finite volume in which

the particles interact. More specifically, the vertices represent the possible sites where particles can

reside, while the hard-core constraints are represented by edges connecting the pairs of sites that cannot

be occupied simultaneously. Particle configurations that do not violate these hard-core constraints are
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then in one-to-one correspondence with the independent sets of the graph Λ, whose collection we

denote by (Λ). Given 𝜆 > 0, the hard-core measure with activity (or fugacity) 𝜆 is the probability

measure on (Λ) defined by

𝜋𝜆(I) ∶=
𝜆|I|

Z𝜆(Λ)
, I ∈ (Λ), (1)

where Z𝜆(Λ) is the appropriate normalizing constant, also called partition function.

In this paper we focus on the dynamics of particles with hard-core repulsion on finite graphs. The

evolution over time of this interacting particle system is described by a reversible single-site update

Markov chain {Xt}t∈N with Metropolis transition probabilities, parametrized by the fugacity 𝜆 ≥ 1.

More precisely, at every step a site is selected uniformly at random; if such a site is unoccupied, then a

particle is placed there with probability 1 if and only if all the neighboring sites are also unoccupied;

if instead the selected site is occupied, the particle is removed with probability 1∕𝜆.

Other single-site update dynamics (eg, Glauber dynamics) for the hard-core model have received a

lot of attention in the discrete mathematics community [2, 6–9, 12, 16, 19], where they are instrumen-

tal to sample weighted independent sets. Aiming to understand the performance of this local Markov

chain Monte Carlo method, the main focus of this literature is on mixing times and on how they scale

in the graph size. Indeed, the behavior of these MCMC changes dramatically as the fugacity 𝜆 grows,

going from a fast convergence to stationarity (“fast mixing”) to an exponentially slow one (“slow mix-
ing”); this phenomenon is intimately related to the aforementioned phase transition phenomenon of

the hard-core model on infinite graphs.

The main focus of the present paper is on the hard-core particle dynamics {Xt}t∈N on finite graphs

when the fugacity grows large, that is, 𝜆 → ∞. In this regime, the hard-core measure (1) favors con-

figurations with a maximum number of particles and we are interested in describing the tunneling
behavior of such a particle system, that is, how it evolves between these maximum-occupancy con-

figurations. To understand the transient behavior of the hard-core model in the high-fugacity regime,

we study the asymptotic behavior of the first hitting times of the Markov chain {Xt}t∈N between the

maximum-occupancy configurations, which tell us how “rigid” they are and how long it takes for the

particle system to “switch” between them.

The hard-core model has been successfully used to model certain random-access protocols for

wireless networks [5, 23, 24]. In this context understanding the tunneling behavior of the hard-core

model is instrumental to analyze temporal starvation phenomena for these communication networks

and their impact on performance [28].

Tunneling phenomena of the hard-core model have already been studied on complete partite

graphs [26, 27] and on square grid graphs [20]. In this work we focus on the case where Λ is a finite
triangular lattice. Imposing periodic boundary conditions, there are 3 maximum-occupancy configu-

rations on such graphs, as illustrated in Figure 1. These 3 hard-core configurations, denoted as a, b,

and c, correspond to the tripartition of Λ.

As the fugacity grows large, this particle system spends roughly one third of the time in each of

these 3 configurations. However, it takes a long time for the Markov chain {Xt}t∈N to move from

one maximum-occupancy configuration to another, since such a transition involves the occurrence

of rare events. Intuitively, along any such a transition, the Markov chain must follow a path through

mixed-activity particle patterns that, having fewer particles, are highly unlikely in view of (1) and the

time to reach such configurations is correspondingly long.

By introducing the inverse temperature 𝛽 = log 𝜆 and an appropriate Hamiltonian, the Markov

chain {Xt}t∈N can be seen as a Freidlin-Wentzell Markov chain with Metropolis transition probabilities

and the hard-core measure (1) rewrites as a Gibbs distribution. In this setting, the high-fugacity
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FIGURE 1 The 3 maximum-occupancy configurations a, b, and c on the 6 × 9 triangular lattice [Color figure can be viewed

at wileyonlinelibrary.com]

regime in which we are interested corresponds to the low-temperature limit 𝛽 → ∞ and the

maximum-occupancy configurations are the stable configurations of the system, that is, the global

minima of the Hamiltonian.

This identification allow us to use the pathwise approach [3, 17], a framework that has been suc-

cessfully used to study metastability problem for many finite-volume models in a low-temperature

regime. In this paper we mostly make use of the extension of the classical pathwise approach developed

in [20] that covers the case of tunneling times. The crucial idea behind this method is to understand

which paths the Markov chain most likely follows in the low-temperature regime and derive from them

asymptotic results for hitting times. For Freidlin-Wentzell Markov chains this can be done by analyzing

the energy landscape to find the paths between the initial and the target configurations with a mini-

mum energy barrier. In the case of the tunneling times between stable configurations of the hard-core

model, this problem reduces to identifying the most efficient way, starting from a stable configuration

to progressively add the particles present in the target stable configuration.

By exploring detailed geometric properties of the mixed-activity hard-core configurations on finite

triangular lattices, we develop a novel combinatorial method to quantify their “energy inefficiency”

and obtain in this way the minimum energy barrier Γ(Λ) > 0 that has to be overcome in the energy

landscape for the required transition to occur. In particular, we show how this minimum energy barrier

Γ(Λ) depends on the sizes of the finite triangular lattice Λ. In our main result we characterize the

asymptotic behavior for the tunneling times between stable configurations giving sharp bounds in

probability and proving that the order of magnitude of their expected values is equal to Γ(Λ) on a

logarithmic scale. Furthermore, we prove that the tunneling times scaled by their expected values

are exponentially distributed in the low-temperature limit, leveraging in a nontrivial way the intrinsic

symmetry of the energy landscape.

Lastly, using structural properties of the energy landscapes and classical results [4, 18] for

Freidlin-Wentzell Markov chains, we show that the timescale 𝜆Γ(Λ) = e𝛽Γ(Λ) at which transitions

between maximum-occupancy configurations most likely occur is also the order of magnitude of the

mixing time of the Markov chain {Xt}t∈N, proving that the hard-core dynamics exhibit slow mixing on

finite triangular lattices.

http://wileyonlinelibrary.com
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3L

FIGURE 2 The 6 × 9 triangular grid Λ and its 3 components highlighted using different colors

2 MODEL DESCRIPTION AND MAIN RESULTS

We consider the hard-core model on finite triangular lattices with periodic boundary conditions. More

precisely, given 2 integers K ≥ 2 and L ≥ 1, we consider the 2K × 3L triangular grid Λ, that is the

subgraph of the triangular lattice consisting of N ∶= |V| = 6KL sites placed on 2K rows of 3L sites

each, see Figure 2. We impose periodic boundary conditions on Λ to preserve symmetry: indeed this

choice makes Λ a vertex-transitive graph in which every vertex has the same local neighborhood. The

triangular grid Λ has a natural tri-partition V = Va ∪ Vb ∪ Vc, which is highlighted in Figure 2 by

coloring the 3 components in gray, black, and white, respectively. Thanks to the chosen sizes, the 3

components of Λ have the same number of sites

|Va| = |Vb| = |Vc| = N
3

= 2KL. (2)

A particle configuration on Λ is a map 𝜎 ∶ V → {0, 1}, in which we set 𝜎(v) = 1 when the site

v is occupied and 𝜎(v) = 0 otherwise. A particle configuration on Λ is a hard-core configuration if

𝜎(v)𝜎(w) = 0 for every pair of neighboring sites v,w. We denote by ⊂ {0, 1}N the set of all hard-core

configurations on Λ.

Let a,b and c be the hard-core configurations on the triangular grid Λ defined as

a(v) ∶= 1{v∈Va}(v), b(v) ∶= 1{v∈Vb}(v), and c(v) ∶= 1{v∈Vc}(v).

In section 3 we show that a,b and c are the maximum-occupancy configurations of the hard-core model

on Λ.

We are interested in studying the Metropolis dynamics for such a model, that is the family

of Markov chains {X𝛽

t }t∈N on  parametrized by the inverse temperature 𝛽 > 0 with transition

probabilities

P𝛽(𝜎, 𝜎′) ∶=

{
Q(𝜎, 𝜎′)e−𝛽[H(𝜎′)−H(𝜎)]+ , if 𝜎 ≠ 𝜎′,

1 −
∑

𝜂≠𝜎 P𝛽(𝜎, 𝜂), if 𝜎 = 𝜎′,

where the connectivity function Q ∶ {(𝜎, 𝜎′) ∈  ×  ∶ 𝜎 ≠ 𝜎′} → [0, 1] allows only single-site

updates:

Q(𝜎, 𝜎′) ∶=

{
1

N
, if |{v ∈ V ∶ 𝜎(v) ≠ 𝜎′(v)}| = 1,

0, if |{v ∈ V ∶ 𝜎(v) ≠ 𝜎′(v)}| > 1,
(3)
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and H ∶  → R is the energy function or Hamiltonian defined as

H(𝜎) ∶= −
∑
v∈V

𝜎(v). (4)

In other words, each configuration 𝜎 ∈  is assigned an energy H(𝜎) proportional to the total

number of particles in 𝜎. We remark that here the energy of a hard-core configuration does not describe

the interaction potential between particles, which is already fully captured by the set  of hard-core

configurations on Λ.

The triplet ( ,H,Q) is called energy landscape and we denote by s the set of stable configurations
of the energy landscape, that is the set of global minima of H on  . Since  is finite, the set  s is

always nonempty. The Markov chain {X𝛽

t }t∈N is reversible with respect to the Gibbs measure at inverse

temperature 𝛽 associated to the Hamiltonian H, namely

𝜇𝛽(𝜎) ∶=
1

Z𝛽

e−𝛽H(𝜎), 𝜎 ∈  ,

where Z𝛽 ∶=
∑

𝜎′∈ e−𝛽H(𝜎′) is the normalizing partition function. Furthermore, it is well-known

(eg, [4, Proposition 1.1]) that the Markov chain {X𝛽

t }t∈N is aperiodic and irreducible on  . Hence,

{X𝛽

t }t∈N is ergodic on  with stationary distribution 𝜇𝛽 . For a nonempty subset A ⊂  and a configu-

ration 𝜎 ∈  , we denote by 𝜏𝜎A the first hitting time of the subset A for the Markov chain {X𝛽

t }t∈N with

initial configuration 𝜎 at time t = 0, that is

𝜏𝜎A ∶= inf

{
t ∈ N ∶ X𝛽

t ∈ A
||||X𝛽

0
= 𝜎

}
.

We will refer to 𝜏𝜎A as tunneling time if 𝜎 is a stable configuration and the target set is some A ⊆  s⧵{𝜎}.

The first main result describes the asymptotic behavior of the tunneling times 𝜏a
b and 𝜏a

{b,c} on the

triangular grid Λ in the low-temperature regime 𝛽 → ∞.

Theorem 2.1 (Asymptotic behavior of tunneling times) Consider the Metropolis Markov chain
{X𝛽

t }t∈N corresponding to the hard-core dynamics on the 2K × 3L triangular grid Λ and define

Γ(Λ) ∶= min{K, 2L} + 1. (5)

Then,
(i) lim

𝛽→∞
P𝛽

(
e𝛽(Γ(Λ)−𝜀) ≤ 𝜏a

b ≤ 𝜏a
{b,c} ≤ e𝛽(Γ(Λ)+𝜀)

)
= 1;

(ii) lim
𝛽→∞

1

𝛽
log E𝜏a

b = Γ(Λ) = lim
𝛽→∞

1

𝛽
log E𝜏a

{b,c};

(iii)
𝜏a
{b,c}

E𝜏a
{b,c}

𝑑

−→ Exp(1), as 𝛽 → ∞;

(iv)
𝜏a

b
E𝜏a

b

𝑑

−→ Exp(1), as 𝛽 → ∞.

The proofs of statements (i), (ii), and (iii) of the latter theorem are presented in section 4 and

leverage the general framework for hitting time asymptotics developed in [20] in combination with

the analysis of the energy landscape corresponding to the hard-core model on the triangular grid Λ to

which section 3 is devoted.

As established by the next theorem, which is our second main result, the structural properties of the

energy landscapes that will be presented in section 3 also yield the following result for the mixing time.
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Recall that the mixing time describes the time required for the distance (measured in total variation) to

stationarity to become small. More precisely, for every 0 < 𝜀 < 1, we define the mixing time tmix
𝛽

(𝜀) by

tmix
𝛽

(𝜀) ∶= min{n ≥ 0 ∶ max
𝜎∈

‖Pn
𝛽
(𝜎, ⋅) − 𝜇𝛽(⋅)‖TV ≤ 𝜀},

where ‖𝜈 − 𝜈′‖TV ∶= 1

2

∑
𝜎∈ |𝜈(𝜎) − 𝜈′(𝜎)| for any 2 probability distributions 𝜈, 𝜈′ on  . Another

classical notion to investigate the speed of convergence of Markov chains is the spectral gap, which

is defined as 𝜌𝛽 ∶= 1 − 𝛼2, where 1 = 𝛼1 > 𝛼2 ≥ · · · ≥ 𝛼|| ≥ −1 are the eigenvalues of the matrix

(P𝛽(𝜎, 𝜎′))𝜎,𝜎′∈ . The spectral gap can be equivalently defined using the Dirichlet form associated with

the pair (P𝛽 , 𝜇𝛽), see [15, Lemma 13.12].

Theorem 2.2 (Mixing time and spectral gap) Consider the Metropolis Markov chain {X𝛽

t }t∈N cor-
responding to the hard-core dynamics on the 2K × 3L triangular grid Λ and define Γ(Λ) as in (5).
Then, for any 0 < 𝜀 < 1,

lim
𝛽→∞

1

𝛽
log tmix

𝛽
(𝜀) = Γ(Λ).

Furthermore, there exist 2 positive constants 0 < c1 ≤ c2 < ∞ independent of 𝛽 such that the spectral
gap 𝜌𝛽 of the Markov chain {X𝛽

t }t∈N satisfies

c1e−𝛽Γ(Λ) ≤ 𝜌𝛽 ≤ c2e−𝛽Γ(Λ) ∀ 𝛽 ≥ 0.

Therefore, the mixing time turns out to be asymptotically of the same order of magnitude as the

tunneling time between stable configurations, establishing the slow mixing of {X𝛽

t }t∈N as 𝛽 → ∞.

We remark that mixing times for the hard-core model with Glauber dynamics have received a lot of

attention in the literature, see, for example, [2, 8, 9] and, in particular, [11] for results for triangular

grids, but, differently from the present paper, these works focus mostly on identifying how the mixing

time scales with the graph size at fixed temperature/fugacity.

Different choices for the sizes of the triangular grid or for the boundary conditions result in a

fundamentally different geometry of the stable configurations and thus completely change the energy

landscape. For example, (i) the 4 × 6 triangular grid with open boundary conditions is still a tripartite

graph, but has 63 stable configurations; (ii) the 4×4 and 4×5 triangular grids with periodic boundary

conditions are not tripartite anymore (being both 4-partite graphs) and have 32 and 10 stable configu-

rations, respectively; (iii) the 5 × 5 triangular grid with open boundary conditions is 4-partite and has

a unique stable configuration. A complete characterization of the stable configurations of these trian-

gular grids and of the (probably heterogeneous) energy barriers separating them seems very involved

and is only the first step of the energy landscape analysis, leaving little hope that our results could be

easily generalized to such scenarios.

The rest of the paper is organized as follows. Section 3 is entirely devoted to analysis of geometrical

and combinatorial properties of the hard-core configurations on triangular grids and to the derivation

of the structural properties of the energy landscape, which will then be used in section 4 to prove the

two main theorems.

3 ENERGY LANDSCAPE ANALYSIS

This section is devoted to the analysis of the energy landscape associated with the hard-core dynamics

on the 2K × 3L triangular grid Λ. Leveraging geometrical features of the hard-core configurations on
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Λ, we prove crucial structural properties of the corresponding energy landscape ( ,H,Q), as stated in

Theorem 3.1 below.

In the rest of this paper, we will use the same notions and notation introduced in [20]. The con-

nectivity matrix Q given in (3) is irreducible, that is, for any pair of configurations 𝜎, 𝜎′ ∈  , 𝜎 ≠ 𝜎′,

there exists a finite sequence 𝜔 of configurations 𝜔1,… , 𝜔n ∈  such that 𝜔1 = 𝜎, 𝜔n = 𝜎′ and

Q(𝜔i, 𝜔i+1) > 0, for i = 1,… , n − 1. We refer to such a sequence as a path from 𝜎 to 𝜎′ and denote it

by 𝜔 ∶ 𝜎 → 𝜎′. Given a path 𝜔 = (𝜔1,… , 𝜔n), we define its height Φ𝜔 as Φ𝜔 ∶= maxi=1,…,n H(𝜔i).
The communication height between a pair of configurations 𝜎, 𝜎′ ∈  is defined as

Φ(𝜎, 𝜎′) ∶= min
𝜔∶𝜎→𝜎′

Φ𝜔 = min
𝜔∶𝜎→𝜎′

max
i=1,…,|𝜔| H(𝜔i),

and its natural extension to disjoint non-empty subsets A,B ⊂  is

Φ(A,B) ∶= min
𝜎∈A, 𝜎′∈B

Φ(𝜎, 𝜎′).

The next theorem summarizes the structural properties of the energy landscape corresponding to

the hard-core dynamics on a triangular grid Λ. More specifically, (i) we prove that a, b and c are

the only 3 stable configurations, (ii) find the value of the communication height between them, as a

function of the triangular grid sizes K and L, and (iii) show by means of 2 iterative algorithms that

there is “absence of deep cycles” (see condition (25) below) in the energy landscape ( ,H,Q).

Theorem 3.1 (Structural properties of the energy landscape) Let ( ,H,Q) be the energy landscape
corresponding to the hard-core dynamics on the 2K × 3L triangular grid Λ with K ≥ 2 and L ≥ 1.
Then,

(i)  s = {a,b, c};
(ii) Φ(a,b) − H(a) = Φ(a, c) − H(a) = Φ(b, c) − H(b) = min{K, 2L} + 1;

(iii) Φ(𝜎, {a,b, c}) − H(𝜎) ≤ min{K, 2L} ∀ 𝜎 ∈  ⧵ {a,b, c}.

Note that identity (ii) in Theorem 3.1 motivates the definition (5) of Γ(Λ) in Theorem 2.1.

We briefly outline here the proof strategy of Theorem 3.1, to which is devoted the rest of this

section. As illustrated by the state space diagram in Figure 3, there is not a unique bottleneck separating

the stable configurations (this was the case for complete partite graphs [26, 27]) and there are in fact

exponentially many possible ways for the Markov chain {X𝛽

t }t∈N to make such transitions. This makes

the task of identifying the energy barrier between stable configurations much harder.

Inspired by the ideas in Greenberg and Randall [12] and by the methodology used for square grids

in [20] we tackle this problem by looking at geometric features of the hard-core configurations on tri-

angular grids. In section 3.1, after some preliminary definitions, we study the combinatorial properties

of hard-core configurations on horizontal and vertical stripes of the triangular grid Λ, that is, pairs of

adjacent rows (triplets of adjacent columns, respectively). In particular, we find the maximum number

of particles that a hard-core configuration can have in a horizontal stripe and characterize how parti-

cles are arranged on such stripes in Lemma 3.3. Theorem 3.1(i) is an almost immediate consequence

of these combinatorial results. Afterwards, using further geometrical properties of the hard-core con-

figurations, we prove Proposition 3.4, which gives the following lower bound for the communication

height between a and b:

Φ(a,b) − H(a) ≥ min{K, 2L} + 1.
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FIGURE 3 The energy landscape corresponding to the hard-core dynamics on the 4 × 6 triangular grid. The color scheme is

chosen in such a way that the lighter the color of a node, the lower the energy of the corresponding configuration. [Color

figure can be viewed at wileyonlinelibrary.com]

We then introduce two energy reduction algorithms in section 3.2, which are used in Proposition 3.5

to construct a reference path 𝜔∗ ∶ a → b, guaranteeing that the lower bound above is sharp, i.e.,

Φ(a,b) − H(a) = min{K, 2L} + 1,

and concluding the proof of Theorem 3.1(ii). The same algorithms are then used again to build a path

from every configuration 𝜎 ∉ {a,b, c} to the set {a,b, c} with a prescribed energy height, obtaining

in this way the inequality stated in Theorem 3.1(iii).

3.1 Geometrical properties of hard-core configurations

We first introduce some useful definitions to describe hard-core configurations on the triangular grid

Λ. Denote by cj, j = 0,… , 6L− 1, the j-th column of Λ, and by ri, i = 0,… , 2K − 1, the i-th row of Λ,

see Figure 4. In the rest of the paper, the row and column indices should always be taken modulo 2K
and 6L, respectively.

Note that every row has an equal number of sites from each component, since

|ri ∩ Va| = |ri ∩ Vb| = |ri ∩ Vc| = L ∀ i = 0,… , 2K − 1, (6)

http://wileyonlinelibrary.com
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C0 C3 . . .

S 0

S 1

...

c0 c1 c2 c3 . . . c6L − 1

r0

r1

r2

...

r2K − 1

FIGURE 4 Illustration of row, column and stripe notation for the triangular grid

(A) (B) (C)

FIGURE 5 Illustration of horizontal and vertical stripes in which the sites’ tripartition is highlighted using different colors

while each column consists of sites from a single component, and, in fact,

Va =
L−1⋃
j=0

c3j, Vb =
L−1⋃
j=0

c3j+1, and Vc =
L−1⋃
j=0

c3j+2. (7)

Each site v ∈ V lies at the intersection of a row with a column and we associate to v the coordinates

(i, j) if v = rj ∩ ci. We call the collection of sites belonging to 2 adjacent rows a horizontal stripe.

In particular, we denote by Si, with i = 0,… ,K − 1, the horizontal stripe consisting of rows r2i and

r2i+1, that is, Si ∶= r2i ∪ r2i+1, see Figure 4. When the index of a stripe is not relevant, we will simply

denote it by S. We define a vertical stripe to be the collection of sites belonging to 3 adjacent columns,

which we denote by C in general. In particular, for j = 0,… , 3L−1 we denote by Cj the vertical stripe

consisting of columns cj, cj+1 and cj+2, see Figure 4. For every horizontal stripe S note that |S| = 6L
and (6) implies that |S ∩ Va| = |S ∩ Vb| = |S ∩ Vc| = 2L, see also Figure 5A where we highlight the

tripartition of a horizontal stripe. Similarly, for every vertical stripe C, we have |C| = 3K and, in view

of (7), we have |C ∩ Va| = |C ∩ Vb| = |C ∩ Vc| = K. A special role will be played by the vertical

stripes whose middle column belongs to Vb, which are those of the form C3j for some j = 0,… , 2L−1,

whose structure is displayed in Figure 5B,C.
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Given a hard-core configuration 𝜎 ∈  , we define its energy difference ΔH(𝜎) as

ΔH(𝜎) ∶= H(𝜎) − H(a). (8)

In view of the fact that H(a) = H(b) = H(c) = −2KL and the definition (4) of H(⋅), we can rewrite

ΔH(𝜎) = 2KL −
∑
v∈V

𝜎(v).

A subset of sites W ⊆ V is said to be balanced if |W ∩ Λa| = |W ∩ Λb| = |W ∩ Λc|. The energy

difference of a configuration 𝜎 ∈  on a balanced subset W ⊆ V is defined as by ΔHW (𝜎) ∶=|W ∩ Λa| − ∑
v∈W 𝜎(v). Note that the horizontal and vertical stripes are balanced subsets and that

energy difference ΔH(𝜎) in (8) can be written as the sum of the energy differences on non-overlapping

horizontal/vertical stripes, that is

ΔH(𝜎) =
K−1∑
i=0

ΔHSi (𝜎) =
2L−1∑
j=0

ΔHC3j (𝜎) =
2L−1∑
j=0

ΔHC3j+1
(𝜎) =

2L−1∑
j=0

ΔHC3j+2
(𝜎). (9)

We adopt the following coloring convention for displaying a hard-core configuration 𝜎 ∈  : We

put a node in site v ∈ V if it is occupied, that is, 𝜎(v) = 1, and we color it gray, black, or white

depending on whether the site v belongs to Va, Vb, Vc respectively; if a site v ∈ V is unoccupied, that

is, 𝜎(v) = 0, we do not display any node there.

There is an equivalent way to represent hard-core configurations on Λ. Consider the 12KL trian-

gular faces of the graph Λ, to which we will simply refer as triangles. Each triangle can have at most

one occupied site in its 3 vertices (them being a clique of the graph Λ); if this is the case, then we refer

to it as blocked triangle and color it as gray, black, or with a dotted pattern, depending on whether

such particle belongs to Va, Vb or Vc, respectively. Otherwise, if none of its 3 vertices is occupied by a

particle, we call a triangle free and leave it blank. In the rest of the paper, we will use a “mixed” repre-

sentation for hard-core configurations on Λ, displaying both the occupied sites and the corresponding

blocked triangles with the aforementioned coloring schemes, see Figure 6 for an example.

Since each site is the vertex of 6 triangles on Λ, placing particles with hard-core constraints on a

triangular grid corresponds to placing hexagons without overlaps on the same lattice. This is the reason

why the hard-core model on the triangular lattice is often called hard-hexagon model in the statistical

physics literature.

FIGURE 6 An example of a hard-core configuration 𝜎 on the 6 × 9 triangular grid
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FIGURE 7 All possible local hard-core configurations in which 2 blocked triangles share an edge

(A) (B)

FIGURE 8 Examples of hard-core configurations displaying bridges on the 6 × 9 triangular grid [Color figure can be viewed

at wileyonlinelibrary.com]

Remark 1. A key observation is that blocked triangles sharing an edge must be of the same color.

Indeed, as illustrated in Figure 7, if a particle resides in one of the 2 endpoints of that edge, they trivially

are of the same color by construction. Otherwise, there must be a particle in each of the 2 vertices

that are not shared by the 2 triangles (as they are both assumed to be blocked). It is easy to check that

these 2 vertices always belong to the same partition (cf. Figure 7), yielding the same coloring for the

2 triangles under consideration.

Given 2 configurations 𝜎, 𝜎′ ∈  and a subset of sites W ⊆ V , we write

𝜎|W = 𝜎′|W ⇐⇒ 𝜎(v) = 𝜎′(v) ∀ v ∈ W.

We say that a configuration 𝜎 ∈  has a horizontal a-(b-,c-)bridge in stripe S if 𝜎 perfectly agrees

there with a (respectively b, c), that is 𝜎|S = a|S (respectively 𝜎|S = b|S or 𝜎|S = c|S). Similarly, we say

that 𝜎 ∈  has a vertical a-(b-,c-)bridge in stripe C if 𝜎 perfectly agrees there with a (respectively b,

c), that is 𝜎|C = a|C (respectively 𝜎|C = b|C or 𝜎|C = c|C). We informally say that 2 bridges are of the

same color when they agree with the same stable configuration. Two examples of bridges are shown

in Figure 8A,B.

Lemma 3.2 (Geometric features of hard-core configurations) A hard-core configuration 𝜎 ∈ 

cannot display simultaneously a vertical bridge and a horizontal bridge of different colors.

Proof Assume without loss of generality that the vertical bridge is a b-bridge. Such a vertical bridge

blocks 2 sites on every row, belonging to Va and Vc, and thus no horizontal stripe can fully agree with

a or c.

▪

It is possible, however, that a vertical and a horizontal bridges coexist when they are of the same

color and this fact motivates the next definition. We say that a configuration 𝜎 ∈  has a a-(b-,c-)cross

http://wileyonlinelibrary.com


226 ZOCCA

FIGURE 9 Example of a hard-core configuration displaying a b-cross on the 6 × 9 triangular grid [Color figure can be

viewed at wileyonlinelibrary.com]

if it has simultaneously at least 2 a-(b-,c-)bridges, one vertical and one horizontal; see Figure 9 for an

example of a b-cross.

In order to prove Theorem 3.1(ii), we need the following lemma which characterizes the structure

of horizontal and vertical stripes with zero energy difference.

Lemma 3.3 (Energy-efficient stripes structure) Let 𝜎 ∈  be a hard-core configuration on the
2K × 3L triangular grid. The following statements hold:

(i) For every horizontal stripe S, the energy difference is non-negative, that is, ΔHS(𝜎) ≥ 0, and

ΔHS(𝜎) = 0 ⇐⇒ 𝜎 has a horizontal bridge in stripe S; (10)

(ii) For every vertical stripe C of the form C = C3j, the energy difference is non-negative, that is
ΔHC(𝜎) ≥ 0. Furthermore, if 𝜎 has at least one black particle on C, i.e.,

∑
v∈C∩Vb

𝜎(v) > 0,
then

ΔHC(𝜎) = 0 ⇐⇒ 𝜎 has a vertical b-bridge in stripe C. (11)

Proof In this proof we leverage the equivalent representation of a hard-core configuration as collec-

tion of blocked triangles. The underlying idea for horizontal and vertical stripes is the same, but we

present the proof separately in view of their different structures.

(i) Given 𝜎 ∈  , denote by bS(𝜎) and fS(𝜎) the number of blocked triangles and of free triangles on

the horizontal stripe S, respectively. Since the total number of triangles of the horizontal stripe S is 6L,

we have bS(𝜎) + fS(𝜎) = 6L. Furthermore, as each particle blocks exactly 3 triangles on the horizontal

stripe S, it holds that bS(𝜎) = 3
∑

v∈S 𝜎(v) and, thus,

fS(𝜎) = 6L − bS(𝜎) = 3
(

2L −
∑
v∈S

𝜎(v)
)
= 3 ⋅ ΔHS(𝜎). (12)

Since fS(𝜎) is by construction a non-negative integer, it readily follows that ΔHS(𝜎) ≥ 0.

Let us now turn to the characterization (10) of the horizontal stripes with energy difference equal

to zero. If ΔHS(𝜎) = 0, identity (12) gives that fS(𝜎) = 0, and thus S has no free triangles. In view of

Remark 1 and leveraging the fact that each triangle in S shares edges with 2 neighboring triangles, it

follows by finite induction that all triangles in S all are of the same color and, hence, either 𝜎|S = a|S
or 𝜎|S = b|S or 𝜎|S = c|S. To prove the converse direction, note that if ΔHS(𝜎) > 0, then also fS(𝜎) > 0,

that is, there is at least one free triangle on S. Consider the sites corresponding to the 3 vertices of

http://wileyonlinelibrary.com
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FIGURE 10 Hard-core configuration and corresponding block triangles in a vertical stripe of the form C3j

any such free triangle. By construction they all must be unoccupied and, belonging each to a different

partition of Λ, it follows that 𝜎|S ≠ a|S,b|S, c|S.

(ii) Consider a vertical stripe C of the form C3j, whose middle column is a subset of Vb, see

Figure 10. Analogously to (i), denote by bC(𝜎) and fC(𝜎) the number of blocked triangles and of free

triangles fully contained in the vertical stripe C, respectively. There are 2K such triangles in total and

thus bC(𝜎) + fC(𝜎) = 2K. Any particle, regardless of which column/partition it belongs to, blocks

exactly 2 of these triangles, as illustrated in Figure 10, so that bC(𝜎) = 2
∑

v∈C 𝜎(v) and, hence,

fC(𝜎) = 2K − bC(𝜎) = 2
(

K −
∑
v∈C

𝜎(v)
)
= 2 ⋅ ΔHC(𝜎). (13)

The latter identity readily implies that ΔHC(𝜎) ≥ 0, since fC(𝜎) is by construction a non-negative

integer.

If ΔHC(𝜎) > 0, then it follows from (13) that there is at least one free triangle fully contained in

stripe C. The 3 sites of any such free triangle, each belonging to a different partition of Λ, must be

all unoccupied and thus there cannot be a vertical bridge on C. For the reverse implication we argue

as follows. By assumption there is at least one black particle and, therefore, 2 blocked black triangles

on C. If ΔHC(𝜎) = 0, then there are fC(𝜎) = 0 free triangles on C in view of (13). Remark 1 states

that blocked triangles sharing an edge must be of the same color (cf. the rightmost case of Figure 7),

it readily follows by finite induction that all the triangles on C are black, which means that all the sites

in column c3j+1 must be occupied, yielding 𝜎|C ≡ b|C. ▪

We are now ready to state and prove the lower bound on the communication height between any

pair of stable configurations.

Proposition 3.4 (Lower bound on the communication height between a and b) The communication
height between a and b in the energy landscape corresponding to the hard-core model on the 2K × 3L
triangular grid satisfies the following inequality

Φ(a,b) − H(a) ≥ min{K, 2L} + 1.

Proof We will show that in every path 𝜔 ∶ a → b there exists at least one configuration with energy

difference greater than or equal to min{K, 2L} + 1. Consider a path 𝜔 = (𝜔1,… , 𝜔n) from a to b.
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Without loss of generality, we may assume that there are no void moves in 𝜔, that is, at every step

either a particle is added or a particle is removed, so that H(𝜔i+1) = H(𝜔i) ± 1 for every 1 ≤ i ≤ n− 1.

Since configuration a has no b-bridges, while b does, at some point along the path 𝜔 there must be a

configuration which is the first to display a b-bridge, that is a column or a row occupied only by black

particles. Let m∗ be the index corresponding to such configuration, that is

m∗ ∶= {m ≤ n | ∃ i ∶ (𝜔m)|ri = b|ri or ∃ j ∶ (𝜔m)|cj = b|cj}.

Since a b-bridge cannot be created in only 2 steps starting from a, we must have m∗ > 2. We claim that

max{ΔH(𝜔m∗−1),ΔH(𝜔m∗−2)} ≥ min{K, 2L} + 1.

Since the addition of a single black particle cannot create more than one bridge in each direction, it is

enough to consider the following 3 cases:

(a) 𝜔m∗ displays a vertical b-bridge only;

(b) 𝜔m∗ displays a horizontal b-bridge only;

(c) 𝜔m∗ displays a b-cross.

For case (a), note that configuration 𝜔m∗ does not have any horizontal bridge. Indeed, it cannot

have a horizontal b-bridge, otherwise we would be in case (c), and any horizontal a- or c- bridge

cannot coexist with the vertical b-bridge, in view of Lemma 3.2. Hence, the energy difference of every

horizontal stripe is strictly positive, thanks to Lemma 3.3(i), and thus

ΔH(𝜔m∗ ) =
K−1∑
i=0

ΔHSi(𝜔m∗ ) ≥ K.

Furthermore, configurations 𝜔m∗−1 and 𝜔m∗ differ in a unique site v∗ ∈ Vb, which is such that

𝜔m∗−1(v∗) = 0 and 𝜔m∗ (v∗) = 1. Hence, ΔH(𝜔m∗−1) = ΔH(𝜔m∗ ) + 1 and thus

ΔH(𝜔m∗−1) ≥ K + 1.

The argument for case (b) is similar to that of case (a). First**, configuration 𝜔m∗ does not display

any vertical bridge. Lemma 3.2 implies that there cannot be any vertical a- or c-bridge due to the

presence of a horizontal b-bridge, while a vertical b-bridge cannot exist, otherwise there would be a

b-cross and we would be in case (c). Every vertical stripe has at least one black particle, due to the

presence of a horizontal b-bridge. Hence, ΔHCj (𝜔m∗ ) ≥ 1 for every j = 0,… , 2L − 1 in view of

Lemma 3.3(ii). Therefore,

ΔH(𝜔m∗ ) =
2L−1∑
j=0

ΔHCj (𝜔m∗ ) ≥ 2L.

From this inequality it follows that ΔH(𝜔m∗−1) ≥ 2L + 1, because, as for case (a), the definition of m∗

implies ΔH(𝜔m∗−1) = ΔH(𝜔m∗ ) + 1.

Consider now case (c), in which 𝜔m∗ displays a b-cross. The presence of both a vertical and a

horizontal b-bridge means that 𝜔m∗ has a black particle in every vertical and horizontal stripe. This

property is inherited by the configuration 𝜔m∗−1, since it differs from 𝜔m∗ only by the removal of

the black particle lying at the intersection of the vertical and horizontal bridge constituting the cross.
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Furthermore, by definition of m∗, configuration 𝜔m∗−1 cannot have any b-bridge, neither vertical nor

horizontal. These 2 facts, in combination with Lemma 3.3, imply that

ΔH(𝜔m∗−1) ≥ min{K, 2L}.

If ΔH(𝜔m∗−1) ≥ min{K, 2L} + 1, then the proof is completed. Otherwise, the energy difference of

configuration 𝜔m∗−1 is ΔH(𝜔m∗−1) = min{K, 2L}. The configuration preceding 𝜔m∗−1 in the path 𝜔

satisfies

ΔH(𝜔m∗−2) = min{K, 2L} ± 1, (14)

since it differs from 𝜔m∗−1 by a single site update. Suppose first that

ΔH(𝜔m∗−2) = min{K, 2L} − 1. (15)

This means that𝜔m∗−2 differs from𝜔m∗−1 by the addition of a particle. Therefore, also configuration

𝜔m∗−2 has at least one black particle in every horizontal stripe, that is∑
v∈Si∩Vb

𝜔m∗−2(v) ≥ 1 ∀ i = 0,… ,K, (16)

and at least one black particle in every vertical stripe, that is∑
v∈Cj∩Vb

𝜔m∗−2(v) ≥ 1 ∀ j = 0,… , 2L − 1. (17)

If K ≤ 2L, (15) and the pigeonhole principle imply that there must be a horizontal stripe S such

that ΔHS(𝜔m∗−2) = 0. In view of (16) and Lemma 3.3(i), 𝜔m∗−2 must have a horizontal b-bridge in

S, which contradicts the definition of m∗. When instead K > 2L, it follows from (15) that there must

be a vertical stripe C such that ΔHC(𝜔m∗−2) = 0. Also in this case, (17) and Lemma 3.3(ii) imply

that 𝜔m∗−2 displays a vertical b-bridge in C, in contradiction with the definition of m∗. We have in

this way proved that assumption (15) always leads to a contradiction, so in view of (14) we have

ΔH(𝜔m∗−2) = min{K, 2L} + 1 and the proof is concluded also for case (c). ▪

3.2 Reference path and absence of deep cycles

In this subsection we describe an iterative procedure that constructs a path from a suitable initial

configuration to a target stable configuration. We will refer to it as energy reduction algorithm since the

yielded path 𝜔 brings the initial configuration 𝜎 to a configuration with lower (in particular, minimum)

energy while guaranteeing that the energy along the path will never exceed the initial value plus 1 or

2, depending on the structure of the initial configuration. These 2 algorithmic procedures modify the

initial configuration using only moves allowed by the hard-core dynamics (i.e., single-site updates)

and increasingly grow a uniform cluster (aligned with the target configuration) proceeding either row

by row or column by column. These 2 variations, despite being similar in spirit, will be described

separately, since the structure of horizontal and vertical stripes of the triangular grid is fundamentally

different. Nonetheless, the core mechanisms of both these algorithms is the same: orderly add particles

aligned with the target configuration and, if necessary, remove the particles on the other 2 partitions

that block the growth of such a cluster. In order for 𝜎 to be a suitable starting configuration for the

energy reduction algorithm, 𝜎 should have “enough room” for such a cluster to be created, condition
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that is guaranteed when all the occupied sites in 2 adjacent rows (or columns) belong to the same

partition.

Such energy reduction algorithms will be used in Proposition 3.5 to construct the reference path

from a to b and to show the absence of deep cycle in the state space  , the crucial step in the proof of

Theorem 3.1(iii).

3.2.1 Energy reduction algorithm by rows
We now describe in detail the energy reduction algorithm by rows with b as target configuration. In

order for 𝜎 ∈  to be a suitable initial configuration for this iterative procedure, we require that 𝜎 has

no gray or white particles in the first horizontal stripe S0 = r0 ∪ r1, that is

𝜎(v) = 0 ∀ v ∈ S0 ∩ (Va ∪ Vc). (18)

Figure 11 shows a hard-core configuration that satisfies this initial condition.

The output of this algorithm is a path 𝜔 from 𝜎 to b, which we construct as the concatenation of

2K paths 𝜔(1),… , 𝜔(2K). For every i = 1,… , 2K, path 𝜔(i) goes from 𝜎i to 𝜎i+1, where we set 𝜎1 ∶= 𝜎,

𝜎2K+1 ∶= b and define for i = 2,… , 2K

𝜎i(v) ∶=
⎧⎪⎨⎪⎩

b(v) if v ∈ r1,… , ri−1,

0 if v ∈ ri ∩ (Va ∪ Vc),
𝜎(v) if v ∈ ri ∩ Vb or v ∈ ri+1,… , r2K−1.

We now describe in detail how to construct each of the paths 𝜔(i) for i = 1,… , 2K. Each path 𝜔(i) =
(𝜔(i)

1
,… , 𝜔

(i)
2L+1

) comprises 2L + 1 moves (but possibly void) and is such that 𝜔
(i)
1

= 𝜎i and 𝜔
(i)
2L+1

=
𝜎i+1. We start from configuration 𝜔

(i)
0
= 𝜎i and we repeat iteratively the following procedure for all

j = 1,… , 2L:

• If j ≡ 1 (mod 2), consider the pair of sites v ∈ Va and v′ ∈ Vc defined by{
v = (i + 1, 3j), v′ = (i + 1, 3j + 2) if i ≡ 0 (mod 2),
v = (i + 1, 3j − 3), v′ = (i + 1, 3j − 1) if i ≡ 1 (mod 2).

Note that the 2 sites v and v′ are always neighbors, so that only one of the 2 can be occupied.

S 0
r0

r1

FIGURE 11 Example of a hard-core configuration on the 6 × 9 triangular grid that satisfies (18) [Color figure can be viewed

at wileyonlinelibrary.com]
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- If 𝜔
(i)
j (v) = 0 = 𝜔

(i)
j (v′), we set 𝜔

(i)
j+1

= 𝜔
(i)
j , so H(𝜔(i)

j+1
) = H(𝜔(i)

j ).
- If 𝜔

(i)
j (v) = 1 or 𝜔

(i)
j (v′) = 1, then we remove from configuration 𝜔

(i)
j the particle in the

unique occupied site between v and v′, increasing the energy by 1 and obtaining in this way

configuration 𝜔
(i)
j+1

, which is such that H(𝜔(i)
j+1

) = H(𝜔(i)
j ) + 1.

• If j ≡ 0 (mod 2), consider the site v ∈ Vb defined as

v =

{
(i, 3j − 2) if i ≡ 0 (mod 2),
(i, 3j − 5) if i ≡ 1 (mod 2).

- If 𝜔
(i)
j (v) = 1, we set 𝜔

(i)
j+1

= 𝜔
(i)
j and thus H(𝜔(i)

j+1
) = H(𝜔(i)

j ).
- If 𝜔

(i)
j (v) = 0, then we add to configuration 𝜔

(i)
j a particle in site v decreasing the energy by

1. We obtain in this way a configuration 𝜔
(i)
j+1

, which is a hard-core configuration because by

construction all the first neighboring sites of v are unoccupied. In particular, the 2 particles

residing in the 2 sites above v may have been removed exactly at the previous step. The new

configuration has energy H(𝜔(i)
j+1

) = H(𝜔(i)
j ) − 1.

The way the path 𝜔(i) is constructed shows that H(𝜎i+1) ≤ H(𝜎i) for every i = 1,… , 2K, since the

number of particles added in row ri is greater than or equal to the number of particles removed in

row ri+1. Moreover, Φ𝜔(i) ≤ H(𝜎i) + 1, since along the path 𝜔(i) every particle removal (if any) is

always followed by a particle addition. These 2 properties imply that the path 𝜔 ∶ 𝜎 → b created by

concatenating 𝜔(1),… , 𝜔(2K) satisfies

Φ𝜔 ≤ H(𝜎) + 1.

Note that the energy reduction algorithm by rows can be tweaked in order to have either a or

c as target configuration. In particular, the condition (18) for the initial configuration 𝜎 should be

adjusted accordingly, requiring that 𝜎 has no black and white (black and gray, respectively) par-

ticles in the first horizontal stripe S0, depending on whether the target configuration is a or c,

respectively.

3.2.2 Energy reduction algorithm by columns
We now illustrate how the energy reduction algorithm by columns works choosing b as target config-

uration. Note that the procedure we are about to describe can be tweaked to yield a path with target

configuration a or c, but we omit the details. If the target configuration is b, we require that the initial

configuration 𝜎 ∈  has no particles on columns c2 and c3, namely

𝜎(v) = 0 ∀ v ∈ c2 ∪ c3. (19)

Since c2 = C0 ∩Vc and c3 = C1 ∩Va, condition (19) requires there are no white particles in C0 and

no gray particles in C1. Figure 12 shows a hard-core configuration that satisfies this initial condition.

The output of this algorithm is a path 𝜔 from 𝜎 to b, which we construct as concatenation of 2L
paths 𝜔(1),… , 𝜔(2L). For every j = 1,… , 2L, path 𝜔(j) goes from 𝜎j to 𝜎j+1, where we set 𝜎1 ∶= 𝜎,

𝜎2L+1 ∶= b and define for j = 2,… , 2L

𝜎j(v) ∶=

{
b(v) if v ∈ c2,… , c3j,

𝜎(v) if v ∈ c3j+1,… , c6L+1.
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c2 c3

FIGURE 12 Example of hard-core configuration on the 6 × 9 triangular grid that satisfies (19) [Color figure can be viewed at

wileyonlinelibrary.com]

c8 c11

(A) (B)

FIGURE 13 The configurations 𝜎1 and 𝜎2 corresponding to the initial configuration 𝜎 in Figure 12

We now describe in detail how to construct each of the paths 𝜔(j) for j = 1,… , 2L. We distinguish 2

cases, depending on whether (a) 𝜎j has a vertical bridge in column c3j+2 or (b) not, see the 2 examples

in Figure 13.

Consider case (a) first. First notice that the presence of a vertical (c-)bridge in column c3j+2 implies

that all sites of the adjacent column c3j+3 must be empty in configuration 𝜎j.

We construct a path 𝜔(j) = (𝜔(j)
1
,… , 𝜔

(j)
2K+1

) of length 2K+1 (but possibly comprising void moves),

with𝜔
(j)
1
= 𝜎j and𝜔

(j)
2K+1

= 𝜎j+1. Denote by o(j) ∈ {0, 1} the integer number such that o(j) ≡ j (mod 2).
We first remove the 2 white particles in column c3j+2 that lie in row ro(j) and ro(j)+2 in 2 successive

steps, obtaining in this way configuration o(j)
3

, which is such that H(𝜔(j)
3
) = H(𝜔(j)

1
) + 2. We then repeat

iteratively the following procedure to obtain the configuration 𝜔
(j)
i+1

from 𝜔
(j)
i for all i = 3,… , 2K − 1:

• If i ≡ 1 (mod 2), consider the site v ∈ c3j+1 ⊂ Vb with coordinates (3j + 1, o(j) + i − 2) and add a

(black) particle there, obtaining in this way configuration 𝜔
(j)
i+1

. Such a particle can be added since

all its 6 neighboring sites are empty. More specifically, the 3 left ones have been (possibly) emptied

along the path 𝜔(j−1), while the one in c3j+3 is empty by assumption and the other 2 sites on its right

have been emptied in the previous steps of 𝜔(j). Since we added one particle, H(𝜔(j)
i+1

) = H(𝜔(j)
i )−1.

• If i ≡ 0 (mod 2), consider the site v ∈ c3j+2 ⊂ Vc with coordinates (3j + 2, o(j) + i) and remove the

(white) particle lying there, obtaining in this way configuration 𝜔
(j)
i+1

, which is such that H(𝜔(j)
i+1

) =
H(𝜔(j)

i ) + 1.

http://wileyonlinelibrary.com
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This procedure outputs configuration 𝜔
(j)
2K which has no white particles in column c3j+2 and an

empty site in column c3j+1, the one with coordinates (3j + 1, 2K − 1 − o(j)). All the neighboring sites

of this site are empty by construction and, adding a black particle in this site, we obtain configuration

𝜔
(j)
2K+1

= 𝜎j+1, which is such that H(𝜎j+1) = H(𝜔(j)
2K)−1. The way the path 𝜔(j) is constructed shows that

H(𝜎j+1) = H(𝜎j),

since we added exactly K (black) particles in column c3j+1 and removed exactly K (white) particles in

columns c3j+2. Moreover,

Φ𝜔(j) = max
𝜂∈𝜔(j)

H(𝜂) = H(𝜎j) + 2 (20)

since along the path 𝜔(j) every particle removal is followed by a particle addition, except at the

beginning when we remove 2 particles consecutively.

Consider now case (b). We claim that, since there is no vertical (c-)bridge in column c3j+2, there

exists a site v∗ in column c3j+1 with at most one neighboring occupied site. First of all, all sites in column

c3j and c3j−1 have been emptied along the path 𝜔(j−1), so all sites in c3j+1 have no left neighboring

sites occupied. Let us look now at the right neighboring sites. Since there is no vertical c-bridge in

column c3j+2, there exists an empty site in it, say w. Modulo relabeling the rows, we may assume that

w has coordinates (3j + 2, o(j)), where o(j) is the integer in {0, 1} such that o(j) ≡ j (mod 2). The

site v∗ = (3j + 1, o(j) + 1) has then the desired property, since at most one of its 2 remaining right

neighboring sites (those with coordinates (3j + 2, o(j) + 2) and (3j + 3, o(j) + 1), respectively) can be

occupied, since they are also neighbors of each other.

We construct a path 𝜔(j) = (𝜔(j)
1
,… , 𝜔

(j)
2K+1

) of length 2K + 1 (but possibly comprising void

moves), with 𝜔
(j)
1
= 𝜎j and 𝜔

(j)
2K+1

= 𝜎j+1. We then repeat iteratively the following procedure to obtain

configuration 𝜔
(j)
i+1

from 𝜔
(j)
i for all i = 1,… , 2K:

• If i ≡ 1 (mod 2), consider the 2 sites (3j+2, o(j)+ i+1) ∈ Vc and (3j+3, o(j)+ i) ∈ Va. Since they

are neighboring sites, at most one of them is occupied. If they are both empty, we set 𝜔
(j)
i+1

= 𝜔
(j)
i . If

instead there is a particle in either of the 2, we remove it, obtaining in this way configuration 𝜔
(j)
i+1

,

which is such that H(𝜔(j)
i+1

) = H(𝜔(j)
i ) + 1.

• If i ≡ 0 (mod 2), consider the site v ∈ c3j+1 ⊂ Vb with coordinates (3j + 1, o(j) + i − 1) and add a

(black) particle there, obtaining in this way configuration 𝜔
(j)
i+1

. Such a particle can be added since

all its 6 neighboring sites are empty. More specifically, the 3 left ones have been (possibly) emptied

along the path 𝜔(j−1), while the other 2 sites on its right have been emptied in the previous step of

𝜔(j). Since we added one particle, H(𝜔(j)
i+1

) = H(𝜔(j)
i ) − 1.

The way the path 𝜔(j) is constructed shows that H(𝜎j+1) ≤ H(𝜎j), since the number of (black)

particles added in column c3j+1 is greater than or equal to the number of (white/gray) particles removed

in columns c3j+2 and c3j+3. Moreover, along the path 𝜔(j) every particle removal (if any) is always

followed by a particle addition, and hence

Φ𝜔(j) = max
𝜂∈𝜔(j)

H(𝜂) ≤ H(𝜎j) + 1. (21)

Consider now the path 𝜔 ∶ 𝜎 → b created by concatenating 𝜔(1),… , 𝜔(2L), which are constructed

either using the procedure in case (a) or that in case (b). First notice that, regardless of which procedure
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has been used at step j, the inequality H(𝜎j+1) ≤ H(𝜎j) holds for every j = 1,… , 2L. Using this fact in

combination with (20) and (21) shows that the path 𝜔 always satisfies

Φ𝜔 ≤ H(𝜎) + 2.

Furthermore, in the special case in which 𝜎 has no vertical c-bridges, our procedure considers case (b)

for every j = 1,… , 2L and thus, by virtue of (21), the path 𝜔 satisfies

Φ𝜔 − H(𝜎) ≤ 1.

If the target configuration of the energy reduction algorithm by columns is the configuration a (or

c) one should adjust the condition (19) on the initial condition accordingly, requiring that 𝜎 has no

particles in columns c1 and c2 (columns c0 and c1, respectively). The offset of rows and columns in

the procedures described above should of course be tweaked appropriately.

We now use the energy reduction algorithms we just introduced to show that the lower bound for

the communication height between a and b given in Proposition 3.4 is sharp, by explicitly giving a

path that attains that value.

Proposition 3.5 (Reference path) In the energy landscape corresponding to the hard-core model on
the 2K × 3L triangular grid there exists a path 𝜔∗ ∶ a → b in  such that

Φ𝜔∗ − H(a) = min{K, 2L} + 1.

Proof We distinguish 2 cases, depending on whether (a) K ≤ 2L and (b) K > 2L. In either case

we first construct a path 𝜔(1) ∶ a → 𝜎∗ where 𝜎∗ is a configuration to which we can apply energy

reduction algorithm by columns (rows, respectively), and then, using this latter, we produce a path

𝜔(2) ∶ 𝜎∗ → b. The desired path 𝜔∗ ∶ a → b will then be the concatenation of the paths 𝜔(1) and 𝜔(2).

Figure 14 illustrates the reference path from a to b in case (a) for the 6 × 9 triangular grid, while

Figure 15 depicts some snapshots of 𝜔∗ ∶ a → b in case (b) for the 10 × 6 triangular grid.

For case (a), the configuration 𝜎∗ differs from a only in the sites of column c3 and, specifically,

𝜎∗(v) ∶=

{
a(v) if v ∈ V ⧵ c3,

0 if v ∈ c3.

The path 𝜔(1) = (𝜔(1)
1
,… , 𝜔

(1)
K+1

), with 𝜔
(1)
1

= a and 𝜔
(1)
K+1

= 𝜎∗ can be constructed as follows. For

i = 1,… ,K, at step i we remove from configuration𝜔
(1)
i the particle in the site of coordinates (3, 2i−1),

increasing the energy by 1 and obtaining in this way configuration 𝜔
(1)
i+1

. Therefore the configuration

𝜎∗ is such that H(𝜎∗) − H(a) = K and Φ𝜔(1) = H(𝜎∗) = H(a) + K.

The second path 𝜔(2) ∶ 𝜎∗ → b is then constructed by means of the energy reduction algorithm by

columns, which can be used since the configuration 𝜎∗ satisfies condition (19) and hence is a suitable

initial configuration for the algorithm. Since configuration 𝜎∗ has no vertical c-bridges (see case (b)

for the energy reduction algorithm by columns), the procedure guarantees that

Φ𝜔(2) = H(𝜎∗) + 1 = H(a) + K + 1,

and, therefore, Φ𝜔∗ = max{Φ𝜔(1) ,Φ𝜔(2) } = H(a) + K + 1 as desired.
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a
σ = ω(2)*

1

ω(2)
2 ω(2)

3

ω(2)
4 ω(2)

5

ω(2)
6 ω(2)

7

ω(2)
13

b

FIGURE 14 Illustration of the reference path 𝜔∗ ∶ a → b in the case K ≤ 2L
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a σ = ω
(2)*
1 ω

(2)
2

ω
(2)
3 ω

(2)
4 ω

(2)
5

ω
(2)
9 ω

(2)
13

b

FIGURE 15 Illustration of the reference path 𝜔∗ ∶ a → b in the case K > 2L

For case (b), consider the configuration 𝜎∗ that differs from a only in the sites of the first horizontal

stripe S0, namely

𝜎∗(v) ∶=

{
a(v) if v ∈ V ⧵ S0,

0 if v ∈ S0.

The path 𝜔(1) = (𝜔(1)
1
,… , 𝜔

(1)
2L+1

), with 𝜔
(1)
1

= a and 𝜔
(1)
2L+1

= 𝜎∗ can be constructed as follows. For

i = 1,… , 2L, at step i we remove from configuration 𝜔
(1)
i the first particle in lexicographic order in S0,
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increasing the energy by 1 and obtaining in this way configuration 𝜔
(1)
i+1

. Therefore the configuration

𝜎∗ is such that H(𝜎∗) − H(a) = 2L and Φ𝜔(1) = H(𝜎∗) = H(a) + 2L.
The second path 𝜔(2) ∶ 𝜎∗ → b is then constructed by means of the energy reduction algorithm

by rows, which can be used since the configuration 𝜎∗ satisfies condition (18) and hence is a suitable

initial configuration for the algorithm. The energy reduction algorithm by rows guarantees that

Φ𝜔(2) = H(𝜎∗) + 1 = H(a) + 2L + 1.

and thus the conclusion follows, since Φ𝜔∗ = max{Φ𝜔(1) ,Φ𝜔(2) } = H(a) + 2L + 1. ▪

3.3 Proof of Theorem 3.1

(i) In every hard-core configuration 𝜎 ∈  each particle blocks exactly 6 triangles, so that the

total number bΛ(𝜎) of blocked triangles in 𝜎 is given by

bΛ(𝜎) = 6
∑
v∈V

𝜎(v) = −6H(𝜎). (22)

Since Λ has 12KL triangles in total and we must have bΛ(𝜎) ≤ 12KL, it readily follows that

max𝜎∈
∑

v∈V 𝜎(v) ≤ 2KL. Configurations a,b and c attain this value in view of (2) and, hence,

min𝜎∈ H(𝜎) = −2KL.

Suppose by contradiction that there exists another configuration 𝜎 ∈  ⧵{a,b, c} such that H(𝜎) =
−2KL. In view of (22), this means that all the triangles are blocked in 𝜎. Starting from any triangle and

using iteratively the fact that blocked triangles sharing an edge must be of the same color (cf. Remark 1),

it is easy to show by induction that all the blocked triangles are of the same color and thus 𝜎 ∈ {a,b, c},

which is a contradiction.

(ii) The proof of the identity involvingΦ(a,b)−H(a) readily follows by combining the lower bound

in Proposition 3.4 and the statement of Proposition 3.5; the remaining identities immediately follows

from symmetry of the triangular grid.

(iii) We will show that for every hard-core configuration 𝜎 on the 2K × 3L triangular grid with

𝜎 ≠ a,b, c, there exists a path 𝜔 from 𝜎 to one of the 3 stable configurations such that

Φ𝜔 − H(𝜎) ≤ min{K, 2L}.

The idea is to construct such a path using the geometric features of the configuration 𝜎 and exploiting

the energy reduction algorithms described earlier in this section. We distinguish 2 cases: (a) K ≤ 2L
and (b) K > 2L.

Consider case (a) first, where K ≤ 2L. We distinguish 2 sub-cases, depending on whether 𝜎 has at

least one vertical bridge or not.

If 𝜎 has a vertical bridge in a vertical stripe C, then 𝜎 is a suitable starting configuration for the

energy reduction algorithm, which yields a path 𝜔 that goes from 𝜎 to the stable configuration in

{a,b, c} on which 𝜎 agrees in stripe C. The path 𝜔 constructed in this way is such that Φ𝜔 −H(𝜎) ≤ 2

and thus Φ(𝜎, {a,b, c}) − H(𝜎) ≤ 2 ≤ K ≤ min{K, 2L}, since by assumption K is an integer greater

than 1.

Suppose now that there are no vertical bridges in 𝜎. Since 𝜎 ∉ {a,b, c}, which is the set of stable

configurations in view of Theorem 3.1(i), configuration 𝜎 has a positive energy difference ΔH(𝜎) > 0.

In view of (9), this means that there exists a vertical stripe C∗ such that ΔHC∗ (𝜎) > 0. Without loss
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of generality, we may assume (modulo relabeling) that C∗ is the vertical stripe C1, which consists of

columns c1, c2 and c3. By definition of energy difference in a stripe, it follows that 𝜎 has at most K − 1

particles. Removing all the gray and white particles one by one, we construct a path 𝜔(1) from 𝜎 to a

new configuration 𝜎∗ defined as

𝜎∗(v) ∶=

{
𝜎(v) if v ∈ V ⧵ (c2 ∪ c3),
0 if v ∈ c2 ∪ c3.

Since 𝜎 has at most K − 1 particles in the vertical stripe C1, it follows that

H(𝜎∗) − H(𝜎) ≤ K − 1 and Φ𝜔(1) − H(𝜎) ≤ K − 1. (23)

Since we remove all the gray particles from c3 and all the white particles from c2, 𝜎∗ is a suitable

starting configuration for the energy reduction algorithm by columns with target configuration b, in

view of (19). We obtain in this way a second path 𝜔(2) ∶ 𝜎∗ → b, which is such that

Φ𝜔(2) − H(𝜎∗) ≤ 1, (24)

thanks to the absence of vertical bridges in 𝜎 (and thus in 𝜎∗). In view of (23) and (24), the path 𝜔 ∶
𝜎 → b obtained by concatenating 𝜔(1) and 𝜔(2) is such that Φ𝜔−H(𝜎) ≤ K, and hence Φ(𝜎, {a,b, c})−
H(𝜎) ≤ K.

We remark that there is nothing special about b as target configuration of the path 𝜔 we just con-

structed. Indeed, by choosing the vertical stripe C∗ with a different offset, we could have obtained

a configuration 𝜎∗ which would have been a suitable initial configuration for the energy reduction

algorithm by columns with target configuration a or c.

We now turn to case (b), in which K > 2L. Thanks to Lemma 3.3(i), there must be a horizontal

stripe S on which 𝜎 does not have a horizontal bridge, otherwise 𝜎 ∈ {a,b, c}. In particular, 𝜎 has at

most 2L − 1 particles on S, which without loss of generality we may assume to be S0. We construct

a path 𝜔(1) from 𝜎 to a new configuration 𝜎∗ by removing all these particles one by one, so that

Φ𝜔(1) − H(𝜎) ≤ 2L − 1 and H(𝜎∗) − H(𝜎) ≤ 2L − 1. Starting with configuration 𝜎∗ we can then use

the energy reduction algorithm by rows to obtain a second path 𝜔(2) from 𝜎∗ to any of the 3 stable

configurations. Since Φ𝜔(2) − H(𝜎∗) ≤ 1, the path 𝜔 constructed by the concatenation of 𝜔(1) and 𝜔(2)

satisfies Φ𝜔 − H(𝜎) ≤ 2L and thus Φ(𝜎, {a,b, c}) − H(𝜎) ≤ 2L.

4 PROOFS OF THE MAIN RESULTS

This section is devoted to the proof of the 2 main results of the paper, namely Theorems 2.1 and 2.2

We first briefly recall in section 4.1 some model-independent results derived in [20] valid for any

Metropolis Markov chain. We show how these general results can be used in combination with the

structural properties of the energy landscape of the hard-core model on triangular grids, outlined in

Theorem 3.1, to prove statements (i), (ii), and (iii) of Theorem 2.1 in section 4.2 and Theorem 2.2 in

section 4.3. Although statements (iii) and (iv) of Theorem 2.1 both concern the asymptotic exponen-

tiality of the scaled hitting times and look alike, their proofs slightly differ and for this reason that of

statement (iv) is presented separately, in section 4.4, leveraging the symmetries that the state space 

inherits from the non-trivial automorphisms of the graph Λ.
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4.1 Model-indepedent results for Metropolis Markov chains

We present here the model-independent results of the general framework developed in [20] only in

a special case that is relevant for the tunneling times 𝜏a
b and 𝜏a

{b,c} under analysis. The more general

statements can be found in [20], see Corollary 3.16, Theorem 3.17 and 3.19, and Proposition 3.18

and 3.20 therein.

Proposition 4.1 (Hitting time asymptotics [20]) Consider a non-empty subset A ⊂  and 𝜎 ∈  ⧵A
and the following 2 conditions:

Φ(𝜎,A) − H(𝜎) = max
𝜂∈⧵A

Φ(𝜂,A) − H(𝜂), (25)

and

Φ(𝜎,A) − H(𝜎) > max
𝜂∈⧵A, 𝜂≠𝜎

Φ(𝜂,A ∪ {𝜎}) − H(𝜂). (26)

(i) If (25) holds for the pair (𝜎,A), then, setting Γ ∶= Φ(𝜎,A) − H(𝜎), we have that for any 𝜀 > 0

lim
𝛽→∞

P

(
e𝛽(Γ−𝜀) < 𝜏𝜎A < e𝛽(Γ+𝜀)

)
= 1, and lim

𝛽→∞

1

𝛽
log E𝜏𝜎A = Γ.

(ii) If (26) holds for the pair (𝜎,A), then

𝜏𝜎A

E𝜏𝜎A

𝑑

−→ Exp(1), as 𝛽 → ∞.

More precisely, there exist 2 functions k1(𝛽) and k2(𝛽) with lim𝛽→∞ k1(𝛽) = 0 and lim𝛽→∞ k2(𝛽) = 0

such that for any s > 0

|||P( 𝜏𝜎A

E𝜏𝜎A
> s

)
− e−s||| ≤ k1(𝛽)e−(1−k2(𝛽))s.

Condition (25) says that the initial configuration 𝜎 has an energy barrier separating it from the tar-

get subset A that is maximum over the entire energy landscape. Informally, this means that all other

“valleys” (or more formally cycles, see definition in Manzo and coworkers [17]) of the energy land-

scape are not deeper than the one where the Markov chain starts; for this reason, the authors in [20]

refer to (25) as “absence of deep cycles”. On the other hand, condition (26) guarantees that from any

configuration 𝜂 ∈  the Markov chain {X𝛽

t }t∈N reaches the set A∪{𝜎} on a time scale strictly smaller

than that at which the transition from 𝜎 to A occurs. We remark that both these conditions are sufficient,

but not necessary, see [20] for further discussion.

For the proof of Theorem 2.2, we will also need the following proposition, which is also a general

result concerning the asymptotic behavior of mixing time and spectral gap of any Metropolis Markov

chain.
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Proposition 4.2 (Mixing time asymptotics [20, Proposition 3.24]) For any 0 < 𝜀 < 1

lim
𝛽→∞

1

𝛽
log tmix

𝛽
(𝜀) = lim

𝛽→∞
−1

𝛽
log 𝜌𝛽 = Γ∗,

where Γ∗ ∶= max𝜂∈ , 𝜂≠𝜎 Φ(𝜂, 𝜎)−H(𝜂) for any stable configuration 𝜎 ∈  s. Furthermore, there exist
2 positive constants 0 < c1 ≤ c2 < ∞ independent of 𝛽 such that for every 𝛽 ≥ 0

c1e−𝛽Γ∗
≤ 𝜌𝛽 ≤ c2e−𝛽Γ∗

.

4.2 Proofs of Theorem 2.1(i)–(iii)

From Theorem 3.1(iii) it immediately follows that

max
𝜎≠a,b,c

Φ(𝜎, {a,b, c}) − H(𝜎) ≤ min{K, 2L}. (27)

Furthermore, we claim that the following identity holds:

max
𝜎≠b,c

Φ(𝜎, {b, c}) − H(𝜎) = min{K, 2L} + 1. (28)

First notice that since a ∈  ⧵ {b, c}, we have

max
𝜎≠b,c

Φ(𝜎, {b, c}) − H(𝜎) ≥ Φ(a, {b, c}) − H(a) = min{K, 2L} + 1.

In order to prove that identity (28) holds, we need to show that this lower bound is sharp. In particular,

we need to show that Φ(𝜎, {b, c}) − H(𝜎) ≤ min{K, 2L} + 1 for every configuration 𝜎 ≠ a,b, c, but

we will actually prove a stronger inequality, namely

Φ(𝜎,b) − H(𝜎) ≤ min{K, 2L} + 1, ∀ 𝜎 ∈  ⧵ {a,b, c}. (29)

In section 3.3 we introduced a iterative procedure that builds a path from any configuration 𝜎

to the set of stable configuration  s. More specifically, inspecting the proof of Theorem 3.1(iii), we

notice that every configuration 𝜎 ≠ a,b, c can be reduced either directly to b, or otherwise to a or c,

depending on its geometrical features. If 𝜎 can be reduced directly to b, then we prove therein that

Φ(𝜎,b)−H(𝜎) ≤ min{K, 2L}. If not, then 𝜎 has to display a vertical a- or c-bridge and K ≤ 2L. In the

proof of Theorem 3.1(iii) we construct a path 𝜔 from 𝜎 to a (respectively, c) such that Φ𝜔 ≤ H(𝜎) + 2,

which, concatenated with the reference path from a to b (exhibited in Proposition 3.5) or the analogous

reference path from c to b, shows that Φ(𝜎,b) ≤ max{H(𝜎) + 2,Φ(a,b)}. Thus,

Φ(𝜎,b) − H(𝜎) ≤ max{2,Φ(a,b) − H(𝜎)} ≤ max{2,Φ(a,b) − H(a)} = max{2,min{K, 2L} + 1}
≤ min{K, 2L} + 1,

which implies that inequality (29) holds. In view of (28), the pair (a, {b, c}) then satisfies condi-

tion (25), since

Φ(a, {b, c}) − H(a) = min{K, 2L} + 1 = max
𝜎≠b,c

Φ(𝜎, {b, c}) − H(𝜎),
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and Proposition 4.1(i) then yields statements (i) and (ii) of Theorem 2.1. Furthermore, by combining

the latter identity and inequality (27), we obtain

Φ(a, {b, c}) − H(a) = min{K, 2L} + 1 > min{K, 2L} ≥ max
𝜎≠a,b,c

Φ(𝜎, {a,b, c}) − H(𝜎),

and thus condition (26) holds for the pair (a, {b, c}). Proposition 4.1(ii) then yields the asymptotic

exponentiality of the rescaled tunneling time 𝜏a
{b,c}∕E𝜏a

{b,c}, that is

𝜏a
{b,c}

E𝜏a
{b,c}

𝑑

−→ Exp(1), as 𝛽 → ∞, (30)

proving Theorem 2.1(iii).

Consider now the other tunneling time 𝜏a
b . From inequality (29) it immediately follows that

max
𝜎≠b

Φ(𝜎,b) − H(𝜎) ≤ min{K, 2L} + 1,

which, in view of Proposition 3.5, implies that

Φ(a,b) − H(a) = min{K, 2L} + 1 = max
𝜎≠b

Φ(𝜎,b) − H(𝜎).

Hence the pair (a, {b}) satisfies condition (25) and statements (i) and (ii) of Theorem 2.1 for the

tunneling time 𝜏a
b immediately follow from Proposition 4.1(i).

4.3 Proof of Theorem 2.2

The proof readily follows from Proposition 4.2, since by combining inequality (29) and Theorem 3.1(ii)

we get

Γ∗ = max
𝜎≠b

Φ(𝜎,b) − H(𝜎) = min{K, 2L} + 1.

4.4 Asymptotic exponentiality of the tunneling time 𝜏a
b

The pair (a, {b}) does not satisfy condition (26), due to the presence of a deep cycle (the one where

configuration c lies) different from the initial configuration a lies. Indeed, Φ(a,b) −H(a) ≮ Φ(c,b) −
H(c), as shown in Theorem 3.1(ii). Hence, the proof of Theorem 2.1(iv) does not follow from the

general results outlined in Proposition 4.1, as in the case of statement (iii), but leverages in a crucial

way the structure of the state space  .

In view of the intrinsic symmetry of a triangular grid Λ, it is intuitive that the energy landscape

 on which the Markov chain {X𝛽

t }t∈N evolves is highly symmetric, as witnessed by Figure 3. In this

subsection, we show that the 2K × 3L triangular grid has nontrivial automorphisms and discuss the

consequences of this fact for the state space  . We then leverage these symmetries to derive properties

for the tunneling time 𝜏a
b (Proposition 4.3) and a stochastic representation for this latter (Corollary 4.4),

and, ultimately, to prove the asymptotic exponentiality of the scaled hitting time 𝜏a
b∕E𝜏a

b in the limit

𝛽 → ∞, that is, Theorem 2.1(iv).

For every k = 0,… , 6L − 1, the axial symmetry with respect to column ck is the permutation

𝜉k ∶ V → V that maps site (i, j) into site (i, 2k − j), see Figure 16 for an example. In any such axial
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FIGURE 16 A hard-core configuration on the 6 × 9 triangular grid Λ before (left) and after (right) the axial symmetry with

respect to column c8, highlighted as dashed red vertical line, which maps column cj into c16−j for every j = 0,… , 16 and column

c17 into itself. This axial symmetry induces an automorphism 𝜉a,b of the triangular grid Λ and, in particular, maps gray sites

into black sites (and vice-versa) while white sites are only permuted [Color figure can be viewed at wileyonlinelibrary.com]

symmetry neighboring sites are mapped into neighboring sites, namely any pair of sites u, v form an

edge if and only if the sites 𝜉k(u), 𝜉k(v) form an edge. Hence, 𝜉k is an automorphism of the graph Λ for

every k = 0,… , 6L − 1. Each of these axial symmetries swaps 2 of the 3 components while mapping

the third one to itself. Specifically,

⎧⎪⎨⎪⎩
𝜉k(Va) = Va, 𝜉k(Vb) = Vc, 𝜉k(Vc) = Vb, if k ≡ 0 (mod 3),
𝜉k(Va) = Vc, 𝜉k(Vb) = Vb, 𝜉k(Vc) = Va, if k ≡ 1 (mod 3),
𝜉k(Va) = Vb, 𝜉k(Vb) = Va, 𝜉k(Vc) = Vc, if k ≡ 2 (mod 3).

(31)

As illustrated by the next proposition, these axial symmetries of Λ induce automorphisms of the

state space diagram  corresponding to the hard-core dynamics on Λ. Hence, the state space  is

highly symmetric, as clearly visible in Figure 3, which shows the state space diagram of the hard-core

model on the 4×6 triangular grid Λ. Leveraging the symmetry of  , we construct a coupling between

different copies of the Markov chain {X𝛽

t }t∈N and prove in this way properties of the first hitting

time 𝜏a
{b,c}.

Proposition 4.3 (Tunneling time properties) Let {X𝛽

t }t∈N be the Metropolis Markov chain corre-
sponding to the hard-core dynamics on the 2K × 3L triangular grid. Then, for every 𝛽 > 0,

(i) The random variable X𝜏a
{b,c}

has a uniform distribution over {b, c};
(ii) 𝜏a

{b,c}
𝑑
= 𝜏b

{a,c}
𝑑
= 𝜏c

{a,b};
(iii) The random variables 𝜏a

{b,c} and X𝜏a
{b,c}

are independent.

Proof For the purpose of this proof it is enough to consider 3 axial symmetries that cover the 3 cases

in (31) and thus we denote 𝜉b,c ∶= 𝜉0, 𝜉a,c ∶= 𝜉1, and 𝜉a,b ∶= 𝜉2. The automorphism 𝜉b,c ∶ V → V
induces a permutation 𝜉 of the collection  of hard-core configurations on Λ. More precisely, 𝜉 maps

the hard-core configuration 𝜎 ∈  into a new configuration 𝜉(𝜎) defined as (𝜉(𝜎))(v) = 𝜎(𝜉b,c(v)) for

every v ∈ V . In fact, 𝜉 is an automorphism of the state space diagram, seen as a graph with vertex set

 and such that any pair of hard-core configurations 𝜎, 𝜎′ ∈  is connected by an edge if and only if

𝜎 and 𝜎′ differ in no more than one site, that is, ‖𝜎 − 𝜎′‖ ≤ 1. By construction,

𝜉(b) = c, 𝜉(c) = b, and 𝜉(a) = a. (32)

http://wileyonlinelibrary.com
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Assume the Metropolis Markov chain {X𝛽

t }t∈N onΛ starts in configuration a at time 0. Let {Y𝛽

t }t∈N

be the Markov chain that mimics the moves of the Markov chain {X𝛽

t }t∈N via the automorphism 𝜉,

that is, set Y𝛽

t ∶= 𝜉
(
X𝛽

t
)

for every t ∈ N. For notational compactness, we suppress in this proof the

dependence on 𝛽 of these 2 Markov chains. For any pair of hard-core configurations 𝜎, 𝜎′ ∈  , any

transition of the chain Y𝛽

t from 𝜂 = 𝜉(𝜎) to 𝜂′ = 𝜉(𝜎′) is feasible and occurs with the same probability

as the transition from 𝜎 to 𝜎′, since 𝜉 is an automorphism. Therefore, the Markov chains {Xt}t∈N and

{Yt}t∈N are 2 copies of the hard-core dynamics on Λ living in the same probability space, and we have

then defined in this way a coupling between them. In view of (32), this coupling immediately implies

that the Markov chain {Xt}t∈N started at a hits configuration b precisely when the chain {Yt}t∈N hits

c. Hence,

P

(
X𝜏a

{b,c}
= b, 𝜏a

{b,c} ≤ t
)
= P

(
𝜉(X𝜏a

{b,c}
) = 𝜉(b), 𝜏𝜉(a)

𝜉({b,c})
≤ t

)
= P

(
Y𝜏a

{b,c}
= c, 𝜏a

{b,c} ≤ t
)
. (33)

Taking the limit t → ∞ in (33), we obtain

P

(
X𝜏a

{b,c}
= b

)
= P

(
Y𝜏a

{b,c}
= c

)
.

Using the fact that {Xt}t∈N and {Yt}t∈N have the same statistical law, being 2 copies of the same

Markov chain, it then follows that the random variable X𝜏a
{b,c}

has a uniform distribution over {b, c},

that is property (i). In particular,

P

(
X𝜏a

{b,c}
= b

)
= 1

2
. (34)

Let 𝜉 be the permutation of induced by the automorphism 𝜉{a,c}◦𝜉{a,b}. Constructing the coupling

using 𝜉 and arguing as above, we can deduce that

P

(
X𝜏a

{b,c}
= b, 𝜏a

{b,c} ≤ t
)
= P

(
𝜉(X𝜏a

{b,c}
) = 𝜉(b), 𝜏𝜉(a)

𝜉({b,c})
≤ t

)
= P

(
Y𝜏b

{c,a}
= c, 𝜏b

{c,a} ≤ t
)
,

and

P

(
X𝜏a

{b,c}
= c, 𝜏a

{b,c} ≤ t
)
= P

(
𝜉(X𝜏a

{b,c}
) = 𝜉(c), 𝜏𝜉(a)

𝜉({b,c})
≤ t

)
= P

(
Y𝜏b

{c,a}
= a, 𝜏b

{c,a} ≤ t
)
.

Summing side by side these latter 2 identities yields that for every t ≥ 0

P

(
𝜏a
{b,c} ≤ t

)
= P

(
𝜏b
{c,a} ≤ t

)
,

proving property (ii). Note that

P

(
𝜏a
{b,c} ≤ t

)
= P

(
X𝜏a

{b,c}
= b, 𝜏a

{b,c} ≤ t
)
+ P

(
X𝜏a

{b,c}
= c, 𝜏a

{b,c} ≤ t
)
= 2 ⋅ P

(
X𝜏a

{b,c}
= b, 𝜏a

{b,c} ≤ t
)
,

(35)

where the last passage follows from (33) using again the fact that {Xt}t∈N and {Yt}t∈N have the same

statistical law. Combining identities (34) and (35), we obtain that for every t ≥ 0,

P

(
X𝜏a

{b,c}
= b, 𝜏a

{b,c} ≤ t
)
= P

(
X𝜏a

{b,c}
= b

)
⋅ P

(
𝜏a
{b,c} ≤ t

)
,

that is property (iii). ▪
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The next corollary shows how the symmetries of the hard-core dynamics on a triangular grid Λ
derived in Proposition 4.3 can be used to obtain a stochastic representation for the tunneling time 𝜏a

b ,

that will be crucial to prove Theorem 2.1(iv). The underlying idea is that, on the time-scale at which

the transition from a to b occurs, the evolution of {X𝛽

t }t∈N can be represented by a 3-state Markov

chain with a complete graph as state space diagram whose states correspond to the 3 valleys/cycles

around the stable configurations a, b, and c. Similar ideas have been successfully used to describe

metastability and tunneling phenomena in [1, 13, 14, 25].

Corollary 4.4 (Stochastic representation of the tunneling time 𝜏a
b) Let {𝜏 (i)}i∈N be a sequence of

i.i.d. random variables with common distribution 𝜏
𝑑
= 𝜏a

{b,c} and  an independent geometric random
variable with success probability 1∕2, namely P( = m) = 2−m, for m ≥ 1. Then,

𝜏a
b

𝑑
=

∑
i=1

𝜏 (i), (36)

and, in particular, E𝜏a
b = 2 ⋅ E𝜏a

{b,c}. Furthermore, if additionally there exists a non-negative random
variable Y such that 𝜏∕E𝜏

𝑑

−→ Y as 𝛽 → ∞, then

𝜏a
b

E𝜏a
b

𝑑

−→ 1

E

∑
i=1

Y (i), as 𝛽 → ∞, (37)

where {Y (i)}i∈N is a sequence of i.i.d. random variables distributed as Y.

Proof Let  be the random variable counting the number of non-consecutive visits of the Markov

chain to {a, c} until b is hit for the first time (counting the initial configuration a as first visit). In

view of Proposition 4.3(i), the random variable  is geometrically distributed with success probability
1

2
, with distribution P( = m) = 2−m, for m ≥ 1. In particular,  it does not depend on the inverse

temperature 𝛽. The amount of time it takes for the Markov chain started in a stable configuration to

hit any of the other 2 stable configurations does not depend on the initial stable configuration, by

virtue of Proposition 4.3(ii). In view of these considerations and using the independence property in

Proposition 4.3(iii), we deduce the stochastic representation (36) for the tunneling time 𝜏a
b . The identity

E𝜏a
b = 2 ⋅ E𝜏a

{b,c} then immediately follows from Wald’s identity, since both  and 𝜏a
{b,c} have finite

expectation and E = 2.

Lastly, we turn to the proof of the limit in distribution (37). Denoting by A(s) = E(e−sA), with

s ≥ 0, the Laplace transform of a random variable A, the stochastic representation (36) yields 𝜏a
b
=

G (𝜏(s)) ,where G(⋅) is the probability generating function of the random variable, that is, G(z) =
E(z) for every z ∈ [0, 1]. By assumption 𝜏∕E𝜏(s) → Y (s) as 𝛽 → ∞. Using the fact that E𝜏a

b =
E𝜏 ⋅ E we obtain

𝜏a
b∕E𝜏a

b
= G

(
𝜏∕E𝜏(s∕E)

) 𝛽→∞
−→ G (Y (s∕E)) ,

and the continuity theorem for Laplace transforms yields the conclusion. ▪

Proof of Theorem 2.1(iv) Corollary 4.4 yields

𝜏a
b

E𝜏a
b

𝑑

−→ 1

2

Geo(1∕2)∑
i=1

Y (i), as 𝛽 → ∞,
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where {Y (i)}i∈N are i.i.d. exponential random variables, in view of (30). The statement in

Theorem 2.1(iv) then follows by noticing that a geometric sum of i.i.d. exponential random variables

scaled by its mean is also exponentially distributed with unit mean. ▪
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