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SLOW TRANSITIONS AND STARVATION IN DENSE
RANDOM-ACCESS NETWORKS
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! We consider dense wireless random-access networks, modeled as systems of particles with hardcore
interaction. The particles represent the network users that try to become active after an exponential
back-off time, and stay active for an exponential transmission time. Due to wireless interference,
active users prevent other nearby users from simultaneous activity, which we describe as hardcore
interaction on a conflict graph. We show that dense networks with aggressive back-off schemes lead
to extremely slow transitions between dominant states, and inevitably cause long mixing times and
starvation effects .
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1. INTRODUCTION

We consider a stylized model for a network of N users sharing a wire-
less medium according to a random-access scheme. The network is repre-
sented by an undirected graph G = (V , E ), called conflict graph. The set of
vertices V = {1, . . . , N } describes the network users, and the set of edges
E ⊆ V × V indicates which pairs of users interfere and are thus prevented
from simultaneous activity. The independent sets of G (sets of vertices not
sharing any edge) then correspond to the feasible joint activity states of the
network.

A user is said to be blocked whenever the user itself or any of its neighbors
in G is active, and unblocked otherwise. User i activates (starts a transmission)
at an exponential rate νi whenever it is unblocked, and then remains active
for an exponentially distributed time period with unit mean, before turning
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inactive again. The durations of the various activity periods are assumed
independent across time and among users. We will refer to the parameters
νi as activation rates.

Let "∗ ⊆ {0, 1}V be the collection of incidence vectors of all indepen-
dent sets of G , and let X ∗(t) ∈ "∗ be the joint activity state at time t, with
element i of X ∗(t) indicating whether user i is active (X ∗

i (t) = 1) or not
(X ∗

i (t) = 0) at time t. Then {X ∗(t)}t≥0 is a reversible Markov process with
stationary distribution[4, 15, 16, 17, 25]

πx(ν1, . . . , νN ) = lim
t→∞

P (X ∗(t) = x) =
∏

i∈V ν
xi
i∑

y∈"∗
∏

i∈V ν
yi
i

, x ∈ "∗. (1)

We also mention that the model amounts to a special instance of a loss
network[23, 26], and that the product-form distribution (1) corresponds to
the Gibbs measure of the hardcore model in statistical physics[5, 7].

For the case νi = ν, it follows from (1) that only the activity states cor-
responding to maximum independent sets retain probability mass as the
activation rate ν grows large. This indicates that users that do not belong
to a maximum independent set have far fewer opportunities to be active.
This disadvantage is commonly referred as spatial unfairness, and the asso-
ciated starvation effects have major performance repercussions in wireless
networks.

It has been shown that spatial unfairness can be avoided by selecting
suitable user-specific activation rates νi , which provide all users with an equal
opportunity to be active in the long run[8, 24]. Even in those cases, however,
or in symmetric scenarios where spatial fairness is automatically ensured,
transient yet significant starvation effects can arise due to extremely slow
transitions between high-likelihood or dominant states. Intuitively speaking,
the activity process will typically need to pass through a low-likelihood or
bottleneck state in order for the process to transit between dominant states.
Visiting such a bottleneck state basically involves the occurrence of a rare
event, or even several rare events in different limiting regimes, and causes the
transition to take a correspondingly long period of time. Consequently, users
may experience extended stretches of forced inactivity (possibly interspersed
by long intervals with a rapid succession of activity periods), resulting in
serious performance degradation.

Motivated by these fairness issues, we investigate in the present article
the time for the Markov process to reach, starting from a given dominant
state, one of the other dominant states. We study these hitting times as well
as mixing properties in the asymptotic regime where the activation rates
νi grow large. This asymptotic regime, in which users activate aggressively,
is relevant in highly loaded networks and gives rise to the above-described
starvation effects. As shown numerically in Ref.[18], these starvation effects
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are particularly pronounced in dense topologies. As a prototypical worst-
case scenario, we focus on a specific class of dense conflict graphs, namely
complete partite graphs. In such networks the users can be partitioned into
K disjoint sets called components, such that each user interferes with all users
in all other components. This implies that a transition from an activity state
in one of the components to another component entails passing through
a bottleneck state where all users are inactive at some point. Based on this
observation and a regenerative argument, we establish a geometric-sum rep-
resentation for the hitting time, which we then use to obtain the asymptotic
order-of-magnitude and scaled distribution. For convenience we assume
all users within a given component to have the same activation rate, but
we do allow for users in different components to have different activation
rates.

The article is organized as follows. Section 2 presents a detailed model
description, and Section 3 gives an overview of the main results. In Section
4 we study the asymptotic behavior of the activity process within a single
component, which will be leveraged in Section 5 to prove the main results
for the hitting times. Section 6 is devoted to the analysis of the throughput
starvation phenomenon, while in Section 7 we study the mixing time of
the activity process. Lastly, Section 8 provides some final conclusions and
directions for future work.

2. MODEL DESCRIPTION

Consider a network represented by a complete partite conflict graph, where
vertices in the same component do not share an edge, while each vertex has
an edge with all other vertices in all other components. In other words,
in this class of networks two users interfere if and only if they belong to
different components. Thus, in particular, users within the same component
do not interfere. Denote by C1, . . . , CK the K components of G , with K ∈ N
finite, and define Lk := |Ck | as the size of component Ck . Note that the
components C1, . . . , CK are the K maximal independent sets of the graph
G . Moreover, component Ck corresponds to a maximum independent set
if and only if Lk ≥ L j for all j = 1, . . . , K . Figure 1 shows an example of
such a dense conflict graph, where K = 5 and the components have sizes
{L1, L2, L3, L4, L5} = {3, 4, 6, 2, 5}. The corresponding state space "∗ for
this graph is shown is Figure 2(a).

We assume that the exponential rate at which a user activates depends
only on a global aggressiveness parameter ν and on the component it belongs
to, namely

νi = fk(ν) if i ∈ Ck,
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FIGURE 1 Example of complete K -partite conflict graph with K = 5.

for some monotone function fk : R+ → R+ with limν→∞ fk(ν) = ∞. We
will refer to the function fk(·) as the activation rate of component Ck , for
k = 1, . . . , K . Preliminary results for the case νi = ν for all i ∈ V appeared in
Ref.[27], but did not exhibit the full qualitative range of asymptotic behaviors
that will be revealed in the present article.

In view of symmetry, all states with the same number of active users in
a given component can be aggregated, and we only need to keep track of
the number l of active users, if any, and the index k of the component
Ck they belong to. More precisely, for each k = 1, . . . , K and l = 1, . . . , Lk ,

FIGURE 2 State space "∗ and aggregated state space ", for the conflict graph in Figure 1.
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we aggregate all the feasible joint activity states that have l active users in
component k, which are precisely

(Lk
l

)
, in a new state (k, l) ∈ ". The unique

state where no user is active will be denoted by 0 ∈ ". This state aggregation
yields a new Markov process {X (t)}t≥0 on a star-shaped state space " with
K branches, where each branch emanates from a common root node and
describes one of the components of the conflict graph. Figure 2(b) shows
the aggregated state space corresponding to the previous example.

For k = 1, . . . , K , let

Bk := {(k, l) : 1 ≤ l ≤ Lk}

denote the branch of the state space " that corresponds to activity inside
component Ck , where state (k, l) indicates l users active in component Ck .
Then " = {0} ∪

⋃K
k=1 Bk , where 0 is the bottleneck state in which all users

are inactive.
The transition rates of the process {X (t)}t≥0 then read

q (0, (k, 1)) = Lk fk(ν),

q ((k, 1), 0) = 1,

q ((k, l), (k, l + 1)) = (Lk − l) fk(ν), l = 1, . . . , Lk − 1, k = 1, . . . , K,

q ((k, l), (k, l − 1)) = l, l = 2, . . . , Lk, k = 1, . . . , K .

The stationary distribution of the process {X (t)}t≥0 can be easily seen to be

π0(ν) =
(

1 +
K∑

k=1

Lk∑

l=1

(
Lk

l

)
fk(ν)l

)−1
,

π(k,l)(ν) = π0(ν)
(

Lk

l

)
fk(ν)l , l = 1, . . . , Lk, k = 1, . . . , K . (2)

The state (k, Lk) corresponds to the maximum activity state inside compo-
nent Ck , which becomes the most likely state within the branch Bk as ν → ∞.
Define the transition time from state (k1, l1) to state (k2, l2) as

T(k1,l1),(k2,l2)(ν) := inf{t > 0 : X (t) = (k2, l2)|X (0) = (k1, l1)}.

We now introduce a few parameters that will turn out to play a key role in
the asymptotic distribution of the transition time. Define for k ,= k2,

γk := lim
ν→∞

fk(ν)Lk

∑
j ,=k2

f j (ν)L j
. (3)
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To avoid technicalities, we assume throughout that all parameters γk are well
defined. In view of (2), γk may be interpreted as the stationary fraction of
time that the activity process spends in branch Bk as ν → ∞, excluding the
target branch Bk2 . As it turns out, γk also equals the fraction of time that the
activity process spends in branch Bk during the transition from 0 to (k2, l2)
as ν → ∞.

Branch Bk is called dominant if γk > 0 and we let K∗ := {k ,= k2 : γk > 0}
be the index set of all dominant branches. Note that, by construction, the set
K∗ is never empty and thus there is always at least one dominant branch.

3. MAIN RESULTS

In this section we present our main results, which are all related to the
asymptotic behavior of the transition time T(k1,l1),(k2,l2)(ν) in the asymptotic
regime of a large activation rate ν.

Our first result characterizes the asymptotic order-of-magnitude of the
mean transition time in terms of the activation rates and the network struc-
ture. For any two real-valued functions f (·) and g(·), let f (ν) ∼ g(ν) as ν →
∞ indicate that limν→∞ f (ν)/g(ν) = 1.

Theorem 3.1. If k1 ,= k2, then

ET(k1,l1),(k2,l2)(ν) ∼ 1
Lk1

fk1(ν)Lk1−1 + 1
Lk2 fk2(ν)

∑

k∈K∗

fk(ν)Lk , as ν → ∞.

(4)

The first term on the right-hand side of (4) corresponds to the asymptotic
mean escape time ET(k1,l1),0(ν) from the initial branch Bk1 , while the second
term describes the contribution of the mean time spent visiting dominant
branches, possibly including branch Bk1 as well. Let

α := lim
ν→∞

ET(k1,l1),0(ν)
ET(k1,l1),(k2,l2)(ν)

∈ [0, 1] (5)

denote the relative weight of Bk1 .
Our second result gives the asymptotic distribution of the transition time

T(k1,l1),(k2,l2)(ν) scaled by its mean as ν → ∞.

Theorem 3.2. If k1 ,= k2, then

T(k1,l1),(k2,l2)(ν)
ET(k1,l1),(k2,l2)(ν)

d−→ Z , as ν → ∞.
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TABLE 1 Overview of the possible asymptotic distributions of the scaled transition time.

α A S Limiting distribution Scenario

0 ∅ ∅ δ0 (trivial r.v. identical to 0) 1a
non-empty ∅

∑G
i=1 Hi

(
β1
βA

, . . . , βm
βA

,
β1
γ1

, . . . , βm
γm

)
1b

∑G
i=1 Expi (λ) if βk/γk = λ ∀ k ∈ A 1b*

∅ non-empty Exp(1/γS) 1c
non-empty non-empty W 1d

(0, 1) ∅ ∅ Exp(1/α) 2a
Exp(1/α) +

∑G
i=1 Hi

(
β1
βA

, . . . , βm
βA

,
β1

(1−α)γ1
, . . . , βm

(1−α)γm

)
2b

non-empty ∅ Exp(1/α) +
∑G

i=1 Expi

(
λ

1−α

)
if βk/γk = λ ∀ k ∈ A 2b*

Exp
(

1
α(1+

∑m
k=1 βk )

)
if βk/γk = 1−α

α ∀ k ∈ A 2b**

Exp(1) if βk/γk = 1−α
α =

∑m
i=1 βk ∀ k ∈ A 2b***

∅ non-empty Exp(1/α) + Exp(1/(1 − α)γS) 2c
Erlang(2, 1/α) if α = γS/(1 + γS) 2c*

non-empty non-empty Exp(1/α) + (1 − α)W 2d
1 — — Exp(1) 3

The random variable Z can be expressed as

Z d= αY + (1 − α)W ,

where the random variable Y is exponentially distributed with unit mean and
the random variable W is independent of Y and has a more complicated
distribution; see (21), which depends on the sizes and activation rates of the
dominant branches only. The possible distributions of Z are summarized
in Table 1. In several cases the distribution of Z is exponential, which may
be expected in view of the connection with many exponentiality results for
the occurrence of rare events[1, 2, 3, 6, 12, 14]. In addition, we identify various
cases that lead to non-exponentiality, typically due to the fact that the activity
process spends a substantial period in branches other than k1 and k2.

Our third result concerns the starvation phenomenon. For k = 1, . . . , K ,
define the random variable

τk(t) :=
∫ t

0
1{X (s)∈Bk}ds,

which measures how much time the activity process {X (t)}t≥0 spends in
branch Bk during the interval [0, t]. We can think of τk(t) as a measure of
the throughput of component Ck over the time interval [0, t]. We speak of
complete starvation or zero throughput of component Ck in [0, t] when τk(t) = 0.
The next theorem provides insight into the time scales at which throughput
starvation occurs for a component of the network.
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Theorem 3.3. Assume X (0) = (k1, l1) and k2 ,= k1. If t(ν) ∼
ωET(k1,l1),(k2,1)(ν), with ω ∈ R ∪ {0}, then

lim
ν→∞

P
(
τk2(t(ν)) = 0

)
≥ P (Z ≥ ω) . (6)

In particular, if t(ν) = o(ET(k1,l1),(k2,1)(ν)), then

lim
ν→∞

P
(
τk2(t(ν)) = 0

)
= 1,

i.e., all users in Ck2 have zero throughput for a period of length t(ν) with probability
one as ν → ∞.

The limit in (6) says that, even if there is long-term fairness among the
components, for large values of ν all users in Ck2 will face starvation on all
time scales smaller than the mean transition time from the initial component
to Ck2 .

For the Markov process at hand, slow transitions and starvation effects
are intimately related with the mixing time. The mixing time of a process is
a characterization of the time required for the process to reach equilibrium.
Indeed, due to the complete partite structure of the conflict graph, the
process is bound to be stuck in one of the dominant branches, leading to
slow convergence to equilibrium. In Section 7 we define the mixing time
in terms of the total variation distance from stationarity and prove a lower
bound for a large enough activation parameter ν. This lower bound (see
Proposition 7.1) indicates that the mixing time of the process is at least as
large as the mean escape time from the dominant branch, which establishes
a direct connection between transition times and mixing times.

4. HITTING TIMES WITHIN A SINGLE BRANCH

In this section we study the activity process within a single component,
where it behaves as a birth-and-death process, bringing the asymptotic be-
havior within the realm of classical results. In Section 5 we will leverage these
results in conjunction with a geometric-sum representation to prove both
Theorems 3.1 and 3.2.

We first present a few results for the case where the two states (k1, l1)
and (k2, l2) belong to the same branch, i.e., k1 = k2 and l1 > l2. In this
case, the presence of the other components does not affect the transition
time, and hence we focus on a single branch, dropping the component
index until further notice. Within a single component of size L, the process
{X (t)}t≥0 evolves as an elementary birth-and-death process on the state
space {L, L − 1, . . . , 1, 0}, so we can exploit several classical results for such
processes. If we denote by f (ν) the activation rate for this component as a
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function of ν, then the transition rates read

q (l, l + 1) = (L − l) f (ν), l = 0, . . . , L − 1,

q (l, l − 1) = l, l = 1, . . . , L.

4.1. Asymptotic Growth Rate

We first show how the mean transition time scales with the aggressiveness
parameter ν.

Proposition 4.1.1. For L ≥ l1 > l2 ≥ 0,

ETl1,l2(ν) ∼ l2!(L − l2 − 1)!
L!

f (ν)L−l2−1, as ν → ∞.

Proof. First observe that ETl1,l2(ν) =
∑l2+1

l=l1
ETl,l−1(ν), so we can exploit a

general result for birth-and-death processes[11], which in the present case
says that, for 0 < l ≤ L,

ETl,l−1(ν) = 1
l

L∑

n=l

πn(ν)
πl(ν)

.

Now (2) implies that πn(ν) = o(πL(ν)) as ν → ∞ for all n = l, . . . , L − 1, so
that

ETl,l−1(ν) ∼ 1
l
πL(ν)
πl(ν)

= (l − 1)!(L − l)!
L!

f (ν)L−l , as ν → ∞.

Thus ETl,l−1(ν) = o(ETl2+1,l2(ν)) as ν → ∞ for all l = l1, . . . , l2, and hence
ETl1,l2(ν) ∼ ETl2+1,l2(ν) as ν → ∞ and the result follows. !

In order to gain insight in starvation effects, we are particularly interested
in the time for the activity process to reach the center state 0, referred to as
escape time, because at such points in time users in other components have
an opportunity to activate. Proposition 4.1.1 shows that

ETl1,0(ν) ∼ 1
L

f (ν)L−1, as ν → ∞. (7)

Hence, the mean escape time grows asymptotically as a power of f (ν), with
the exponent equal to the component size minus one, and independent of
the starting state l1.
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4.2. Asymptotic Exponentiality

We now turn to the scaled escape time, and show that it has an asymp-
totically exponential distribution. We will leverage the following well-known
result for birth-and-death processes, which is commonly attributed to Keil-
son[13] or Karlin and McGregor[10].

Theorem 4.2.1. Consider a birth-and-death process with generator matrix Q on
the state space {0, . . . , L} started at state L. Assume that 0 is an absorbing state,
and that the other birth rates {λi}L−1

i=1 and death rates {µi}L
i=1 are positive. Then

the absorption time in state 0 is distributed as the sum of L independent exponential
random variables whose rate parameters are the L nonzero eigenvalues of −Q.

Let Q(ν) be the generator matrix of the birth-and-death process
{X (t)}t≥0 on the state space {L, L − 1, . . . , 1, 0}, with 0 an absorbing state.
Let {θi (ν)}L

i=1 denote the non-zero eigenvalues of −Q(ν). It is known[20]

that these eigenvalues are distinct, real and strictly positive, so we denote
0 < θ1(ν) < θ2(ν) < · · · < θL(ν). Theorem 4.2.1 gives

TL,0(ν) d=
L∑

i=1

Yi (ν), (8)

with Y1(ν), . . . , YL(ν) independent and exponentially distributed random
variables with EYi (ν) = 1/θi (ν).

The following lemma relates the growth rates of the eigenvalues as ν →
∞ to the mean escape time ETL,0(ν).

Lemma 4.2.1. limν→∞ θi (ν) · ETL,0(ν) = 1 if i = 1 and ∞ if i = 2, . . . , L.

The proof of Lemma 4.2.1 is presented in Appendix A, and it exploits
detailed information about the growth rates of the eigenvalues obtained
via symmetrization and the Gershgorin circle theorem. Lemma 4.2.1 shows
that the smallest eigenvalue θ1(ν) becomes dominant as ν → ∞, but also
proves the asymptotic exponentiality of the escape time. Indeed, denoting
by LX (s) = E(e −sX ), with Re(s) > 0, the Laplace transform of a random
variable X , (8) gives

LTL,0(ν)/ETL,0(ν)(s) =
L∏

i=1

(
1 + s

θi (ν) · ETL,0(ν)

)−1
.
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Lemma 4.2.1 implies that

lim
ν→∞

LTL,0(ν)/ETL,0(ν)(s) = 1
1 + s

.

The continuity theorem for Laplace transforms then yields that the scaled
escape time has an asymptotically exponential distribution as stated in the
next theorem, where Exp(λ) denotes an exponentially distributed random
variable with mean 1/λ.

Theorem 4.2.2.

TL,0(ν)
ETL,0(ν)

d−→ Exp(1), as ν → ∞.

This result can be understood as follows. For large ν, the probability of
hitting state 0 before the first return to state L becomes small. So the time
TL,0(ν) consists of a geometrically distributed number of excursions from L,
which return to L without hitting 0, followed by the remaining part of the
excursion that hits 0. Hence, apart from this final part, TL,0(ν) is the sum of
a large geometrically distributed number of i.i.d. random variables, which
indeed is expected to be exponential.

The fact that the time until the first occurrence of a rare event is asymp-
totically exponential is a widely observed phenomenon[14]. Exponentiality
of the hitting time of some subset B of the state space typically arises when
the probability of hitting B in a single regenerative cycle is “small”, and the
cycle lengths are “not too heavy tailed”[6, 14]. This is also true for our sit-
uation, and hence an alternative proof of Theorem 4.2.2 can be obtained
using [6, Thm. 1] (which is a generalized version of Ref.[12]). We do not
use the probabilistic approach in Ref.[6] here, because the special case of
a birth-and-death process allows for explicit analysis. Let us finally remark
that for reversible Markov processes similar exponentiality results were estab-
lished in Refs.[1]–[3]. Aldous[1] showed that a result like Theorem 4.2.2 can
be expected when the underlying Markov process converges rapidly to sta-
tionarity. This is indeed the case for the Markov process {X (t)}t≥0 restricted
to a single branch.

To extend Theorem 4.2.2 to the case of a general starting state 0 < l ≤ L,
we need the following technical lemma, whose proof is given in Appendix
B.

Lemma 4.2.2. Let T(ν), U (ν), V (ν), W (ν) be non-negative random variables.
Consider the properties
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(i) limν→∞ EV (ν)/EU (ν) = limν→∞ EW (ν)/EU (ν) = 0.
(ii) For every ν > 0, U − V ≤st T ≤st U + W , i.e. P (U − V > t) ≤

P (T > t) ≤ P (U + W > t) for every t > 0.
(iii) U (ν)/EU (ν) d−→ Z as ν → ∞, where Z is a continuous random variable in-

dependent of ν.

Then,

(1) If (i) and (ii) hold, then limν→∞ ET(ν)/EU (ν) = 1.

(2) If (i), (ii) and (iii) hold, then T(ν)/ET(ν) d−→ Z, as ν → ∞.

Proposition 4.2.1. For any 0 < l ≤ L,

Tl,0(ν)
ETl,0(ν)

d−→ Exp(1), as ν → ∞.

Proof. The birth-and-death structure of the process and the strong Markov
property yield the stochastic identity TL,0(ν) d= TL,l(ν) + Tl,0(ν), which
gives the stochastic bounds TL,0(ν) − TL,l(ν) ≤st Tl,0(ν) ≤st TL,0(ν) (the
two terms in the lower bound being dependent). It follows from Theo-
rem 4.2.2 that TL,0(ν)/ETL,0(ν) d−→ Exp(1) as ν → ∞. In order to com-
plete the proof, we can then use Lemma 4.2.2, taking U (ν) = TL,0(ν),
V (ν) = TL,l(ν) and W (ν) = 0. The condition that needs to be checked is
limν→∞ EV (ν)/EU (ν) = 0, which follows directly from Proposition 4.1.1. !

4.3. More General Coefficients and Applications

We can extend our analysis to more general activation and deactivation
dynamics inside a single branch, described by

q (l, l + 1) = al f (ν), l = 1, . . . , L − 1,

q (l, l − 1) = dl , l = 2, . . . , L,

where al , dl are positive real coefficients. Specifically, Proposition 4.1.1 can
be generalized to the following result. For L ≥ l1 > l2 ≥ 0,

ETl1,l2(ν) ∼ 1
dl2+1

( L−1∏

i=l2+1

ai

di+1

)
f (ν)L−l2−1, as ν → ∞. (9)

Also Lemma 4.2.1 and thus Proposition 4.2.1 can be shown to hold for these
more general rates (see Appendix A).
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These results for general coefficients have some interesting applications,
beyond the model considered in this article. One example is the continuous-
time Markov process {Mt}t≥0 on S = {0, 1, . . . , c}, describing the number of
busy servers at time t. Suppose that the service rate of each server is 1 and the
arrival rate is ν, which will grow large in a heavy-traffic regime. The escape
time Ts,0(ν), choosing an = 1 and dn = n, n = 1, . . . , c , then describes the
time it takes for this system to drain (i.e., to have all the servers idle) when
starting with s ≥ 1 busy servers. Then (9) gives ETs,0(ν) ∼ νc−1/c ! as ν → ∞,
which does not depend on the starting state s ≥ 1. The scaled drain time
obeys Ts,0(ν)/ETs,0(ν) d−→Exp(1) as ν → ∞.

5. PROOFS OF THEOREMS 3.1 AND 3.2

In this section we investigate the asymptotic behavior of the transition
time T(k1,l1),(k2,l2)(ν) as ν → ∞ for any pair of states (k1, l1) and (k2, l2),
with k1 ,= k2. In Subsection 5.1 we provide a stochastic representation of the
transition time, which we use to derive the asymptotic mean transition time in
Subsection 5.2 leading to Theorem 3.1. In Subsection 5.3 we will obtain the
asymptotic distribution of the scaled transition time leading to Theorem 3.2.
In Subsection 5.4 we consider in detail the random variable W that occurs
in Theorem 3.2. We give an overview of all possible forms of asymptotic
behavior and the conditions under which they occur in Subsection 5.5.

5.1. Stochastic Representation of the Transition Time

Consider the evolution of the process as it makes a transition from a state
(k1, l1) to a state (k2, l2) and defining the following random variables:

• T (0)
(k1,1),0(ν): time to reach state 0 after state (k1, 1) is visited for the first

time;
• Nk(ν): number of times the process makes a transition 0 → (k, 1), k ,= k2,

before the first transition 0 → (k2, 1) occurs;
• T̂ (i)

0,(k,1)(ν): time spent in state 0 before the i-th transition to state (k, 1),
k ,= k2, i = 1, . . . , Nk(ν);

• T̂0,(k2,1)(ν): time spent in state 0 before the first transition to state (k2, 1);
• T (i)

(k,1),0(ν): time to return to state 0 after the i-th transition to state (k, 1),
k ,= k2, i = 1, . . . , Nk(ν);

• T(k2,1),(k2,l2): time to reach state (k2, l2) after the first hitting of state (k2, 1).

With the above definitions, it is readily seen that the following stochastic
representation holds.
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Proposition 5.1.1. The transition time T(k1,l1),(k2,l2) can be represented as

T(k1,l1),(k2,l2)
d= T(k1,l1),(k1,1) + T (0)

(k1,1),0 +
∑

k ,=k2

Nk∑

i=1

(
T̂ (i)

0,(k,1) + T (i)
(k,1),0

)

+T̂0,(k2,1) + T(k2,1),(k2,l2), (10)

where the dependence on the parameter ν is suppressed for compactness and all the
random variables representing time durations are mutually independent as well as
independent of the random variables Nk(ν), k ,= k2.

Denote F (ν) =
∑K

k=1 Lk fk(ν). The random variables T (i)
(k,1),0 are i.i.d.

copies of T(k,1),0, i = 1, . . . , Nk(ν), k ,= k2, while the random variables T̂0,(k2,1)

and T̂ (i)
0,(k,1), k ,= k2, i = 1, . . . , Nk , are i.i.d. copies of T0

d= Exp(F (ν)), which is

the residence time in state 0. Write X d= Geo(p ) when X is a random variable
with geometric distribution P (X = n) = p (1 − p )n, n ∈ N ∪ {0}. Define the
random variable N (ν) :=

∑
k ,=k2

Nk(ν), counting the total number of en-
trances in branches other than k2 before hitting the target branch Bk2 . For
all k = 1, . . . , K , denote p k(ν) := Lk fk(ν)/F (ν). Clearly,

N (ν) d= Geo(p k2(ν)),

while the marginal distribution of Nk(ν) is Geo( p k2 (ν)
p k2 (ν)+p k (ν)).

We want to distinguish the branches that significantly affect the dynamics
of the process (and hence the transition time) from those that do not. The
quantity ENk(ν) · ET(k,1),0(ν), for k ,= k2, is the mean time that the process
spends in branch Bk along the transition 0 → (k2, l2). Note that Proposition
4.1.1 gives

ET(k,1),0(ν) ∼ 1
Lk

fk(ν)Lk−1, as ν → ∞, (11)

and that

ENk(ν) = p k(ν)
p k2(ν)

= Lk fk(ν)
Lk2 fk2(ν)

. (12)

Therefore,

ENk(ν) · ET(k,1),0(ν)
EN j (ν) · ET( j,1),0(ν)

∼ fk(ν)Lk

f j (ν)L j
, as ν → ∞,
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which shows that indeed only the visits to dominant branches asymptotically
contribute to the mean transition time.

5.2. Asymptotic Mean Transition Time

We present here the proof of Theorem 3.1. Consider the stochastic
representation (10) of the transition time T(k1,l1),(k2,l2)(ν). Proposition 4.1.1
implies that

ET(k1,l1),(k1,1)(ν) ∼ 1
Lk1(Lk1 − 1)

fk1(ν)Lk1−2, as ν → ∞,

and that

ET(k1,1),0(ν) ∼ 1
Lk1

fk1(ν)Lk1−1, as ν → ∞.

Hence ET(k1,l1),(k1,1)(ν) = o
(
ET(k1,1),0(ν)

)
as ν → ∞. Moreover,

ET̂0,(k,1)(ν) = o(1). Lemma 5.2.1 below implies that ET(k2,1),(k2,l2)(ν) =
o
(
ET(k1,l1),(k2,l2)(ν)

)
. The asymptotic relation (4) then follows using the

definition of K∗, the asymptotic estimate (11) and the identity (12).
The following lemma guarantees that once the process has entered the

target branch Bk2 , even if it may exit from it, the mean time it takes to
reach the target state (k2, l2) is negligible with respect to the mean overall
transition time.

Lemma 5.2.1.

ET(k2,1),(k2,l2)(ν) = o
(
ET(k1,l1),(k2,l2)(ν)

)
, as ν → ∞.

Proof. Consider the event

E(ν) = {the first l2 − 1 transitions are all toward the state (k2, l2)}

=
l2−1⋂

i=1

{the i -th transition is from (k2, i) to (k2, i + 1)}.

Exploiting the fact that all these events are independent, we can compute

P (E(ν)) =
l2−1∏

i=1

P (the i -th transition is from (k2, i) to (k2, i + 1))
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= (Lk2 − 1) fk2(ν)
(Lk2 − 1) fk2(ν) + 1

· (Lk2 − 2) fk2(ν)
(Lk2 − 2) fk2(ν) + 2

· · · · · (Lk2 − l2 + 1) fk2(ν)
(Lk2 − l2 + 1) fk2(ν) + (l2 + 1)

,

and clearly limν→∞ P (E(ν)) = 1. We have that

E{T(k2,1),(k2,l2)(ν)|E(ν)} =
l2−1∑

m=1

1
(Lk2 − m) fk2(ν) + m

=: g(ν),

where g(ν) ↓ 0 as ν → ∞. Consider the events E c
n(ν) =

{the first transition toward state 0 is the n-th one}, for n = 1, . . . , l2 − 1.
Note that the event E c (ν) can be decomposed as E c (ν) =

⋃l2−1
n=1 E c

n(ν). Using
the events E(ν) and E c

n(ν), we can write

ET(k2,1),(k2,l2)(ν) = E{T(k2,1),(k2,l2)(ν)|E(ν)}P (E(ν))

+
l2−1∑

n=1

E{T(k2,1),(k2,l2)(ν)|E c
n(ν)}P

(
E c

n(ν)
)
. (13)

If the event E c
1(ν) occurs, then the first transition is toward state 0. In this

case, we have

E{T(k2,1),(k2,l2)|E c
1(ν)} ≤ E{T(k2,1),0(ν)|E c

1(ν)} + ET0,(k2,l2)(ν)

≤ 1
(Lk2 − 1) fk2(ν) + 1

+ ET(k1,l1),(k2,l2)(ν), (14)

and

P
(
E c

1(ν)
)

= 1
(Lk2 − 1) fk2(ν) + 1

. (15)

Moreover, for n = 2, . . . , l2 − 1, we have

E{T(k2,1),(k2,l2)(ν)|E c
n(ν)} ≤ E{T(k2,1),(k2,n−1)(ν)|E c

n(ν)} + ET(k2,n−1),(k2,l2)(ν)

≤ E{T(k2,1),(k2,n−1)(ν)|E(ν)} + ET0,(k2,l2)(ν)

≤ E{T(k2,1),(k2,l2)(ν)|E(ν)} + ET(k1,l1),(k2,l2)(ν).
(16)
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From (13)–(16) it follows that

ET(k2,1),(k2,l2)(ν) ≤ g(ν) + ET(k1,l1),(k2,l2)(ν)P (E c (ν)) + E{T(k2,1),0(ν)|E c
1(ν)}

≤ 2g(ν) + ET(k1,l1),(k2,l2)(ν)P (E c (ν)) .

We divide both sides by ET(k1,l1),(k2,l2)(ν), which is greater than 1 for ν suf-
ficiently large, thanks to (7). Since g(ν) and P (E c (ν)) are both o(1), the
proof of the lemma is complete. !

5.3. Asymptotic Distribution of the Transition Time

We now turn to the proof of Theorem 3.2. It is clear that only the dom-
inant branches that asymptotically contribute to the expected magnitude
of the transition time will play a role, possibly along with the escape time
from the initial branch. As we will show, the various dominant branches may
play different roles, depending on whether the expected number of visits
during the transition time is zero, O(1) or infinite in the limit as ν → ∞. We
introduce

A(ν) := T(k1,1),0(ν) and B(ν) :=
∑

k∈K∗

Nk(ν)∑

i=1

T (i)
(k,1),0(ν), (17)

whose means correspond to the two terms at the right-hand side of (4). From
the definition (5) of the coefficient α, it follows that

α = lim
ν→∞

EA(ν)
EA(ν) + EB(ν)

.

When α = 0 the term A(ν) becomes asymptotically negligible compared
to B(ν), while the opposite holds when α = 1. Proposition 4.2.1 already de-
scribes the asymptotic behavior of A(ν) after scaling. We need to understand
the asymptotic behavior of B(ν), and for this purpose, it will be convenient
to use a slightly different representation for it.

Define p ∗(ν) :=
∑

k∈K∗
p k(ν) and p̂ (ν) := p ∗(ν)

p k2 (ν)+p ∗(ν) . Introduce the ran-
dom variable N∗(ν) := Geo(1 − p̂ (ν)), which represents the number of visits
to the dominant branches, before entering the target branch Bk2 . Introduce
the sequence (τ (i)(ν))i≥1 of i.i.d. random variables, τ (i)(ν) d= τ(ν), where
τ(ν) d= T(k,1),0(ν) with probability p k(ν)/p ∗(ν) for every k ∈ K∗. Then

B(ν) d=
N∗(ν)∑

i=1

τ (i)(ν). (18)
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For k ∈ K∗ we define

βk := lim
ν→∞

Lk fk(ν)
Lk2 fk2(ν)

. (19)

In view of (2), βk may be interpreted as the stationary ratio between the
number of visits to branch k and to branch k2 as ν → ∞. Thanks to (12), βk
also represents the asymptotic mean number of visits to branch Bk before
the first entrance in branch Bk2 as ν → ∞, when the process starts in state 0,
i.e.,

βk = lim
ν→∞

ENk(ν). (20)

To avoid technicalities, we henceforth assume that all the parameters βk are
well defined. Moreover, we introduce the parameter β :=

∑
k∈K∗

βk , which is
the asymptotic mean number of visits to dominant branches before hitting
Bk2 as ν → ∞, i.e., β = limν→∞ EN∗(ν). Based on the definition of the pa-
rameter βk in (19), we partition the index set K∗ of the dominant branches
into three subsets, namely

K∗ = N ∪ A ∪ S,

using the following rule:

(1) k ∈ N if βk = 0;
(2) k ∈ A if βk ∈ R+;
(3) k ∈ S if βk = ∞.

The branches in N , A and S will be called non-attracting , attract-
ing , and strongly attracting , respectively. Define moreover the coefficients
γN :=

∑
k∈N γk , γA :=

∑
k∈A γk and γS :=

∑
k∈S γk , with the parameters γk as

defined in (3).
We are now ready to present the proof of Theorem 3.2. Specifically, we

prove that if k1 ,= k2, 1 ≤ l1 ≤ Lk1 and 1 ≤ l2 ≤ Lk2 , then

T(k1,l1),(k2,l2)(ν)
ET(k1,l1),(k2,l2)(ν)

d−→ αY + (1 − α)W , as ν → ∞,

where α is the constant defined in (5), Y is an exponential random variable
with unit mean and W is a random variable independent of Y , with Laplace
transform

LW (s) = 1
1 +

∑
k∈A

γk s
1+γk s/βk

+ sγS
. (21)
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The crucial idea of the proof is to use Lemma 4.2.2 with the dominant
term U (ν) defined as the sum of the two random variables introduced in
(17), i.e.,

U (ν) := A(ν) + B(ν) = T(k1,1),0(ν) +
∑

k∈K∗

Nk(ν)∑

i=1

T (i)
(k,1),0(ν).

Theorem 3.1 implies that ET(k1,l1),(k2,l2)(ν) ∼ EU (ν) as ν → ∞, and its proof
shows that all the other terms present in the stochastic representation (10)
are negligible compared to U (ν). Note that

U (ν)
EU (ν)

= A(ν)
EU (ν)

+ B(ν)
EU (ν)

= EA(ν)
EU (ν)

A(ν)
EA(ν)

+ EB(ν)
EU (ν)

B(ν)
EB(ν)

.

Recall that A(ν) and B(ν) are independent by construction. If we knew that
there exist two random variables Y and W such that A(ν)/EA(ν) d−→Y and
B(ν)/EB(ν) d−→W as ν → ∞, then

U (ν)
EU (ν)

d−→ αY + (1 − α)W , as ν → ∞,

and Lemma 4.2.2 would imply that

T(k1,l1),(k2,l2)(ν)
ET(k1,l1),(k2,l2)(ν)

d−→ αY + (1 − α)W , as ν → ∞.

Proposition 4.2.1 immediately gives that

A(ν)
EA(ν)

d−→ Y, as ν → ∞,

where Y is an exponential random variable with mean one.
Thus it remains to establish that the random variable B(ν)/EB(ν) con-

verges to W in distribution. For B(ν) defined in (17) it follows from (18)
that EB(ν) = EN∗(ν)Eτ(ν) and that

LB(ν)/EB(ν)(s) = GN∗(ν)
(
Lτ(ν)/EB(ν)(s)

)
= GN∗(ν)

(
Lτ(ν)/Eτ(ν)(s/EN∗(ν))

)
,

(22)
where

GN∗(ν)(z) = E(zN∗(ν)) = 1
1 + (1 − z)EN∗(ν)

. (23)
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We need to understand the asymptotic behavior of the random variable
τ(ν)/Eτ(ν). Let Tk(ν) = T(k,1),0(ν). Then Lτ(ν)(s) =

∑
k∈K∗

p k (ν)
p ∗(ν)LTk (ν)(s)

and, using ENk(ν) = p k(ν)/p k2(ν) from (12), we get

Lτ(ν)/Eτ(ν)(s/EN∗(ν)) = Lτ(ν)

( s
EN∗(ν)Eτ(ν)

)

=
∑

k∈K ∗

p k(ν)
p ∗(ν)

LTk (ν)

( s
EN∗(ν)Eτ(ν)

)

=
∑

k∈K ∗

ENk(ν)
EN∗(ν)

LTk(ν)/ETk (ν)

( sETk(ν)
EN∗(ν)Eτ(ν)

)
.

From the definition of γk in (3) and the identity in distribution (18), by
means of (11) and (12), we can see that

γk = lim
ν→∞

ENk(ν)ETk(ν)
EN∗(ν)Eτ(ν)

, k ∈ K∗, (24)

which shows that, as claimed at the end of Section 2, γk equals the asymptotic
fraction of time that the activity process spends in the branch Bk during the
transition from 0 to (k2, l2) as ν → ∞. For k ∈ K∗, define

hk(ν) := ETk(ν)
EN∗(ν)Eτ(ν)

, (25)

and note that limν→∞ hk(ν) = γk/βk . Indeed, by using equations (20) and
(24), we get

lim
ν→∞

hk(ν) = lim
ν→∞

ETk(ν)
EN∗(ν)Eτ(ν)

= lim
ν→∞

ENk(ν)ETk(ν)
EN∗(ν)Eτ(ν)

1
ENk(ν)

= γk

βk
.

Combining (22)–(25) yields

LB(ν)/EB(ν)(s) =
[
1 +

(
1 − Lτ(ν)/Eτ(ν)(s/EN∗(ν))

)
EN∗(ν)

]−1

=
[

1 +
(

1 −
∑

k∈K ∗

ENk(ν)
EN∗(ν)

LTk (ν)/ETk (ν)

( sETk(ν)
EN∗(ν)Eτ(ν)

))
EN∗(ν)

]−1

=
[

1 +
(
EN∗(ν) −

∑

k∈K ∗

ENk(ν)LTk (ν)/ETk (ν)(shk(ν))
)]−1
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=
[

1 +
∑

k∈K ∗

ENk(ν)
(
1 − LTk (ν)/ETk (ν)(shk(ν))

)
]−1

. (26)

In order to obtain an explicit expression for LB(ν)/EB(ν)(s) as ν → ∞, we
need the following technical lemma, which is proved in Appendix C.

Lemma 5.3.1.

(a) If k ∈ N , then

lim
ν→∞

ENk(ν)
(
1 − LTk(ν)/ETk (ν)(shk(ν))

)
= 0.

(b) If k ∈ A, then

lim
ν→∞

ENk(ν)
(
1 − LTk(ν)/ETk (ν)(shk(ν))

)
= γks

1 + γks/βk
.

(c) If k ∈ S, then

lim
ν→∞

ENk(ν)
(
1 − LTk(ν)/ETk (ν)(shk(ν))

)
= γks .

From Lemma 5.3.1 and (26) it follows that

LW (s) = lim
ν→∞

LB(ν)/EB(ν)(s) =
[

1 +
∑

k∈A

γks
1 + γks/βk

+
∑

k∈S
γks

]−1

.

The independence of Y and W easily follows from the independence of the
corresponding terms in the stochastic representation (10).

5.4. The Random Variable W : Properties and Interpretation

The random variable W is defined by its Laplace transform; see (21).
We remark that the shape of the distribution W is fully determined by the
branches in A and S, independently of the branches in N . Indeed the
random variable W can be represented as

W d= (1 − γN )W ,

where W is a unit-mean random variable that in no way depends on
the parameters of the branches in the set N . On the other hand, the pres-
ence of the factor (1 − γN ) reflects the fact that the branches in N do affect
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the mean of the asymptotic scaled transition time: indeed convergence of
the first moments holds if and only if α = 1 or N = ∅. Indeed,

αEY + (1 − α)EW = α + (1 − α)(1 − γN ),

and, if N ,= ∅, then γN > 0 and so α EY + (1 − α) EW < 1 when α ,= 1.
Whenever either A or S is empty, the distribution of W is known ex-

plicitly; cf. Table 1. However, also in the scenario where both A and S are
non-empty, it is still possible to give an interpretation of the distribution of
W .

If A ,= ∅, define m := |A| and label the branches belonging to A as
1, 2, . . . , m. Let βA :=

∑m
k=1 βk ∈ (0, ∞) be the asymptotic mean number

of visits to attracting branches as ν → ∞. Consider a hyper-exponentially
distributed random variable H with rates βk/γk and probabilities βk/βA,
k = 1, . . . , m, whose Laplace transform is

LH (s) =
m∑

k=1

βk

βA

βk/γk

βk/γk + s
.

Furthermore, consider a marked Poisson process with rate λ = βA/γS
and i.i.d. marks distributed according to H . The random variable W in (21)
corresponds to the sum of a random time T , with T exponentially distributed
with mean 1/µ = γS , and the total size W(T ) of the marks associated with
all the events in interval [0, T ]. Indeed

LT +W(T )(s) =
∫ ∞

t=0
e −s t e λt

(∑m
k=1

βk
βA

βk /γk
βk /γk +s −1

)

µe −µtdt

=
[

1 + λ

µ

(
m∑

k=1

βk

βA

βk/γk

βk/γk + s

)

+ s
µ

]−1

=
[

1 + βA

(
m∑

k=1

βk

βA

s
βk/γk + s

)

+ sγS

]−1

=
[

1 +
∑

k∈A

γks
1 + γks/βk

+ sγS

]−1

.

The stochastic equality W = T + W(T ) may be interpreted as follows.
Define pA :=

∑
k∈A p k(ν) and p S :=

∑
k∈S p k(ν). The total number of visits

during the transition time to the branches in S is geometrically distributed
with parameter p k2/p S . Since the durations of these visits are independent
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and each relatively short compared to the transition time, the total normal-
ized amount of time spent in the branches in S is exponentially distributed
in the limit as ν → ∞ with mean γS . The visits to the branches in S are in-
terspersed with visits to the branches in A. The number of visits to branches
in S between two consecutive visits to branches in A is geometrically dis-
tributed with parameter pA/p S . The normalized durations of the visits to
the branches in A have the hyper-exponential distribution H as specified
above. By similar arguments as mentioned above, the normalized amounts
of time between these visits are independent and exponentially distributed
in the limit as ν → ∞ with mean γS · p k2/pA = γS/βA. In other words, the
visits to the branches in A occur as a Poisson process with rate λ = βA/γS .

5.5. An Overview of the Possible Limiting Distributions

In this subsection we present an overview of all the possible limiting
distributions of the scaled transition time by means of Table 1.

The case α = 1 always yields asymptotic exponentiality: this happens
when the escape time from branch Bk1 dominates the total transition time.
As soon as α ,= 1, the set of dominant branches starts to play an important
role. In particular, the shape of the asymptotic distribution depends only on
the branches in the sets A and S and changes substantially whenever one of
these two subsets (or both) are empty.

In the case α = 0 a diverse range of behaviors may occur, with asymptotic
exponentiality only in a somewhat degenerate special case 1c.

The behavior for α ∈ (0, 1) is just a weighted combination of the extreme
cases α = 0 and α = 1, as described in Theorem 3.2. It does not give rise to
fundamentally different behavior, but, interestingly enough, it does yield
asymptotic exponentiality in some very special cases.

If all users have the same activation rate, no matter which component
they belong to, then without loss of generality, we may assume fk(ν) = ν,
k = 1, . . . , K . Under this homogeneity assumption, the sizes of components
become crucial. Indeed, if one defines L∗ := maxk ,=k2 Lk to be the size of
the largest component, then K∗ = {k ,= k2 : Lk = L∗}. In this case the orders
of magnitude of the two dominant terms defined in (17) of the stochastic
representation (10) are

EA(ν) = ET(k1,1),0(ν) ∼ νLk1 −1

Lk1

and

EB(ν) = E




∑

k∈K∗

Nk(ν)∑

i=1

T (i)
(k,1),0(ν)



 ∼ |K∗|
νL∗−1

Lk2

, as ν → ∞,
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and hence for 1 ≤ l1 ≤ Lk1 , 1 ≤ l2 ≤ Lk2 and k1 ,= k2,

ET(k1,l1),(k2,l2)(ν) ∼
(
1{k1∈K∗}

L∗
+ |K∗|

Lk2

)
νL∗−1, as ν → ∞.

Moreover, βk/γk = (1 − α)/α for every k ∈ A and thus only two possible
scenarios can occur, namely 1b* and 2b*** (see Ref.[27]). The discriminating
factor between these two scenarios is α. If k1 /∈ K∗, then α = 0, and thus we
are in scenario 1b*. If instead k1 ∈ K∗, then α = Lk2/(|K∗|L∗), which means
that scenario 2b*** occurs, and hence asymptotic exponentiality arises.

In Table 1, we denote by (Hi )i∈N a sequence of i.i.d. hyper-exponential
random variables, i.e., Hi

d= H (see the definition of H in Subsection 5.4),
while G is a geometric random variable G d= Geo( 1

1+βA
), independent of all

the other random variables.

6. THROUGHPUT STARVATION AND NEAR-SATURATION

In this section we show how the results for the asymptotics of the transi-
tion time T(k1,l1),(k2,l2)(ν) in Theorems 3.1 and 3.2 can be exploited to gain
insight into phenomena such as throughput starvation or near-saturation.
More specifically, in Subsection 6.1 we present the proof of Theorem 3.3,
which gives an asymptotic lower bound on the probability of throughput star-
vation, while in Subsection 6.2 we prove Proposition 6.2.1, a complementary
result that indicates over what time scales throughput near-saturation occurs.

6.1. Proof of Theorem 3.3

Recall that τk(t) has been defined in Section 3 as τk(t) =
∫ t

0 1{X (s)∈Bk} ds .
Observe that τk2(t(ν)) > 0 implies t(ν) > T(k1,l1),(k2,1)(ν), because the
throughput of branch Bk2 remains zero until the activity process enters Bk2 .
Hence

P
(
τk2(t(ν)) > 0

)
≤ P

(
T(k1,l1),(k2,1)(ν) < t(ν)

)

= P
(

T(k1,l1),(k2,1)(ν)
ET(k1,l1),(k2,1)(ν)

<
t(ν)

ET(k1,l1),(k2,1)(ν)

)
.

Taking the limit as ν → ∞, Theorem 3.2, gives limν→∞ P
(
τk2(t(ν)) > 0

)
≤

P (Z < ω), and (6) follows.
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6.2. Throughput Near-saturation

Assume that at time t = 0 there is at least one user active in Ck , i.e.
X (0) = (k, l) ∈ Bk . Define the total full-component active time in [0, t] as

τk[0, t] :=
∫ t

0
1{X (s)=(k,Lk )} ds,

the residual time in Ck during [0, t] as

Rk[0, t] :=
∫ t

0
1{X (r )∈Bk ∀ r ∈[0,s]} ds,

and the full-component active time contained in the residual time in Ck
during [0, t] as

τ res
k [0, t] :=

∫ t

0
1{X (r )∈Bk ∀ r ∈[0,s]}1{X (s)=(k,Lk )} ds .

For compactness, we have suppressed the implicit dependence on the pa-
rameter ν and the initial state (k, l) in the notation. From this point onward,
we will also drop the subscript k to keep the notation light.

Note that R[0, t] d= min{t, T(k,l),0} and that τ res[0, t] d= τ[0, R[0, t]]. The
random variables τ[0, t], R[0, t] and τ res[0, t], being particular occupancy
times, are non-decreasing in t on every sample path of the activity process
{X (t)}t≥0. Therefore, the random variables

τ[0, ∞] := lim
t→∞

τ[0, t],

R[0, ∞] := lim
t→∞

R[0, t] = T(k,l),0,

τ res[0, ∞] := lim
t→∞

τ res[0, t]

are well defined. For 0 ≤ s ≤ t ≤ ∞, we define

τ[s, t] := τ[0, t] − τ[0, s],

R[s, t] := R[0, t] − R[0, s],

τ res[s, t] := τ res[0, t] − τ res[0, s].

From the above definition, it is easily seen that for every sample path, τ res[s, t]
provides a lower bound for both τ[s, t] and R[s, t], as stated in the next
lemma.
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Lemma 6.2.1. For 0 ≤ s ≤ t ≤ ∞, τ res[s, t] ≤ τ[s, t] and τ res[s, t] ≤ R[s, t].

Proof. Rearranging terms, the differences τ[s, t] − τ res[s, t] and R[s, t] −
τ res[s, t] can both be written as integrals with an integrand that is always
non-negative. !

In particular, Lemma 6.2.1 implies that, for every 0 ≤ s ≤ t ≤ ∞

Eτ res[s, t] ≤ ER[s, t]. (27)

However, as stated in the next lemma, in the limit as ν → ∞, the ratio of the
expected values of τ res[0, ∞] and T(k,l),0 = R[0, ∞] converges to 1.

Lemma 6.2.2. For any initial state X (0) = (k, l) ∈ Bk ,

lim
ν→∞

Eτ res[0, ∞]
ET(k,l),0

= 1.

Proof. Since the ratio is clearly less than 1 by (27), it suffices to show that
the liminf as ν → ∞ is larger than 1. Applying the result in Ref.[22] and using
(2), one obtains that for every 1 ≤ l ≤ Lk , if X (0) = (k, l), then

Eτ res[0, ∞] = E
( ∫ T(k,l),0

0
1{X (s)=(k,Lk )} ds

)
≥ 1

Lk
fk(ν)Lk−1,

and, thus, involving (7),

lim inf
ν→∞

Eτ res[0, ∞]
ET(k,l),0

≥ lim inf
ν→∞

fk(ν)Lk−1/Lk

ET(k,l),0
= 1.

!

The next proposition establishes a near-saturation property in the sense
that if X (0) = (k, l) ∈ Bk , then for any time period t(ν) = o(ET(k,l),0) ev-
ery user in Ck will be active an arbitrarily large fraction of the time with
probability one as ν → ∞.

Proposition 6.2.1. Suppose that X (0) = (k, l) ∈ Bk and that

T(k,l),0/ET(k,l),0
d−→ Z as ν → ∞. Then for every ω ∈ [0, 1] and every δ > 0,

lim inf
ν→∞

P
(
τ[0, ωET(k,l),0] ≥ (1 − δ)ωET(k,l),0

)
≥ P (Z ≥ ω) .
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FIGURE 3 P (τ res[0,ω0ET]/ET ≥ y) (lower line) vs P (R[0,ω0ET]/ET ≥ y) (upper line).

In particular, for any t(ν) = o(ET(k,l),0(ν)),

lim inf
ν→∞

P
(
τ[0, t(ν)] ≥ (1 − δ)t(ν)

)
= 1.

Remark 6.2.1. As mentioned earlier, the hypothesis that T(k,l),0/ET(k,l),0
d−→

Z is not just a convenient assumption, but something that we actually know.
In particular, Proposition 4.2.1 says that Z d= Exp(1). Moreover, since the
result holds for every initial state in Bk , it is true also for a random initial
state in Bk . Indeed, as seen in Section 4, the convergence in distribution of
T(k,l),0(ν)/ET(k,l),0(ν) to Z as ν → ∞ does not depend on the initial state, as
long as it belongs to Bk .

Proof. In order to keep the notation light, we denote in this proof the
hitting time T(k,l),0 by T . First, Lemma 6.2.1 implies that

P (τ[0, ωET] ≥ (1 − δ)ωET) ≥ P (τ res[0, ωET] ≥ (1 − δ)ωET) .

Moreover, by definition of R[0, t] = min{t, T}, we have

P (R[0, ωET] ≥ ωET) = P (T ≥ ωET) .

In view of the hypothesis that T(ν)/ET(ν) d−→ Z as ν → ∞, it therefore
suffices to prove that for every ω ∈ [0, 1] and every δ > 0,

lim inf
ν→∞

P (τ res[0, ωET] ≥ (1 − δ)ωET) ≥ lim inf
ν→∞

P (R[0, ωET] ≥ ωET) .
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Suppose that this latter statement is false, i.e., there exist ω0 ∈ [0, 1], δ > 0
and η > 0 such that

lim inf
ν→∞

P (τ res[0, ω0ET] ≥ (1 − δ)ω0ET)

≤ lim inf
ν→∞

P(R[0, ω0ET] ≥ ω0ET) − η. (28)

Then it can be shown that there exists εω0,δ > 0 such that

lim inf
ν→∞

Eτ res[0, ω0ET]
ET

≤ lim inf
ν→∞

ER[0, ω0ET]
ET

− εω0,δ. (29)

Indeed,

lim inf
ν→∞

(
ER[0,ω0ET]

ET
− Eτ res[0,ω0ET]

ET

)

= lim inf
ν→∞

∫ ∞

0
P
(

R[0,ω0ET]
ET

≥ y
)

− P
(

τ res[0,ω0ET]
ET

≥ y
)

dy

Lemma6.2.1
≥ lim inf

ν→∞

∫ ω0

(1−δ)ω0

P
(

R[0,ω0ET]
ET

≥ y
)

− P
(

τ res[0,ω0ET]
ET

≥ y
)

dy

≥
∫ ω0

(1−δ)ω0

lim inf
ν→∞

(
P
(

R[0,ω0ET]
ET

≥ y
)

− P
(

τ res[0,ω0ET]
ET

≥ y
))

dy

≥ ηδω0 > 0,

where the second last inequality follows from the generalized Fatou’s lemma,
while the last inequality follows from (28) and is illustrated by Figure 3. Thus
we can take εω0,δ := ηδω0.

Equation (27) yields

lim inf
ν→∞

Eτ res[ω0ET, ∞]
ET

≤ lim inf
ν→∞

ER[ω0ET, ∞]
ET

, (30)

and thus, summing term by term (29) and (30), since by definition
ER[0, ∞] = ET ,

lim inf
ν→∞

Eτ res[0, ∞]
ET

≤ lim inf
ν→∞

ER[0, ∞]
ET

− εω0,δ = 1 − εω0,δ,

which contradicts Lemma 6.2.2. !
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7. MIXING TIMES

In the previous sections we have analyzed the transient behavior of the
Markov process {X (t)}t≥0 in terms of hitting times, and we have shown
how this leads to starvation of individual users over certain time scales.
In this section we turn attention to the long-run behavior of the Markov
process {X (t)}t≥0 and in particular examine the rate of convergence to
the stationary distribution. We measure the rate of convergence in terms of
the total variation distance and the so-called mixing time, which describes the
time required for the distance to stationarity to become small.

The mixing time becomes particularly relevant when the network has two
or more dominant components, which together attract the entire probability
mass in the limit as ν → ∞. Indeed, in this case, the mixing time provides
an indication of how long it takes the activity process to reach a certain level
of fairness among the dominant components. We will prove a lower bound
for the mixing time using the notion of conductance.

With a slight abuse of notation, we denote by π(ν) the station-
ary distribution of the process {X (t)}t≥0 on ". Define Pt

ν(x, y) :=
P (X (t) = y |X (0) = x) and denote by Pt

ν(x, ·) the distribution at time t of
the Markov process {X (t)}t≥0 started at time 0 in x. We will also use the
notation µPt

ν to denote the distribution at time t of the Markov process
{X (t)}t≥0 with initial distribution µ at time 0. The maximal distance over
x ∈ ", measured in terms of total variation, between the distribution at time
t and the stationary distribution π(ν) is defined as

d(t, ν) := max
x∈"

‖Pt
ν(x, ·) − π(ν)‖TV.

Define the mixing time of the process {X (t)}t≥0 as

tmix(ε, ν) := inf{t ≥ 0 : d(t, ν) ≤ ε}.

For a fixed r ∈ (0, 1) consider the subset K̃(r ) of branches whose sta-
tionary probability is asymptotically no more than r , i.e., K̃(r ) := {k :
limν→∞ πBκ

(ν) ≤ r }. Define κ = κ(r ) as the index corresponding to the
branch Bκ which has asymptotically the largest mean escape time among
those in K̃(r ), i.e., such that for every j ∈ K̃(r ),

lim
ν→∞

ET(κ,1),0(ν)
ET( j,1),0(ν)

= lim
ν→∞

L j fκ(ν)Lκ−1

Lκ f j (ν)L j −1 ≥ 1. (31)

The next result shows that the mixing time is asymptotically at least of
the same order of magnitude as the escape time from branch Bκ . For any
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two real-valued functions f (·) and g(·), let f (ν) ! g(ν) as ν → ∞ indicate
that limν→∞ f (ν)/g(ν) ≥ 1.

Proposition 7.1. For any r ∈ (0, 1) and ε ∈ (0, 1 − r ), there exists a constant
Cε,r > 0 such that

tmix(ε, ν) ! Cε,r
fκ(ν)Lκ−1

Lκ

, as ν → ∞.

Proposition 7.1 shows that it can take an extremely long time for the
process {X (t)}t≥0 to reach stationarity, especially when ν is large. Such a
long mixing time is typically due to the activity process being stuck for a
considerable period in one of the components, and thus not visiting the
states in the other components. In fact, the statement of the proposition can
be rewritten as

tmix(ε, ν) ! Cε,r ET(κ,1),0, as ν → ∞.

We will prove Proposition 7.1 exploiting the presence of a bottleneck in the
state space and using the notion of conductance.

For any subset S ⊆ ", let πS(ν) =
∑

s∈S πs (ν) be the stationary probabil-
ity of the subset S. Define the probability flow out of S as

QS,Sc (ν) :=
∑

s∈S,s ′∈Sc

πs (ν)q (s, s ′),

where q (s, s ′) is the transition rate between states s, s ′ ∈ " for the process
{X (t)}t≥0 introduced in Section 2. Define moreover the conductance of S ⊆ "
as

/S(ν) := QS,Sc (ν)
πS(ν)

.

The conductance profile of the process {X (t)}t≥0 is defined as

/r (ν) := min
S⊂" : πS (ν)≤r

/S(ν).

The following result, valid for any Markov process on a finite state space
" with conductance profile /r , shows how the conductance of the process
yields a lower bound on the mixing time. It is a continuous-time version of
Theorem 7.3 in Ref.[21] and the proof is relegated to Appendix D.
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Lemma 7.1. For any r ∈ (0, 1) and any ε ∈ (0, 1 − r ),

tmix(ε, ν) ≥ 1 − r − ε

/r (ν)
.

In order to get a sharp bound for the conductance and hence a sharp
lower bound for the mixing time, we need to identify a subset S with low
conductance. As proved in Ref.[19], it suffices to look at the connected subsets
of the state space. Therefore the branches in K̃(r ) become naturally good
candidates for being the lowest-conductance subsets of ". From (2) it follows
that for any state (k, l) in branch Bk with l < Lk ,

π(k,l)(ν)
π(k,Lk )(ν)

=
(

Lk

l

)
f (ν)l−Lk , as ν → ∞.

Using this fact, we obtain the following asymptotic estimate for the conduc-
tance of branch Bk as ν → ∞.

/Bk (ν) = π(k,1)(ν) · 1
∑Lk

l=1 π(k,l)(ν)
=

π(k,1)(ν)
π(k,Lk )(ν)

∑Lk
l=1

π(k,l)(ν)
π(k,Lk )(ν)

≥ π(k,1)(ν)
π(k,Lk )(ν)

∼ Lk fk(ν)1−Lk ,

Thanks to the definition (31) of κ = κ(r ), πBk (ν) ≤ r . Since by definition
/r (ν) ≤ /Bk (ν), the asymptotic estimate for /Bk (ν) and Lemma 7.1 imply
that for every ε ∈ (0, 1

4) and for ν sufficiently large

tmix(ε, ν) ! (1 − r − ε)
fκ(ν)Lκ−1

Lκ

, as ν → ∞,

which completes the proof of the lower bound claimed in Proposition 7.1.

8. CONCLUSIONS

We have studied hitting times and mixing properties in dense wireless
random-access networks. We have represented the activity processes in such
networks in terms of Markov processes on complete partite graphs. In partic-
ular, in dense networks, high activity rates lead to network behavior in which
users in maximum independent sets coalesce into components that compete
for the wireless medium. We have shown that components monopolize the
wireless medium for extremely long periods, which leads to long mixing
times and starvation of all other components. Hence, users in a particular
component alternate between enjoying long periods of access and facing
long periods of starvation.
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While the slow nature of the transitions is a common characteristic, the
asymptotic distribution of the scaled transition time depends crucially on
the structure of the network and on the initial and target components, and
there is a notable variety of possible scenarios. In particular, in some sce-
narios the distribution of the scaled transition time is non-exponential. This
is due to the heterogeneous activation rates among components in con-
junction with the presence of intermediate components where the activity
process resides for long periods along the transition.

The complete partite graphs that we focused on in the present article
are arguably the worst possible networks in terms of transition times and
starvation effects, given the size of the network. Indeed, the fact that the users
are grouped into components, with no interference within components and
full interference between components, turns out to be a key element for
starvation to occur. This is reflected in the fact that the transition times
exhibit exponential growth in the component size. Graphs that are partite
but not complete will have a less extreme tendency for starvation, although
the issue may still arise to a milder degree. The lack of interference between
some nodes in different components will result in bottleneck states where
some of the nodes may be active, and raise the likelihood of the bottleneck
state relative to the dominant activity states. This is illustrated by the work in
Ref.[28], which investigates the transition times in a toric grid. The toric grid
is a bi-partite graph, but with fewer edges between the two components. The
results in Ref.[28] show that the transition times, while still severe, are of a
lower order than for the complete bi-partite graph of the same size.

A. Proof of Lemma 4.2.1

We will prove a slightly more general version of Lemma 4.2.1, assuming
the rates of the process are those described in Subsection 4.3. Order the
state space as " = {L, L − 1, . . . , 1, 0} and consider the generator matrix
Q(ν) of the process {X (t)}t≥0 with 0 an absorbing state. That is,

Q(ν) =





qL dL 0 . . . 0
aL−1 f (ν) qL−1 dL−1 0
0 aL−2 f (ν) qL−2 dL−2 0

...
. . . . . . . . .

0 a1 f (ν) q1 d1
0 . . . 0 0 0 0





,



Slow Transitions and Starvation 393

where the diagonal elements are ql(ν) = −al f (ν) − dl for l = 1, . . . , L1 and
qL(ν) = −dL. The matrix Q(ν) can be written as

Q(ν) =
(

T(ν) t(ν)
0T 0

)
,

where T(ν) is an L × L invertible matrix. Since the characteristic polynomi-
als of −Q(ν) and −T(ν) satisfy the relation p −Q(ν)(z) = −z p −T(ν)(z), the
spectrum of −Q(ν) consists of that of −T(ν) plus the eigenvalue zero with
multiplicity one.

Denote by D(ν) the L × L diagonal matrix, whose diagonal entries are
{
√

ξl(ν)}l=L,L−1,...,1, where the ξ ’s are the so-called potential coefficients, de-
fined recursively as

ξL(ν) = 1 and ξl = dl+1

al f (ν)
ξl+1, l = L − 1, . . . , 1.

The L × L matrix G(ν) = −D(ν)1/2T(ν)D(ν)−1/2 is tridiagonal and sym-
metric with diagonal entries Gl,l(ν) = qL−l+1(ν) and Gl,l+1(ν) = gl+1,l(ν) =
−
√

dlal−1 f (ν). Since G(ν) is similar to −T(ν), they have the same spec-
trum. Denote by D(p , R) the closed disc centered in p with radius R , i.e.,
D(p , R) = {z ∈ C : |z − p | ≤ R}.

Consider the Gershgorin discs {Dl(ν)}L
l=1 of G(ν), defined as Dl(ν) :=

D(−ql(ν), Rl(ν)), where the radius Rl(ν) is the sum of the absolute val-
ues of the non-diagonal entries in the L − l + 1-th row, i.e., Rl(ν) :=∑

m ,=L−l+1 |GL−l+1,m(ν)|. Then

DL(ν) = D(dL,
√

dLaL−1 f (ν)),

DL−1(ν) = D(dL−1 + aL−1 f (ν),
√

dLaL−1 f (ν) +
√

dL−1aL−2 f (ν)),

...

D2(ν) = D(d2 + a2 f (ν),
√

d3a2 f (ν) +
√

d2a1 f (ν)),

D1(ν) = D(d1 + a1 f (ν),
√

d2a1 f (ν)).

We now exploit the second Gershgorin circle theorem, which is reproduced
here for completeness.

Theorem A.1. If the union of j Gershgorin discs of a real r × r matrix A is disjoint
from the union of the other r − j Gershgorin discs, then the former union contains
exactly j and the latter the remaining r − j eigenvalues of A.
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In our case, for ν sufficiently large, the disc DL(ν) does not intersect
with the union

⋃L−1
l=1 Dl(ν), thus the smallest eigenvalue θ1(ν) lies in DL(ν)

and the other L − 1 ones in
⋃L−1

l=1 Dl(ν). Hence, for ν sufficiently large, the
following inequalities hold

θ1(ν) ≤ A + B
√

f (ν), and θi (ν) ≥ C f (ν) − D
√

f (ν), i = 2, . . . , L,

where A, B, C, D ∈ R+ and, more precisely, A = dL, B =
√

dLaL−1,
C = minl=1,...,L−1 al and D = max{

√
dLaL−1 +

√
dL−1aL−2, . . . ,

√
d3a2 +√

d2a1,
√

d2a1}. Therefore, for ν sufficiently large,

0 <
θ1(ν)
θi (ν)

≤ A + B
√

f (ν)
C f (ν) − D

√
f (ν)

,

and so limν→∞ θ1(ν)/θi (ν) = 0 for i = 2, . . . , L. Hence,

ETL,0(ν) · θ1(ν) = 1 +
L∑

i=2

θ1(ν)
θi (ν)

→ 1, as ν → ∞,

while for 2 ≤ i ≤ L,

ETL,0(ν) · θi (ν) >
θi (ν)
θ1(ν)

→ ∞, as ν → ∞.

B. Proof of Lemma 4.2.2

The proof of statement (1) consists of a lower and an upper bound
which asymptotically coincide. Indeed, using the bounds in Property (ii),
one obtains that

lim inf
ν→∞

ET(ν)
EU (ν)

≥ lim inf
ν→∞

EU (ν) − EV (ν)
EU (ν)

= 1 and

lim sup
ν→∞

ET(ν)
EU (ν)

≤ lim sup
ν→∞

EU (ν) + EW (ν)
EU (ν)

= 1.

Once again, the proof of statement (2) consists of a lower and an upper
bound which asymptotically coincide for all the continuity points of the tail
distribution of Z , which will be denoted by F (s) = P (Z > s).

For the lower bound, argue as follows. Property (i) implies that for any
δ ∈ (0, 1), EW (ν) ≤ δEU (ν) for ν sufficiently large. Thus, using the lower
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bound in Property (iii), for ν sufficiently large,

P
(

T(ν)
ET(ν)

> t
)

≥ P
(

U (ν) − V (ν)
EU (ν) + EW (ν)

> t
)

≥ P (U (ν) − V (ν) > EU (ν)(1 + δ)t)

≥ P (U (ν) > EU (ν)(1 + 2δ)t) − P (V (ν) > δEU (ν)t) .

Property (iii) implies that

lim
ν→∞

P
(

U (ν)
EU (ν)

> (1 + 2δ)t
)

= F
(
(1 + 2δ) t

)
.

Property (i) implies that for ν sufficiently large, EV (ν) ≤ δ2EU (ν), so that

P (V (ν) > δEU (ν)t) ≤ EV (ν)
δEU (ν)t

≤ δ

t
,

by Markov’s inequality. Taking liminf’s, we obtain

lim inf
ν→∞

P
(

T(ν)
ET(ν)

> t
)

≥ F
(
(1 + 2δ)t

)
− δ

t
.

Letting δ ↓ 0, we find

lim inf
ν→∞

P
(

T(ν)
ET(ν)

> t
)

≥ F (t) . (32)

For the upper bound, argue as follows. Property (i) implies that for any
δ ∈ (0, 1), EV (ν) ≤ δEU (ν) for ν sufficiently large. Thus, using the upper
bound in Property (iii), for ν sufficiently large,

P
(

T(ν)
ET(ν)

> t
)

≤ P
(

U (ν) + W (ν)
EU (ν) − EV (ν)

> t
)

≤ P (U (ν) + W (ν) > (1 − δ)EU (ν)t)

≤ P (U (ν) > (1 − 2δ)EU (ν)t) + P (W (ν) > δEU (ν)t) .

Property (iii) implies that

lim
ν→∞

P
(

U (ν)
EU (ν)

> (1 − 2δ)t
)

= F
(
(1 − 2δ)t

)
.
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Property (i) implies that for ν sufficiently large, EW (ν) ≤ δ2EU (ν), so that

P (W (ν) > δEU (ν)t) ≤ EW (ν)
δEU (ν)t

≤ δ

t
,

by Markov’s inequality. Taking limsup’s, we obtain

lim sup
ν→∞

P
(

T(ν)
ET(ν)

> t
)

≤ F
(
(1 − 2δ) t

)
+ δ

t
.

Letting δ ↓ 0, we find

lim sup
ν→∞

P
(

T(ν)
ET(ν)

> t
)

≤ F (t) . (33)

Combining (32) and (33) completes the proof.

C. Proof of Lemma 5.3.1

Statement (a) is trivial, since 0 ≤ LTk (ν)/ETk (ν)(s) ≤ 1 for all s ∈ [0, ∞[
and βk = limν→∞ ENk(ν) = 0 for every k ∈ N . Statement (b) follows im-
mediately after substituting βk ∈ R+ and γk ∈ (0, 1] in the limit, since
Tk(ν)/ETk(ν) d−→ Exp(1). The proof of claim (c) is more involved, and we
need an auxiliary lemma.

Let Sk(ν) :=
∑Nk(ν)

i=1 T (i)
k (ν). From the integrability of Nk(ν) and Tk(ν),

it follows that ESk(ν) = ENk(ν) · ETk(ν). Consider the random variable

S̃(ν) = hk(ν)
Nk(ν)∑

i=1

T (i)
k (ν)

ET (i)
k (ν)

= hk(ν)ENk(ν)
Sk(ν)

ESk(ν)
.

Since Nk(ν) has a geometric distribution, the Laplace transform of
Sk(ν)/ESk(ν) is given by

LSk(ν)/ESk (ν)(s) = GNk(ν)
(
LTk(ν)/ETk (ν)(s/ENk(ν))

)

= 1
1 + (1 − LTk (ν)/ETk (ν)(s/ENk(ν))) · ENk(ν)

,

and hence

LS̃(ν)(s) = LSk(ν)/ESk (ν)(shk(ν)ENk(ν))

= 1
1 + (1 − LTk (ν)/ETk (ν)(shk(ν))) · ENk(ν)

. (34)
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One can check that, if k ∈ S, then

(1) Nk(ν)/ENk(ν) d−→ Exp(1), and
(2) limν→∞

Var(Tk (ν)/ETk (ν))
ENk(ν) = 0.

Fact (1) is a standard result for geometric random variables which uses
only the fact that limν→∞ ENk(ν) = ∞ for k ∈ S. Moreover, since Tk(ν) is a
first-passage time of a birth-and-death process, using Corollary 4 in Ref.[9], we
can obtain explicitly the asymptotic order-of-magnitude of Var(Tk(ν)) and
prove that limν→∞ Var(Tk(ν))/(ETk(ν))2 = 1, from which claim (2) follows.

These two facts and the technical lemma below imply that
Sk(ν)/ESk(ν) d−→ Exp(1), and hence

lim
ν→∞

LS̃(ν)(s) = lim
ν→∞

LSk(ν)/ESk (ν)(shk(ν)ENk(ν)) = 1
1 + sγk

.

This fact, together with (34), implies that

lim
ν→∞

(1 − LTk(ν)/ETk (ν)(shk(ν))) · ENk(ν) = sγk,

and the proof of statement (c) is concluded. We now state and prove the
technical lemma mentioned above.

Lemma C.1. Assume that

(1) {Xi (ν)}i≥0 is a sequence of i.i.d. integrable random variables, Xi (ν) d= X (ν),
for every ν > 0,

(2) N (ν) is an integer-valued random variable, independent of all the Xi (ν)’s and
integrable for every ν > 0,

(3) N (ν)/EN (ν) d−→ Z as ν → ∞, with P (Z = 0) = 0,
(4) limν→∞

Var(X (ν)/EX (ν))
EN (ν) = 0.

Define S(ν) :=
∑N (ν)

i=1 Xi (ν). Then

S(ν)
ES(ν)

d−→ Z , as ν → ∞.

Proof. First, Wald’s identity guarantees that SN (ν) is integrable and that
ES(ν) = EN (ν)EX (ν) for every ν > 0. Hence, without loss of generality,
we can assume that EX (ν) = 1 and study the asymptotic distribution of
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S(ν)/EN (ν). Define Sn(ν) :=
∑n

i=1 Xi (ν). Note that we can rewrite

S(ν)
EN (ν)

= S(ν)
N (ν)

N (ν)
EN (ν)

.

Now we claim that

S(ν)
N (ν)

P→ 1, as ν → ∞. (35)

Indeed, for every ε > 0 we may write

P (|S(ν)/N (ν) − EX (ν)| > δ)

=
∞∑

n=0

P (|S(ν)/N (ν) − EX (ν)| > δ, N (ν) = n)

=
5εEN (ν)6∑

n=0

P (. . . ) +
∞∑

n=5εEN (ν)6+1

P (. . . )

≤
5εEN (ν)6∑

n=0

P (N (ν) = n) +
∞∑

n=5εEN (ν)6+1

P (|S(ν)/N (ν) − EX (ν)| > δ, N (ν) = n)

≤ P (N (ν) ≤ εEN (ν))+
∞∑

n=5εEN (ν)6+1

P (|Sn(ν)/n − EX (ν)| > δ) P (N (ν) = n) .

Using Chebyshev’s inequality, we find that the second term is bounded from
above by

∞∑

n=5εEN (ν)6+1

Var(X (ν))
δ2n

P (N (ν) = n)

≤ Var(X (ν))
εEN (ν)δ2

∞∑

n=5εEN (ν)6+1

P (N (ν) = n) ≤ Var(X (ν))
εEN (ν)δ2 .

For every ξ > 0 and every ε > 0, there exists νε,ξ > 0 such that for ν > νε,ξ ,

P (N (ν) ≤ εEN (ν)) ≤ P (Z ≤ ε) + ξ and
VarX (ν)
εEN (ν)

≤ ξ .

The first inequality follows from the fact that the c.d.f. of N (ν)/EN (ν)
converges pointwise to that of Z , by (3). On the other hand, the second
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inequality follows immediately from (4). Therefore, for ν > νε,ξ ,

P (|S(ν)/N (ν) − EX (ν)| > δ) ≤ P (Z ≤ ε) + ξ + ξ

δ2 .

Take, e.g., ε = δ, ξ = δ3. Then for ν sufficiently large,

P (|S(ν)/N (ν) − EX (ν)| > δ) ≤ P (Z ≤ δ) + δ3 + δ.

Letting δ ↓ 0 and using the fact that P (Z = 0) = 0, we obtain (35). Then
hypothesis (3) and Slutsky’s theorem imply the conclusion. !

D. Proof of Lemma 7.1

In this proof we use the same notation introduced in Section 7, but
without writing explicitly the dependence on ν.

Denote by µS the function defined by

µS(x) :=
{
πx if x ∈ S,
0 otherwise.

Note that since
∑

y∈" µS(y) = πS , in general µS is not a probability distri-
bution, but µS/πS always is. Denote by µS

t the distribution on " at time t
of the Markov process {X (t)}t≥0 if the initial distribution was equal to π
conditioned on being in S, i.e., µS

0 := µS/πS . For every y ∈ " we can write

µS
t (y) =

∑

x∈"

µS(x)
πS

P t(x, y) =
∑

x∈S

πx

πS
P t(x, y). (36)

We now claim that

πS ||µS
t − µS

0||TV =
∑

x∈S

∑

y∈Sc

πxP t(x, y) (37)

and

∑

x∈S

∑

y∈Sc

πxP t(x, y) ≤ t · QS,Sc . (38)

Let us first prove equality (37). A well-known characterization of the
total variation distance (see, for instance, Ref. [21, Remark 4.3]) states that
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if µ, µ′ are two probability distributions on ", then

||µ − µ′||TV =
∑

y∈" : µ(y)≥µ′(y)

[
µ(y) − µ′(y)

]
.

Applying this to the distributions µS
t and µS

0, we get

||µS
t − µS

0||TV =
∑

y∈" : µS
t (y)≥µS

0(y)

[
µS

t (y) − µS
0(y)

]
. (39)

If y ∈ S, then

µS
t (y) =

∑

x∈S

πx

πS
P t(x, y) ≤

∑

x∈"

πx

πS
P t(x, y) = πy

πS
= µS

0(y),

and therefore we can restrict the sum on the right-hand side of (39) to the
states y ∈ Sc . Moreover, if y ∈ Sc , then by definition µS

0(y) = 0. Therefore,

||µS
t − µS

0||TV =
∑

y∈Sc

µS
t (y).

By multiplying both sides of the last equality by πS and using (36), we get

πS ||µS
t − µS

0||TV = πS

∑

y∈Sc

µS
t (y) = πS

∑

y∈Sc

∑

x∈S

πx

πS
P t(x, y)

=
∑

x∈S

∑

y∈Sc

πxP t(x, y),

and (37) is proved.
We now turn our attention to the claim in (38). For any x, y ∈ ", define

the random variable Nx→y (t) as the number of transitions from state x to
state y during the time interval [0, t], so that

P (X (t) ∈ Sc |X (0) = x) ≤
∑

x ′∈S,y ′∈Sc

P
(
Nx ′→y ′(t) ≥ 1|X (0) = x

)
,

from which we get that
∑

x∈S

∑

y∈Sc

πxP t (x, y) =
∑

x∈S

πxP (X (t) ∈ Sc |X (0) = x)

≤
∑

x∈S

πx

∑

x ′∈S,y ′∈Sc

P
(
Nx ′→y ′(t) ≥ 1|X (0) = x

)
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=
∑

x∈S

πx

∑

x ′∈S,y ′∈Sc

∫ t

u=0
P
(
X (u) = x ′|X (0) = x

)
q (x ′, y ′) du

=
∑

x ′∈S,y ′∈Sc

q (x ′, y ′)
∫ t

u=0

(
∑

x∈S

πxP
(
X (u) = x ′|X (0) = x

)
)

du

≤
∑

x ′∈S,y ′∈Sc

q (x ′, y ′)
∫ t

u=0
πx ′ du

= t
∑

x ′∈S

∑

y ′∈Sc

πx ′q (x ′, y ′) = t · QS,Sc ,

and (38) is then proved. Note that we used the fact that

∑

x∈S

πxP
(
X (u) = x ′|X (0) = x

)
≤
∑

x∈"

πxP
(
X (u) = x ′|X (0) = x

)

=
∑

x∈"

πxPu(x, x ′) = πx ′ .

From (37) and (38) it follows that

||µS
t − µS

0||TV ≤ t /(S).

Assume that the subset S is such that πS ≤ r , with r ∈ [0, 1]. Then, since
µS(Sc ) = 0,

||µS
0 − π ||TV = max

A⊂"
|πA − µS

0(A)| ≥ πSc = 1 − πS ≥ 1 − r,

and, using the triangular inequality, we get

1 − r ≤ ||µS
0 − π ||TV ≤ ||µS

0 − µS
t ||TV + ||µS

t − π ||TV.

Since the state space " is finite, we have the following equality for the distance
from stationarity:

d(t) = max
x∈"

‖Pt(x, ·) − π(ν)‖TV = sup
µ∈P(")

‖µPt − π(ν)‖TV,

where P(") denotes the collection of all probability distributions on ". By
taking µ = µS and time t = tmix(ε), by definition of mixing time, we have
that ||µS

t − π ||TV ≤ d(tmix(ε)) = ε, and therefore

1 − r ≤ tmix(ε)/(S) + ε.

Rearranging and minimizing over S concludes the proof.
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