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1I N T R O D U C T I O N

1.1 preview

In this thesis we study mathematical models that capture the collective behav-
ior of devices sharing a wireless medium in a distributed fashion.

Our research is motivated by fundamental challenges in wireless networks,
which typically are very large and lack centralized control. Instead these net-
works vitally rely on a distributed mechanism for regulating the access of
the various devices to the shared medium. Randomized algorithms provide
a popular mechanism for distributed medium access control, thanks to their
low implementation complexity.

The idea behind random access is simple: Each device operates a random
clock, independent of all other devices, which determines when the device
attempts to access the medium. So from the viewpoint of the device and the
implementation, this randomized algorithm is simple as it only requires local
information. However, the macroscopic behavior of this random-access algo-
rithm in large networks tends to be complex and critically depends on global
spatial characteristics of the network, in particular when devices have sensing
capabilities. Indeed, for such a class of algorithms nearby devices are pre-
vented from simultaneous activity, since otherwise they would interfere and
disturb each others signals.

In our work we focus on random-access algorithms. We consider stylized
stochastic models to understand how the spatial deployment of the various
transmitter-receiver pairs affects the global performance of the network. Specif-
ically, we model the random-access network as an interacting particle system
on a graph, which captures the interplay of conflicting transmissions due to
interference and to which we will refer as conflict graph. Every transmitter-
receiver pair is represented by a particle, which is active if there is an ongoing
transmission or inactive otherwise. The graph encodes the spatial structure of
the network, since neighboring particles are prevented from simultaneous ac-
tivity. Each particle is endowed with a random clock, which is independent of
the clocks of all other particles. Such random clocks create the dynamics of the
system: When one of these random clocks rings, the corresponding particle
changes its state, from active to inactive or vice-versa. However, a particle can
become active only if all its neighboring particles are inactive. The global evo-
lution of the particle system is then described by a continuous-time Markov
process, which exhibits fascinating connections with the hard-core interaction
between gas particles studied in chemistry and statistical mechanics.

Specific attention is paid to scenarios in which particles become more ag-
gressive in trying to activate, with higher clock rates for activation compared
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2 introduction

to deactivation. This is relevant for networks in high-load regimes, where one
cannot afford to leave network resources unutilized. In these scenarios, the
most likely activity states for the network are those with a maximum number
of active particles, to which we refer as dominant states. A major complication
then for network behavior is that in this high-load regime the dominant states
become extremely rigid, by which we mean that the transitions between dom-
inant states can be extremely slow, causing starvation for the particles not in
the currently active dominant state.

As an illustration, consider a symmetric grid network of particles equipped
with random clocks with the same activation rate. This network has two dom-
inant states, corresponding to the two chessboard patterns of the grid, see Fig-
ures 1.1a and 1.1b. When the activation rate grows large, the system spends
roughly half of the time in each of these two dominant states. However, it
takes a long time for the activity process to move from one dominant state
to the other, since such a transition involves the occurrence of rare events. In-

(a) First dominant state (b) Second dominant state

(c) Intermediate state

Figure 1.1: Three activity states on an 8× 8 grid network with N = 64 particles
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deed, intuitively, the activity process must follow a transition path through
some highly unlikely states with simultaneous activity on the even and on
the odd chessboards, such as the one in Figure 1.1c, and the time to reach
such activity states is correspondingly long. These mixed activity patterns
are extremely low-likelihood states because more inactive particles than in
the dominant states are needed to create the two-layer interface that must
separate clusters of active particles on different chessboards. Thus each par-
ticle basically experiences long sequences of activations in rapid succession,
interspersed with extended periods of starvation. Hence, significant temporal
starvation effects can arise due to these slow transitions between dominant
states.

Temporal starvation can have a huge impact on the network performance.
Suppose that each particle is equipped with a buffer and let the data packets
waiting for transmission be stored in the buffer of the corresponding particle,
as shown by Figure 1.2. During a long period of inactivity of a given particle
the number of data packets in the buffer builds up, causing delay in their
transmission. In this thesis, we exploit the particle system description of the
network to investigate the long transition times between dominant activity
states and the temporal starvation and delay that this causes.

Figure 1.2: Network of particles corresponding to conflicting transmission links with
their data packet buffers

In order to quantify the temporal starvation of random-access networks, we
study the transient behavior of the corresponding interacting particle systems.
In particular, we analyze the asymptotic behavior of first hitting times be-
tween dominant states and obtain the convergence rate to equilibrium of the
Markov process in terms of mixing times. In our study we focus on extreme
network topologies as prototypical scenarios. We first consider complete par-
tite graphs, which are graphs that are useful for modeling dense networks,
and therefore provide a “worst-case” perspective. We then turn attention to
non-complete partite graphs; in particular regular meshes such as grid graphs
and triangular grid graphs. For these topologies, we develop a novel combina-
torial method to analyze the structure and the features of the typical transition
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paths between dominant states. As a result, we then quantify how the order
of magnitude of the transition times between dominant states depends on the
size and properties of the network topology.

We also consider extensions of the interacting particle system described
above, in which the particles are not all equal, but can be of different types.
In particular, we assume that the repelling effects continue to exist only be-
tween particles of different types, while neighboring particles of homoge-
neous type can be active simultaneously. This class of interacting particle
systems can represent random-access algorithms used in wireless networks
in which nearby devices can transmit simultaneously without interfering by
transmitting on different frequency channels. Multi-channel random-access
networks and their performance are further discussed in Section 1.5.

1.2 wireless networks

1.2.1 Medium access schemes

Wireless signals typically propagate in all directions and are often overheard
by non-intended receivers. As a consequence, data packets may not be re-
ceived correctly if the intended receiver overhears too many conflicting sig-
nals on the same frequency channel. In this case, we say that a collision occurs
due to the interference of nearby ongoing conflicting transmissions. Hence, a
medium access control mechanism is required in order to reduce collisions
and improve network performance. Many such mechanisms have been pro-
posed and studied in the literature, aiming either to detect such collisions
when they occur or to avoid them altogether. Within the class of collision-
avoidance medium access algorithms, there exist two main sub-classes: Cen-
tralized algorithms and distributed algorithms.

Centralized algorithms require a global control entity which has perfect
information of all interference constraints and can coordinate all transmis-
sions by prescribing a certain schedule to the nodes of the network, i.e. the
transmitter-receiver pairs. The MaxWeight scheduling algorithm [134] is an ex-
ample of a centralized scheme that operates in slotted time. In each time slot,
a set of non-conflicting nodes (an independent set) in the conflict graph that
has the maximum weight in terms of aggregated buffer content sizes is sched-
uled. However, implementing MaxWeight is challenging because finding a
maximum-weighted independent set (required at each time slot) is an NP-
hard problem.

In contrast, distributed algorithms do not require a central controller, since
nodes decide autonomously when to start a transmission using only local
information. These schemes often rely on randomness to both avoid simulta-
neous transmissions and share the medium in the most efficient way: For this
reason they are called random-access algorithms.
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The ALOHA protocol [1, 124], developed in the 1970’s, was one of the first
schemes that exploit randomness for medium access. According to ALOHA,
every node is inactive for a random amount of time after every transmission
attempt. This back-off mechanism attenuates simultaneous activity of nearby
nodes and thus reduces the chances of collisions, although collisions can still
occur.

The Carrier-Sense Multiple-Access (CSMA) algorithm refines ALOHA by
combining the random back-off mechanism with interference sensing [86]. In
the CSMA algorithm, each node attempts to access the medium after a ran-
dom back-off time, but nodes that sense activity of interfering nodes freeze
their back-off timer until the medium is sensed idle again. For this reason, the
CSMA mechanism is collision-free, at least in idealized scenarios. The CSMA
algorithm is a popular distributed medium-access control mechanism and, in
fact, various of its incarnations are currently implemented in IEEE 802.11 WiFi
networks.

In this thesis we consider stylized models for CSMA-type algorithms to
investigate the impact of the network structure on the network performance.

1.2.2 Saturated CSMA model

We consider a network of transmitter-receiver pairs sharing a wireless medium
according to a CSMA-type algorithm. A node indicates potential data transmis-
sion between a transmitter and a receiver. In this thesis we assume that every
transmitter has exactly one intended receiver, and we consider only the links
that correspond to these intended transmissions. We further assume that every
receiver needs to receive data from only one transmitter. These assumptions
are not particularly crucial, and results can be generalized to other scenarios.
Every node can either be active or inactive, depending on whether the data
transmission is ongoing or not. We assume that the network consists of N
such nodes, so that the network activity state can then be described by an
N-dimensional vector x, where xi = 1 if node i is active and xi = 0 otherwise.

We assume that the network structure and interference conditions can be
described by means of an undirected finite graph G = (V, E), called conflict
graph, where the set of vertices V = {1, . . . , N} represents the nodes of the
network and the set of edges E ⊆ V ×V indicate which pairs of nodes cannot
be active simultaneously. Therefore, neighboring nodes in the conflict graph
are prevented from simultaneous activity by the carrier-sensing mechanism.

We first focus on scenarios where nodes are saturated, which means that
nodes always have packets available for transmission. The transmission times
of node i are independent and exponentially distributed with mean 1/µi.
When the transmission of a packet is completed, node i releases the medium
and starts a back-off period. The back-off periods of node i are independent
and exponentially distributed with mean 1/νi.
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Let X ⊆ {0, 1}N be the set of all feasible joint activity states of the network.
Since the interference is modeled by the conflict graph G, the set X consists
of the incidence vectors of all independent sets of the conflict graph G:

X :=
{

x ∈ {0, 1}N : xixj = 0 ∀ (i, j) ∈ E
}

. (1.1)

If we let X(t) denote the network activity state at time t as defined earlier,
then {X(t)}t≥0 is a continuous-time Markov process on the state space X
with transition rates

q(x, y) :=


νi if y = x + ei ∈ X ,

µi if y = x− ei ∈ X ,

0 otherwise,

(1.2)

where ei ∈ {0, 1}N is the vector with all zeros except for a 1 in position i. The
Markov process {X(t)}t≥0 is reversible [18] and has a product-form stationary
distribution

π(x) := Z−1
N

∏
i=1

( νi
µi

)xi
, x ∈ X , (1.3)

where Z is the normalizing constant

Z := ∑
x∈X

N

∏
i=1

( νi
µi

)xi
.

The stationary distribution (1.3) is insensitive to the distributions of back-off
periods and transmission times, in the sense that it depends on these only
through their averages 1/νi and 1/µi, as proved in [136]. Hence (1.3) holds in
fact for general back-off and transmission time distributions.

Define the throughput θi of node i as the expected number of successful
transmissions of node i per unit of time, multiplied by the average length of a
transmission period. Since nodes are saturated, θi equals the long-run fraction
of time that node i is active, i.e.

θi := ∑
x∈X

π(x)xi. (1.4)

Being a function of the stationary distribution (1.3), the throughput is also
insensitive to the distributions of the back-off and transmission times.

This CSMA model was originally considered in the context of packet-radio
networks [17, 18, 81, 84, 119, 140] and later investigated in the context of
IEEE 802.11 systems, first in [138] and then in [43, 44, 45, 46, 55]. Although
such a representation of the IEEE 802.11 back-off mechanism is not as de-
tailed as in the landmark work of [16], the general conflict graph provides
far greater versatility in describing a broad range of topologies. Experimental
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results in [100] demonstrate that these models, while idealized, yield through-
put estimates that match remarkably well with measurements in actual IEEE
802.11 networks.

This saturated CSMA model has strong connections with Markov random
fields and can be seen as a special instance of a loss network [80, 82, 83, 133,
142]. Several models in this class have been shown to oscillate on very large
timescales between two (or more) stable states. In particular, bi-stability has
been observed in loss networks, both with dynamic routing [60, 107] and fixed
routing [144]. In [7] and [8] similar network models have been shown to have
multiple stable points between which the systems move on long time scales.
The metastability of loss networks is closely related to phase transitions of the
corresponding models in statistical physics [52, 105, 122].

1.2.3 Unsaturated CSMA model

We can also consider CSMA networks in unsaturated traffic conditions. Data
packets are then assumed to arrive at each node according to an exogenous
stochastic process and are temporarily stored in a FIFO manner in a buffer
at the corresponding node pending transmission (more precisely at the buffer
of the transmitter corresponding to that node). We assume that the packet
arrival processes at different nodes are independent Poisson processes and
that the packet arrival rate at node i is λi. The traffic intensity or load at node i
is defined as

ρi :=
λi
µi

, (1.5)

representing the long-run fraction of time that node i must be active to trans-
mit all arriving packets.

Upon activation, a single packet is transmitted and the node starts a back-
off period before the next packet transmission. The activation process and
transmission times at each node are assumed to be independent of the corre-
sponding packet arrival process. We assume that a node can be active, even
when there are no data packets waiting to be transmitted in its buffer. In that
case a node transmits dummy packets. The transmission of a dummy packet
is stopped upon arrival of a new packet at that node, whose transmission is
then started immediately. It would be interesting to extend the analysis to
the case where nodes with empty buffers refrain from transmission activity,
in which we expect many of our results to still hold, especially when the net-
work is highly loaded (since in this regime buffers are rarely empty). However,
this extension would be challenging from the mathematical standpoint, since
the behavior of the activity process then does depend on the queue-length
process.

Let {Q(t)}t≥0 be the joint queue-length process, with Qi(t) the number of
packets waiting at node i at time t (excluding the packet that may be in the pro-
cess of being transmitted). Under the random-access algorithm, the process
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{(X(t), Q(t))}t≥0 evolves as a continuous-time Markov process on the state
space X ×NN . The activity process {X(t)}t≥0 does not depend on the process
{Q(t)}t≥0, thanks to the dummy packet assumption. In contrast, the queue-
length process {Q(t)}t≥0 strongly depends on the activity process {X(t)}t≥0,
and is considerably harder to analyze. Since the evolution of {Q(t)}t≥0 is mod-
ulated by that of {X(t)}t≥0, the former process can be viewed as a queueing
network in a random environment. A simple necessary and sufficient condi-
tion for the all queue-length processes {Qi(t)}t≥0, i = 1, . . . , N, to be positive
recurrent is ρi < θi, for all i = 1, . . . , N, see Section 2.4.

If we assume that nodes refrain from competition for the medium when
their buffer is empty, the interaction between the activity states {X(t)}t≥0 and
the buffer contents {Q(t)}t≥0 becomes bidirectional and gives rise to even
more complicated behavior. In fact, in this case the stationary distribution
of the Markov process {(X(t), Q(t))}t≥0 in general does not admit a closed-
form expression and even the basic throughput characteristics and stability
conditions are not known. An explicit description of the stability condition is
very difficult for general network topologies, as illustrated in [136], and only
structural representations or asymptotic results are known [32, 92].

Inspired by the work in [71], powerful algorithms have been proposed for
adapting back-off parameters based on queue lengths [71, 69, 121, 128]. Under
mild assumptions, these algorithms have been shown to achieve throughput
optimality. The case of fixed activation and deactivation rates on which this
thesis focuses is nevertheless highly relevant since it is a canonical model for
gaining insight in the deep interplay between the structure of the network and
its performance.

1.3 interacting particle systems

In this section we illustrate how the CSMA models described in Section 1.2
can be viewed as an interacting particle system.

1.3.1 Hard-core model on finite graphs

Concepts from statistical physics have often been applied to analyze large-
scale distributed resource sharing mechanisms [43, 45, 50, 85, 105, 122, 140]. In
the same spirit, the saturated CSMA model described in Subsection 1.2.2 can
equivalently be described as an interacting particle system. More precisely, it
corresponds to a certain stochastic model where particles dynamically interact
in a finite volume subject to hard-core constraints. This model was introduced
in the chemistry and physics literature under the name hard-core lattice gas
model, and serves to describe the behavior of a gas whose particles have non-
negligible radii and cannot overlap [57, 137].

We describe the spatial structure of the gas volume in terms of a finite undi-
rected graph G = (V, E), which is the physical counterpart of the wireless
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conflict graph introduced in Section 1.2. The N vertices of the graph G rep-
resent the possible sites where particles can reside. The hard-core constraints
are represented by edges connecting the pairs of sites where particles cannot
be active simultaneously. The state of the system, i.e. the particle configuration
on G, is described by a vector x ∈ {0, 1}N , where xi = 1 if the particle in site i
is active and xi = 0 otherwise. We say that a state x is admissible if it does not
violate the hard-core constraints, i.e. if xixj = 0 for every (i, j) ∈ E. In other
words, the state x is admissible if the subset {i ∈ V : xi = 1} of sites where
the active particles reside in state x is an independent set of the graph G. The
set X of admissible states thus corresponds to the collection of independent
sets of G and is the same as in (1.1).

The potential activation epochs of an inactive particle in site i are deter-
mined by a random Poissonian clock that rings at rate νi. These N clocks
are assumed to be independent of each other. If a particle is inactive and its
random clock rings, it activates only if all its neighboring particles on G are
currently inactive. A newly activated particle stays active for a random time,
which we assume to be exponentially distributed with mean 1/µi. In this way,
the global activity of particles on the graph G is described by a continuous-
time Markov process {X(t)}t≥0 with transition rates (1.2), which is ergodic
and reversible with respect to the stationary distribution (1.3).

Denote the number of active particles in state x ∈ X by ‖x‖ := ∑N
i=1 |xi|.

In the case of homogeneous activation and deactivation rates, we denote ν =
νi/µi and the stationary distribution (1.3) can be rewritten as

πν(x) :=
ν‖x‖

Zν(G)
, x ∈ X , (1.6)

where Zν(G) is the appropriate normalizing constant, also called partition func-
tion. The stationary distribution (1.6) is usually called hard-core measure with
activity (or fugacity) ν.

In this thesis, we focus on the high-activity regime where ν → ∞, which is
the mode in which the corresponding random-access network should operate
to achieve a high throughput. Indeed, the hard-core measure (1.6) with a large
activity ν favors states with a maximum number of active particles, to which
we refer as dominant states. In the next subsection we will show how this
regime corresponds to the low-temperature limit for the interacting particle
system described as a Freidlin-Wentzell Markov chain.

1.3.2 Uniformization and Metropolis Markov chains

First hitting times will be one of the central objects of our study of the hard-
core particle dynamics. There exists a large literature devoted to the asymp-
totic behavior of first hitting times for a wide range of models [35, 36, 39, 41,
42, 87, 111, 113], mostly to mathematically study the metastability phenom-
ena they exhibit. It turns out to be convenient to study the hard-core dynam-
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ics in discrete time, by looking at the uniformized version of Markov process
{X(t)}t≥0, since most of this literature uses discrete-time Markov chains.

In this way, after having identified ν = eβ, we obtain a family of Markov
chains {Xβ

t }t∈N on X parametrized by the inverse temperature β > 0 with
transition probabilities

Pβ(x, y) :=

c(x, y)e−β[H(y)−H(x)]+ , if x 6= y,

1−∑z 6=x Pβ(x, z), if x = y,
(1.7)

where H : X → R is the energy function that counts the number of active
particles, i.e.

H(x) := −‖x‖, x ∈ X , (1.8)

and c : X × X → [0, 1] is the connectivity function that allows only single-site
updates

c(x, y) :=


1
N , if ‖x− y‖ = 1,

0, if ‖x− y‖ > 1,

1−∑z 6=x c(x, z), if x = y.

(1.9)

The Markov chain {Xβ
t }t∈N embedded at jump epochs of the original hard-

core particle process is a Freidlin-Wentzell chain with Metropolis transition
probabilities. This is a class of reversible Markov chains with transition proba-
bilities of the form (1.7) uniquely characterized by an energy landscape (X , H, c)
and by a positive parameter β, which represents the inverse temperature. Such
a Markov chain is reversible with respect to the Gibbs measure

πβ(x) :=
e−βH(x)

∑y∈X e−βH(y)
, x ∈ X . (1.10)

In this framework the dominant states are then the global minima of the en-
ergy function (1.8) and they are often called stable states. The spatial structure
of the volume in which the particles interact, encoded in the graph G = (V, E),
plays a crucial role, since it determines the structure and the features of such
an energy landscape (X , H, c).

1.3.3 Hitting times between dominant states

To understand the transient behavior of the hard-core model on a graph G,
we study the first hitting times of the corresponding Metropolis Markov chain
{Xβ

t }t∈N in the low-temperature limit β → ∞. Given a target subset of states
A ⊂ X and an initial state x ∈ X \ A, the first hitting time τx

A of the subset A
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for the Markov chain {Xβ
t }t∈N with initial state x at time t = 0 is defined as

the random variable

τx
A := inf

{
t > 0 : Xβ

t ∈ A, | Xβ
0 = x

}
.

We focus on the asymptotic behavior of the hitting times between dominant
states, which tell us how rigid the dominant states are and how long it takes
for the particle system to “switch” between them. For example, the hard-core
model on rectangular grids has two dominant states, e and o, which corre-
spond to full particle activity on the even chessboard and the odd chessboard
(see Figures 1.1a and 1.1b, respectively). We are interested in the asymptotic
behavior of the hitting time τe

o .
In this thesis, we follow the pathwise approach, which has been used to

study the metastability problem for many finite-volume models in a low-
temperature regime, see [35, 36, 39, 41, 42, 87, 111, 113]. The crucial idea be-
hind this method is to understand which paths the Markov chain most likely
follows in the low-temperature regime. The characterization of these most
likely paths then leads to asymptotic results for hitting times. For Freidlin-
Wentzell Markov chains this can be done by analyzing the energy landscape
to find the paths between the initial and the target states with a minimum
energy barrier. In the case of the hitting time between dominant states of the
hard-core model, this problem reduces to identifying the most efficient way,
starting from a dominant state, to activate particles of the target dominant
state.

Consider first the case of a complete K-partite conflict graph, which is a
graph consisting of K components where particles are prevented from simul-
taneous activity if and only if they belong to different components. If the
spatial structure is described by such a complete partite graph, it is clear that
the dominant states correspond to its largest components and that any trajec-
tory between them needs to pass through the state with no active particles.
Indeed a particle can become active only when all particles in the other com-
ponents are inactive. Hence, in this case the orders of magnitude of the hitting
times are related to the sizes of the largest partitions of the graph. Figure 1.3
illustrates the state space X corresponding to the hard-core model evolving
on the complete bipartite graph K8,8, which has 8 sites in each of the two
components. The leftmost (rightmost) vertex corresponds to the network state

Figure 1.3: State space for the hard-core dynamics on the complete bipartite graph K8,8
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with full activity in the first component (second component). The central ver-
tex corresponds to the network state where there are no active particles and
is clearly a bottleneck for the transition between the two dominant states.

For non-complete partite graphs, such as grid graphs or triangular grid
graphs, the various partitions of the graph still correspond to the dominant
states, but the transitions between them do not necessarily require to visit a
state with no active particles. In fact, there are paths that visit mixed-activity
states, where a layer of inactive particles separate clusters of active particles
belonging to different partitions. Figure 1.4 illustrates the state space X corre-
sponding to the hard-core model evolving on a 4× 4 grid with open boundary
conditions, similar to the one displayed in Figure 1.1. The leftmost state cor-
responds to the dominant state with particles active on the even chessboard,
while the rightmost state corresponds to the state with all active particles on
the odd chessboard. The crucial difference with the complete partite case is
that here the bottleneck is not a single state and is much harder to identify.

Figure 1.4: State space for the hard-core dynamics on the 4× 4 grid graph with open
boundary conditions

Another example of non-complete partite graphs are triangular grid graphs,
which have three dominant states. Figure 1.5 displays these three dominant
states on a 6× 9 triangular grid network. The three dominant states are clearly
distinguishable as the three “corners” of the state space X corresponding to
the hard-core model on the 4× 6 triangular grid graph with periodic bound-
ary conditions displayed in Figure 1.6.
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(a) First dominant state (b) Second dominant state

(c) Third dominant state

Figure 1.5: The three dominant activity states on a 6× 9 triangular grid network

Figure 1.6: State space for the hard-core dynamics on the 4× 6 triangular grid graph
with periodic boundary conditions
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For all these non-complete partite graphs, by exploring detailed geometric
properties of these mixed-activity states, we develop a novel combinatorial
method to quantify their “inefficiency” and obtain in this way the minimum
energy barrier Γ(G) that has to be overcome in the energy landscape (corre-
sponding to the spatial structure encoded by the graph G) for the required
transition to occur. The energy barrier Γ(G) is precisely the quantity that ap-
pears in the asymptotic results for the transition times between dominant
states and, in particular, identifies the timescale eβΓ(G) at which transactions
most likely occur. The energy barrier Γ(G) is a positive number that in many
cases grows with the size of the conflict graph G, which means that the tran-
sition between dominant states becomes very slow in the regime where the
activation rate ν (or equivalently the inverse temperature β) becomes large. As
argued before, the stationary distribution (1.10) concentrates in the dominant
states of G as β → ∞. Hence in this low-temperature regime, for a conflict
graph G with two or more dominant states, the timescale at which the transi-
tions between dominant states occur is intimately related to the order of mag-
nitude of the mixing time of the hard-core dynamics on G. Indeed, the mixing
time of a Markov chain quantifies the time it takes for this stochastic pro-
cess to become “close” to its steady-state distribution. Using structural prop-
erties of the corresponding energy landscapes and classical results [29, 109]
for Friendlin-Wentzell Markov chains, we make this intuition rigorous and
show that the hard-core dynamics exhibit indeed slow mixing on the highly
symmetric conflict graphs considered in this thesis.

1.4 network delay performance

In the previous section we have illustrated how the random-access CSMA
networks presented in Subsection 1.2.2 can be viewed as interacting particle
systems with hard-core interaction. This connection allows us to study the
asymptotic behavior of first hitting times between dominant states using the
convenient framework of Metropolis Markov chains. In particular, we expect
long transition times between dominant states (and thus slow mixing, if there
are more than two dominant states) in the regime where the nodes activate
more aggressively. In this section we take this analysis one step further, study-
ing the impact of such long transition times and slow mixing on temporal
starvation. In this way we show how the average long-run packet delay grows
in high-load scenarios and demonstrate how its order of magnitude depends
on the network structure.

Before illustrating our approach, we briefly review the literature on the per-
formance of CSMA algorithms and the deep connections with other related
areas. Several different models have been introduced in the literature to study
the performance of CSMA-like algorithms; see [141] for a survey. Despite their
asynchronous and distributed nature, these algorithms have been shown to
be throughput-optimal, which means that they offer the capability of achiev-
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ing the full capacity region and thus match the optimal throughput perfor-
mance of centralized scheduling mechanisms operating in slotted time (such
as MaxWeight), see for instance [71, 69, 102]. In addition to this “first-order”
metric, the delay performance of CSMA networks has been studied in the liter-
ature as well. Simulation results indicate that the delay performance of these
algorithms can be rather poor and much worse than for other mechanisms,
such as MaxWeight. This fact has triggered a strong interest in investigating
the causes of such poor delay performance and in developing approaches to
mitigate them, see [58, 68, 89, 90, 103, 115, 127].

This research direction is intimately related with the problem of design-
ing efficient randomized algorithms to sample or approximate combinatorial
quantities on graphs. Indeed, the random-access algorithms described in the
previous sections can also be interpreted as randomized schemes with local
updates to find maximum independent sets, which is an NP-hard problem.
In particular, the hard-core particle dynamics on a finite graph G = (V, E)
described in Subsection 1.3.1 can be used to sample weighted independent
sets, with weight ν|I| for I ∈ I(G). Taking for instance the activity rate
equal to 1, we are sampling uniformly independent sets of G, since the sta-
tionary distribution (1.6) is uniform over I(G). Hence, when one is inter-
ested in finding or sampling maximum independent sets, one could con-
sider a large activity rate ν, which increases their likelihood in view of (1.6).
However, the resulting Markov process can then take a very long time to
converge to stationarity, exhibiting so-called slow/torpid mixing. Several pa-
pers [19, 47, 51, 53, 54, 61, 104, 108, 123] investigate (mostly for Glauber dy-
namics in discrete time) how the mixing times of these processes scale with
the size N of the graph, depending on the type of graph and/or its maximum
vertex degree.

It is natural to expect slow mixing of the hard-core dynamics for a large
activity rate ν, since fast mixing in this regime would imply that the NP-hard
problem of finding maximum independent sets could be solved or approxi-
mated efficiently. By exploiting this relationship between random-access algo-
rithms and independent sets, it has been shown in [129] that low-complexity
schemes (such as CSMA) cannot be expected to achieve low delay in arbitrary
topologies (unless P equals NP).

For CSMA networks lower bounds for the average steady-state delay were
established in [20] using mixing-time results, showing that delays can grow
dramatically with the load of the system. Upper bounds for the average steady-
state delay based on mixing time results for Glauber dynamics were derived
in [72, 68], but they are valid only for sufficiently low loads. Furthermore, it
was shown in [132] that mixing-time based approaches may not be the right
way to capture delay dynamics, even in an asymptotic sense. In [98] it was
shown by using stochastic majorization techniques that CSMA algorithms that
reduce asymptotic variance have better delay performance.

In this thesis we follow a different approach to estimate the average steady-
state delay in the scenario where the whole network is stable, that is when



16 introduction

Figure 1.7: Simulated buffer content evolution over time for a 6× 6 grid network with
homogeneous rates λ = 0.45, ν = 5 and µ = 1

the queue-length process at each node is positive recurrent. In particular, we
investigate how it is related to temporal starvation, which for the graphs we
consider in this thesis is the root cause for the poor delay performance. In-
deed, intuitively (i) high load requires high activation rates, (ii) high activa-
tion rates imply extremely slow transitions between dominant activity states,
and (iii) slow transitions cause starvation and hence excessively long queues
and delays. Therefore, we estimate the average steady-state delay by studying
the asymptotic behavior of transition times between dominant states of the
Markov process {X(t)}t≥0 in high-load scenarios. Figure 1.7 shows the sim-
ulation of the evolution over time of the buffer contents for a homogeneous
network of 36 nodes placed on a 6× 6 grid (with periodic boundary condi-
tions). This simulation corroborates the intuition that the buffer contents of
the odd nodes build up packets while the network is active mostly in the even
nodes and vice versa.

In a high-load scenario the average steady-state queue length is then pro-
portional to the average transition time between the two dominant states of
the grid network. These arguments are valid for other symmetric networks
with two or more dominant states as well, as illustrated by Figure 1.8 in the
case of a triangular grid graph, which has three dominant states.

By making these arguments rigorous, we will derive lower bounds for the
average stationary queue length in terms of the average transition time be-
tween dominant states. By virtue of Little’s law, these also provide lower
bounds for the expected stationary delay. Furthermore, these delay lower
bounds become explicit for many symmetric partite networks of interest, since
we can calculate the asymptotic order of magnitude of the average transition
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Figure 1.8: Simulated buffer contents evolution over time for a 4× 6 triangular grid
network with homogeneous rates λ = 0.3, ν = 15 and µ = 1

times between their dominant states. Suppose that for a given conflict graph G
we can prove, as outlined in Subsection 1.3.3, that the average transition time
between dominant states is of the order eβΓ(G) as β → ∞ (that is the regime
where the activation rate ν grows large). Then such a result for hitting times
can be translated into an asymptotic lower bound for the long-term average
delay EW (waiting time plus service time) at every node. More specifically,
we show that EW scales asymptotically at least as fast as(

1
1− ρ

)Γ(G)

, as ρ ↑ 1. (1.11)

This delay scaling is to be contrasted with the usual linear scaling in 1
1−ρ in

conventional queueing systems at high load. Specifically, in the case of the
complete K-partite graph G on N nodes with all components of the same size
N/K (assuming that N multiple of K) we obtain that

Γ(G) =
N
K

.

Such complete partite graphs are arguably the worst possible networks in
terms of transition times and starvation effects, given the size of the network
and the size of the components. Indeed, the fact that the nodes are grouped
into components, with no interference within components and full interfer-
ence between components, turns out to be a key element for starvation to
occur. This is reflected in the fact that the transition times exhibit exponential
growth in the component size and that the starvation effects are very pro-
nounced.
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Graphs that are partite but not complete have a less extreme tendency for
starvation, although the issue may still arise. The lack of interference between
some nodes in different components results in bottleneck states where some of
the nodes may be active, and increases the likelihood of the bottleneck state
relative to the dominant activity states. This is the case for the grid conflict
graphs analyzed in Chapters 5. The results therein show that the transition
times, while still severe, are of a lower order than for the complete partite
graphs of the same size. More precisely, for a square grid network G with
with N nodes, with conflict graph the

√
N ×

√
N grid (with

√
N an even

integer),

Γ(G) =
√

N or Γ(G) =

√
N

2
,

depending on whether one considers periodic boundary conditions or not,
respectively. In fact, for all the extreme network structures studied in this
thesis the exponent Γ(G) increases with the network size. This observation,
together with (1.11), shows that the average delay can grow dramatically with
the dimension of the network.

In the case of complete partite conflict graphs, the connection between tran-
sition times and starvation is even stronger and yields an asymptotic lower
bound for the probability of starvation and a complementary result which
indicates over what time scales near-saturation of throughput occurs.

1.5 multi-channel csma networks

The CSMA models presented in Subsections 1.2.2 and 1.2.3 describe networks
with nodes that all compete for the same wireless channel. As noted ear-
lier, the total available wireless spectrum could be divided into C orthogo-
nal channels on which nearby nodes can transmit without interfering with
each other. CSMA-like algorithms have been been proposed as efficient dis-
tributed schemes for these multi-channel networks and various models have
been studied in the literature to investigate their performance [6, 91, 101, 120].

1.5.1 Model description and stationary distribution

We consider an extension of the saturated CSMA model where each node
can sense the interference and transmit on any of the C available channels.
We assume that for every c = 1, . . . , C all possible conflicts between nodes
on channel c are described by a conflict graph Gc = (V, Ec). Node i in the
network has a different back-off timer for each of the C available channels
and we model these timers as C independent Poissonian clocks, ticking at
rates νi,1, . . . , νi,C. When the first of these C clocks rings for an inactive node,
it activates on the corresponding channel, say c, if and only if the neighboring
nodes of i in Gc are not active on the same channel. The transmission times of
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node i on channel c are independent and exponentially distributed with mean
1/µi,c.

A network activity state is described by a vector x ∈ {0, 1, . . . , C}N where
xi = 0 if node i is inactive and xi = c if node i is active on channel c with
1 ≤ c ≤ C. Let X be the collection of feasible network activity states, which
consists of all the vectors x ∈ {0, 1, . . . , C}N such that for every c = 1, . . . , N
two neighboring nodes in Gc are not simultaneously active on channel c. The
activity state of the network at time t is described by the vector X(t), where
the i-th entry Xi(t) indicates the activity state of node i. Then {X(t)}t≥0 is a
Markov process on the state space X with transition rates

q(x, y) =


νi,c if y = x + c · ei ∈ X ,

µi,c if y = x− c · ei ∈ X ,

0 otherwise,

(1.12)

where ei ∈ {0, 1}N is the vector with all zeros except for a 1 at position i.
We now argue that the evolution of a network using a multi-channel CSMA

algorithm can be equivalently described as a virtual network operating under
the single-channel CSMA algorithm on a modified conflict graph G∗. Consider
the undirected graph G∗ = (V∗, E∗) with vertex set V∗ := V × {1, . . . , C}
where two vertices (i, c) and (i′, c′) are adjacent if and only ifc 6= c′,

i = i′,
or

c = c′,

(i, i′) ∈ Ec.

To avoid confusion with the original nodes, we refer to the nodes of G∗ as
virtual nodes. The activity state of the virtual network is then represented by
a 0-1 vector of length C · N and we denote by X ∗ ⊂ {0, 1}C·N the set of ad-
missible virtual activity states on G∗. Suppose further that the C · N virtual
nodes operate using the single-channel CSMA algorithm described in Subsec-
tion 1.2.2, assuming that the virtual node (i, c) has back-off periods that are
exponentially distributed with mean 1/νi,c and transmission periods that are
exponentially distributed with mean 1/µi,c.

The interference constraints in the virtual network are such that the col-
lection X ∗ of admissible activity states on the virtual network G∗ is in one-to-
one correspondence with the collection X of admissible multi-channel activity
states on G. Furthermore, the transition rates according to which the virtual
nodes evolve are chosen in such a way that the evolution of the two networks
is identical in law. Hence, we deduce that the multi-channel {X(t)}t≥0 is also
a reversible Markov process and that it has stationary distribution

π(x) = Z−1
N

∏
i=1

C

∏
c=1

(
νi,c

µi,c

)1{xi=c}
, x ∈ X , (1.13)
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where Z is the appropriate normalizing constant. Furthermore, the insensitiv-
ity property carries over to (1.13), which thus holds for general back-off and
transmission time distributions.

We remark that the fact that the multi-channel CSMA dynamics have a
product-form distribution was already shown in [120] in the special case
where the interference is described by the same graph on every channel,
namely E1 = · · · = EC. Our proof approach not only recovers the same result
in this special case, but proves the insensitivity property with respect to the
back-off and transmission time distributions and shows how a multi-channel
CSMA network can be studied as single-channel CSMA network.

1.5.2 Dominant states and performance trade-offs

We now provide some insight as to how the number of channels C affects
the performance in terms of aggregate throughput. While increasing the num-
ber of channels evidently provides greater transmission opportunities, the net
impact on throughout performance is non-obvious since the transmission ca-
pacity per channel is inversely proportional to the number of channels.

Consider a multi-channel CSMA network where the same conflict graph
G = (V, E) describes the interference on all C channels and assume that each
of these channels has capacity 1/C. Assume further that all the nodes have
homogeneous activation and transmission rates, namely

νi,c ≡ ν and µi,c ≡ µ ∀ c = 1, . . . , C, ∀ i = 1, . . . , N. (1.14)

The stationary distribution of the activity process {X(t)}t≥0 then reads

π(x) = Z−1
N

∏
i=1

σ
1{xi 6=0} = Z−1σ∑N

i=1 1{xi 6=0} , x ∈ X . (1.15)

We analyze the aggregate throughput Θ(C) of this network in the asymptotic
regime where the activity factor σ := ν

µ grows large. The aggregate through-
put when there are C available channels is defined as

Θ(C) := lim
σ→∞ ∑

i∈V

1
C ∑

x∈X
π(x)1{xi 6=0},

where π is the stationary distribution (1.15) of the multi-channel activity pro-
cess {X(t)}t≥0 with transition rates (1.14).

As in the single-channel scenario, this random-access network should also
operate with a large activity factor σ to achieve a high throughput. In this
regime, the stationary distribution (1.15) favors the activity states with the
largest number of active nodes, regardless of the channels they are active on.
We refer to such activity states as dominant states also in this multi-channel
context.
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In order to characterize the dominant states of a multi-channel CSMA net-
work, we need some further definitions. A vertex coloring of the graph G is a
labelling of the graph’s vertices with colors such that no two vertices sharing
the same edge have the same color. A (proper) q-coloring is a vertex coloring
using at most q colors, see e.g. [15, 25]. The smallest number of colors needed
to color a graph G is called its chromatic number, and is often denoted as χ(G).
Define d(C) to be the maximum number of active nodes in conflict graph G
when C channels are available, i.e.

d(C) := max
x∈X ∑

i∈V
1{xi 6=0}.

If C = 1, we are back in the single-channel scenario and clearly d(1) = α(G),
where α(G) denotes the independence number of the graph G, that is the cardi-
nality of its maximum independent set. For C ≥ 2, the multi-channel activity
on G is equivalent to the single-channel activity on the virtual network G∗

introduced in Subsection 1.5.1. In the scenario considered in this subsection,
the virtual network G∗ is the Cartesian product of G and the complete graph
on C vertices and, in particular, d(C) is equal to the independence number
α(G∗) of the graph G∗, as proved in [15, Lemma 1].

If the number of available channels in a CSMA network is larger than or
equal to the chromatic number of the corresponding conflict graph, i.e. C ≥
χ(G), then every proper C-coloring of the graph G corresponds to a dominant
state for the network dynamics and, in particular, d(C) = N. If instead C <
χ(G), by definition of the chromatic number, a proper C-coloring of the graph
G does not exist and, in particular, there are no admissible activity states
where all nodes are active. All admissible activity states correspond to partial
C-colorings of the graph G. However, the problem of finding the maximum
number of nodes that can be active simultaneously in a general conflict graph
G with C available channels is non-trivial, since it is at least as hard as finding
the maximum independent sets of G∗. Nonetheless, some conclusions for the
aggregate throughput Θ(C) of a network using C channels can be drawn.

Let us start by noticing that the function d(C)/C is a non-increasing func-
tion of the number of channels C, i.e.

d(C + 1)
C + 1

≤ d(C)
C

, ∀C ≥ 1, (1.16)

and that d(C) = C · α(G) for every C ≤ C∗(G), where C∗(G) represents the
number of disjoint maximum independent sets of the graph G, and d(C) = N
for every C ≥ χ(G).

Inequality (1.16) trivially holds when C ≥ χ(G), since d(C) = N, and the
proof in the case C ≤ χ(G) readily follows by considering a (C + 1)-coloring
that yields d(C + 1), pick the color that is used the least and discolor the
corresponding nodes, which are at most b d(C+1)

C+1 c, obtaining a C-coloring with

d(C + 1)− b d(C+1)
C+1 c ≥ C

C+1 d(C + 1) colored nodes. The second statement can
be easily proved by induction on C.
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Denote by D the collection of the dominant states of the network G. In-
equality (1.16) implies that the aggregate throughput Θ(C) is a non-increasing
function of the number of channels C as well, since the definition of dominant
state and (1.15) yield that ∑x∈D π(x)→ 1 as σ→ ∞, and thus

Θ(C) = lim
σ→∞ ∑

i∈V

1
C ∑

x∈X
π(x)1{xi 6=0} =

1
C

lim
σ→∞ ∑

x∈X
π(x) ∑

i∈V
1{xi 6=0}

=
d(C)

C
lim

σ→∞ ∑
x∈D

π(x) =
d(C)

C
.

Furthermore, Θ(C) is constant and equal to α(G) for C up to C∗(G), where
C∗(G) represents the number of disjoint maximum independent sets of the
graph G, and becomes a strictly decreasing function for C ≥ χ(G), since

Θ(C) =
N
C

, ∀C ≥ χ(G).

From these considerations, it seems that the network should be operated us-
ing a single channel, but this is also the scenario where the temporal starvation
is more pronounced. We expect that by exploiting more channels the temporal
starvation effects can be mitigated, so that the packet delay should also be a
non-increasing function of the number C of available channels. However, mak-
ing this dependence more explicit is a challenging task, since the structure of
the conflict graph also plays a crucial role. Indeed, in some conflict graphs the
packet delay is already O(1) for just a single channel, e.g. complete graphs,
while in others it only becomes O(1) when the number of channels matches
the chromatic number, e.g. complete K-partite graphs. Thus, in general, a non-
trivial trade-off emerges between aggregate throughput and packet delay that
the network can achieve and a balance can be found using a number of chan-
nels in the range between 1 and χ(G).

The focus on this thesis is on single-channel scenarios, but our framework
can be applied for the analysis of transition times in multi-channel networks
in view of the equivalence described in Subsection 1.5.1. Furthermore, multi-
channel networks can in some cases be described directly as interacting par-
ticle systems with two or more types of particles subject to repelling forces,
as we will show in Chapter 7. However, a comprehensive translation of the
results for packet delay in this multi-channel scenario is beyond the scope of
this thesis.

In practical deployments, the number of channels C is normally given, and
channel bonding may then be an interesting strategy to improve the network
performance (e.g. if C lies outside the indicated range). The key idea behind
this mechanism is that more channels can be aggregated to obtain wider chan-
nels. We show in [10] that a modified version of the single-channel CSMA
model described in Subsection 1.2.2 provides a good theoretical framework
for this different random-access algorithm and we investigate numerically this
non-intuitive trade-off between using wider channels to increase the through-
put and higher chance of interference.
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1.6 final considerations and open problems

In this thesis we build a versatile framework to investigate delay performance
of random-access networks, which combines techniques and concepts from
applied probability and statistical physics. More specifically, we describe con-
flicting transmissions in a random-access network as an interacting particle
system with hard-core constraints and investigate temporal starvation phe-
nomena by analyzing hitting times of suitable Markov chains.

It has been observed in many simulations that CSMA algorithms can induce
severe temporal starvation effects [74, 91] and long packet delays [59, 66, 89,
90, 103]. In this thesis we derive analytical results for average packet delay
performance and, in particular, show how its asymptotic order of magnitude
depends on the network structure and size in high-load scenarios, as briefly
illustrated in Section 1.4.

In the model under consideration potentially conflicting transmissions are
modeled by means of a conflict graph, which is a common paradigm in the
literature, see e.g. [18, 55, 68, 67, 70, 103, 121], and has in particular been used
and validated for estimation of stationary throughputs [100]. Various methods
have been proposed to construct conflict graphs that represent interference
constraints more accurately and effectively, see e.g. [63, 143].

In this work we choose to focus on networks with a symmetric structure, in
order to remove all disparities between nodes, which in particular will then
have the same long-term stationary throughput. This choice allows us to in-
vestigate solely transient starvation effects and, at the same time, obtain more
explicit analytical results. We expect our results to extend to more general
topologies as well, but heterogeneity makes temporal starvation effects more
case-specific and thus harder to treat mathematically in full generality.

Several solutions have been proposed in the literature to mitigate temporal
starvation effects, for instance introducing a periodical reset of all ongoing
transmissions, as proposed by [103], but the practical implementation is not
straightforward. Another possible solution could be the usage of multiple
frequencies in [91], as briefly illustrated in Section 1.5 and future work could
investigate delay performance and possibly extend our results in this multi-
channel scenario.

Our analytical results for hitting times and average delay are asymptotic
in nature, either when the normalized load approaches unity or the activa-
tion rate grows large. There is numerical evidence that long starvation pe-
riods occur already for relatively small values of these parameters, see for
instance Figures 1.7 and 1.8. It would be interesting to characterize how large
the system parameters should be so that the network performance can be
well-approximated by means of our asymptotic results. Another intriguing
yet challenging research direction would be investigate whether our results
for transition times and delays extend when the durations of back-off and
transmission periods have non-exponential distributions or when the dummy
packet assumption is dropped (see Subsection 1.2.3).



24 introduction

From a methodological standpoint, we expect that the framework we de-
veloped to analyze hitting times can be extended to more general probability
kernels than the Metropolis one, see (1.7), and possibly to irreversible Markov
chains, similarly to what has been done in the context of metastability in [38].
Such a more general framework would be very helpful for instance to study
the behavior of CSMA protocol using dynamic channel bonding, which can
be modeled by means of irreversible Markov chains [48].

To complete the study of the hard-core model on grid and triangular grid
graphs from a statistical physics standpoint, the next step would be to un-
derstand the geometric features of the critical configurations visited along
the transition between dominant states and describe the tube of typical paths.
Lastly, the ideas behind our combinatorial approach can probably be adopted
to understand transition times between maximum activity states on other
graphs with symmetric structures, e.g. hexagonal or Kagome lattices.

1.7 outline of the thesis

This thesis is organized as follows. We examine the impact of slow transi-
tions between dominant states on the delay performance in random-access
networks in Chapter 2. Focusing on highly symmetric networks, among which
regular meshes like grid and triangular grid graphs, we show how delays in
symmetric partite graphs are intimately connected with the transition times
between dominant states in a high-load scenario. In particular, we prove an
asymptotic lower bound for the average steady-state delay for such networks.
Chapter 2 expands the ideas first published in [149].

In Chapter 3 we study hitting times and mixing properties of dense random-
access networks, which we model by complete partite graphs, focusing on
the regime where the heterogeneous activity rates become large. In particu-
lar, we derive asymptotic results for the transition time between any pair of
network activity states, both in expectation and in distribution (after scaling),
and show how they depend on the activity rates and network structure. In
the special case of homogeneous activity rates, we show that there are only
two possible asymptotic distributions for such scaled transition times, one of
them being the exponential distribution, and derive the asymptotic order of
magnitude of the mixing time. Lastly, we identify the time scales at which full
throughput starvation and near-saturation occur for each of the components
of the network. Chapter 3 is based on [147, 148].

In Chapter 4 we introduce the framework of Metropolis Markov chains, in
which the uniformized version of the saturated CSMA model can be put. We
extend the model-independent framework in [106] for first hitting times τx

A to
allow for a more general initial state x and target subset A. More specifically,
we show how to derive asymptotic bounds in probability for such hitting
times by analyzing the most likely paths that the process follows in the low-
temperature regime. Furthermore, we give a sufficient condition that guaran-
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tees that the scaled hitting times are exponentially distributed. The content of
this chapter is based on Sections 3 and 4 of [112].

In Chapter 5 we apply these model-independent results to the hard-core
model on rectangular grid graphs to understand the asymptotic behavior of
the transition time between the two dominant states, where the active particles
are arranged in a checkerboard fashion on even and odd sites, respectively.
Using a novel combinatorial method, we identify the minimum energy barrier
between these two dominant states and obtain in this way sharp bounds in
probability for such a transition time and find its order of magnitude on a
logarithmic scale. In addition, our analysis of the energy landscape shows that
the scaled transition time is exponentially distributed in the low-temperature
regime and yields the order of magnitude of the mixing time of the Markov
chain. Chapter 5 is based on [112].

In Chapter 6 we turn to the hard-core model on triangular grid graphs,
which has three dominant states. By identifying the minimum energy barrier
between any pair of dominant states and by proving the absence of deep
cycles in the corresponding energy landscape, we derive several results for the
transition times between them in the low-temperature regime. The content of
this chapter is based on [145].

Lastly, in Chapter 7 we study the Widom-Rowlison model with two types
of particles, which we show to be the discrete-time counterpart of a multi-
channel CSMA network when there are two available channels and the con-
flict graph is bipartite. This interacting particle system can also be put in the
framework of Metropolis Markov chain presented in Chapter 4. Focusing on
grid graphs, we study the asymptotic behavior of the transition time between
its two dominant states in the low-temperature regime. In the analysis of the
corresponding energy landscape, we exploit a combinatorial method similar
to that developed in Chapter 5 for the hard-core model, to which the Widom-
Rowlison model is intimately related. This chapter is based on [146].
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In this chapter we investigate the interplay between temporal starvation and
delays in networks operating under the single-channel CSMA algorithm de-
scribed in Section 1.2. In particular, we derive lower bounds for the long-
term average delay in random-access networks. Our proof approach revolves
around three simple observations:

(i) high load requires high activity factors for stability;

(ii) high activity factors cause slow transitions between dominant activity
states;

(iii) slow transitions between dominant states imply long starvation periods,
and hence large queue-lengths and delays.

In Section 2.1 we first review the model, first introduced in Subsection 1.2.3,
and explain in detail how the buffer dynamics depend on the underlying ac-
tivity process. Our analysis focuses on a specific class of highly symmetric
networks for which explicit results can be obtained. The features of the cor-
responding conflict graphs are presented in Section 2.2 together with some
relevant examples. In Section 2.3 we derive some key properties for transition
times between the dominant states for these networks, while the network sta-
bility conditions are established in Section 2.4. In Section 2.5 we derive lower
bounds for the average stationary delay in terms of the expected transition
times between dominant states, which we make explicit in Section 2.6 for
some specific networks of interest.

2.1 unsaturated csma model dynamics

In this section we revisit the unsaturated CSMA model described in Subsec-
tion 1.2.3 and introduce some further assumptions.

The network structure is described in terms of an undirected graph G =
(V, E) of N nodes, where the set of edges E ⊂ V × V indicates which pairs
of nodes are prevented from simultaneous activity. We denote by X the set of
admissible network states on G, as defined in (1.1).

Packets arrive at node i according to a Poisson process of rate λi, inde-
pendently of the other nodes and of the state of the network. Upon arrival
packets are stored in a buffer at the corresponding node until they eventually
get transmitted. The nodes share the medium in a decentralized fashion ac-
cording to a CSMA algorithm, similar to that described in Subsections 1.2.2
and 1.2.3. More specifically, we assume that, when inactive and unblocked,

27
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node i may start transmitting at the instants of a Poisson process of inten-
sity νi and that the packet transmission times at node i are independent of
each other and of the arrival process, and are exponentially distributed with
mean 1/µi. The only difference with the model presented earlier is that nodes
do not necessarily release the wireless medium when they complete a packet
transmission. Indeed, we assume that node i either releases the medium and
starts a back-off period with probability pi before the next packet transmission,
or immediately starts the next packet transmission otherwise. The dynamics
described in Subsection 1.2.2 correspond to the case pi = 1 for i = 1, . . . , N.

Recall that X(t) ∈ X represents the joint activity state of the network at
time t, with Xi(t) indicating whether node i is active at time t or not, and
{Q(t)}t≥0 is the joint queue-length process, with Qi(t) the number of packets
waiting at node i at time t (excluding the packet that may be in the process
of being transmitted). Under the CSMA algorithm described above, the pro-
cess {(X(t), Q(t))}t≥0 evolves as a continuous-time Markov process with state
space X ×NN . Transitions due to arrivals from a state (X, Q) to (X, Q + ei)
occur at rate λi, transitions due to activations from a state (X, Q) with Xi = 0
and Xj = 0 for all neighbors j of node i to (X + ei, Q − ei1{Qi>0}) occur at
rate νi, transitions due to transmission completions followed by a back-off pe-
riod from a state (X, Q) with Xi = 1 to (X − ei, Q) occur at rate piµi, and
transitions due to transmission completions immediately followed by another
transmission (without an intermediate back-off period) from a state (X, Q)
with Xi = 1 to (X, Q− ei1{Qi>0}) occur at rate (1− pi)µi.

Even with possible back-to-back transmissions, the activity process remains
a reversible Markov process with product-form stationary distribution given
by (1.3), where the factors νi/µi, i = 1, . . . , N, should be replaced with

σi :=
νi

piµi
, i = 1, . . . , N. (2.1)

In the rest of the chapter we will refer to σi as the activity factor of node i.

Remark. We have implicitly assumed that a node can be active even when it
has no packets waiting for transmission. In that case a node transmits dummy
packets. The transmission of a dummy packet is stopped upon arrival of a
new packet at that node, whose transmission is then started immediately. It
would be interesting to extend the analysis to the case where nodes with
empty buffers refrain from transmission activity, but this is challenging since
the behavior of the activity process then does depend on the queue-length
process, as discussed in Subsection 1.2.3.

2.2 symmetric partite networks

As alluded to in Chapter 1, transition times, and thus starvation effects and
delay asymptotics, strongly depend on the specific structure of the underly-
ing conflict graph. In order to allow for a systematic treatment of a family
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of graphs, in this thesis we therefore focus on symmetric scenarios. In this
section we specify our assumptions for the conflict graphs and present a few
important examples that are analyzed in the subsequent chapters. We remark
that slow transitions and excessive delays are not a peculiarity of these highly
symmetric networks and may very well occur in asymmetric topologies as
well.

To obtain more transparent results, we henceforth assume homogeneous ar-
rival, transmission and activation rates, as well as equal back-off probabilities
at all nodes:

λi ≡ λ, µi ≡ µ, νi ≡ ν, pi ≡ p, i = 1, . . . , N.

All nodes have then the same activity factor σi ≡ σ, and the stationary distri-
bution (1.10) of the activity process {X(t)}t≥0 simplifies to

π(x) = Z−1σ‖x‖, x ∈ X , (2.2)

where Z := ∑y∈X σ‖y‖ is the normalizing constant. As (2.2) shows, when σ >
1, the stationary probability of a network state x ∈ X increases exponentially
with its cardinality ‖x‖.

We first give some definitions and recall several notions from graph theory.
Recall that the set X of admissible network states on the conflict graph G is
in one-to-one correspondence with the collection of independent sets of G. In
particular, the dominant states of the conflict graph G, which we define as the
admissible activity states with the largest number of active nodes, correspond
to the maximum independent sets of G. Let D = D(G) be the collection of all
dominant states of the conflict graph G, i.e.

D := {x ∈ X : ‖x‖ = max
y∈X
‖y‖}. (2.3)

An automorphism of a graph G = (V, E) is a permutation ξ of its vertex set V,
such that for all i, j ∈ V

(i, j) ∈ E⇐⇒ (ξ(i), ξ(j)) ∈ E. (2.4)

It is immediate from the definition that, given an automorphism ξ of a graph
G, a subset I ⊂ V of nodes is an independent set of G if and only if the subset
ξ(I) = {ξ(i) : i ∈ I} ⊂ V is. In particular, any automorphism of the graph
G induces a permutation on the collection of its maximum independent sets
(and thus on the collection of the dominant states of G).

We call a network represented by a conflict graph G = (V, E) symmetric
K-partite if:

(P1) G is K-partite: its nodes can be partitioned into K disjoint independent
sets V1, . . . , VK;

(P2) For any k, k′ ∈ {1, . . . , K}, k 6= k′, there exists an automorphism ξ of the
graph G such that ξ(Vk) = Vk′ and ξ(Vk′) = Vk, while ξ(Vl) = Vl for
every l 6= k, k′;
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(P3) The subsets V1, . . . , VK are the only maximum independent sets of G.

In the rest of the chapter, we will tacitly assume that K ≥ 2. The case K = 1
is not interesting, since in view of property (P1) the network G would consist
of N isolated nodes. Furthermore, we can always assume that the graph G is
connected, since otherwise the connected components of the network can be
analyzed separately: Indeed, in this case the evolution of the activity process
on each of them would be independent.

For every k = 1, . . . , K, denote by x(k) ∈ {0, 1}N the vector describing the
network state with full activity in component Vk and no activity elsewhere,
i.e.

x(k)i :=

1 if i ∈ Vk,

0 otherwise.

For every subset I ⊂ V of nodes, denote by |I| its cardinality. Thanks to
property (P1), x(1), . . . , x(K) are all admissible states and clearly ‖x(k)‖ = |Vk|.
Property (P2) yields that |Vi| = |Vj| for any i, j ∈ {1, . . . , K} and therefore
|Vj| = N/K for every j = 1, . . . , K, which means that

‖x(1)‖ = · · · = ‖x(K)‖ = N
K

.

In particular, note that in a symmetric K-partite network the total number
N of nodes must be a multiple of K. Property (P3) implies that x(1), . . . , x(K)

are the only dominant states for a symmetric K-partite network G. In the
regime where σ grows large, the stationary distribution (2.2) concentrates in
the dominant states of the network G. In particular,

∑
x∈D

π(x) ↑ 1, as σ→ ∞,

and for every dominant state x ∈ D we have

π(x) ↑ 1
|D| =

1
K

, as σ→ ∞. (2.5)

Recall that θi has been defined in (1.4) as the throughput of node i, i.e. θi :=
∑x∈X xiπ(x). In a symmetric K-partite network each node is active in exactly
one dominant state and inactive in all the other K− 1 dominant states, thanks
to properties (P1) and (P3). This means that as σ → ∞ all nodes have asymp-
totically the same throughput by virtue of (2.5), since for every i = 1, . . . , N

θi ↑
1
|D| =

1
K

, as σ→ ∞.

In view of these observations, it is natural to define the normalized load
as ρ := Kλ/µ and to assume ρ < 1, since otherwise all the queues will be
unstable. The latter condition is not only necessary for stability, but in fact also
sufficient for the queue-length process at all nodes to be positive recurrent for
large enough values of σ, as we will prove in Section 2.4.
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Remark. In this chapter we focus exclusively on CSMA networks with a single
transmitting channel available. However, consider for a moment the multi-
channel CSMA model described in Section 1.5 and the notation introduced
therein. If the interference constraints are described by the same symmetric K-
partite graph G on all the available C channels, then we can calculate explicitly
the maximum number d(C) of active nodes when C channels are available as

d(C) =

NC
K if C < K,

N if C ≥ K.

and in this way obtain that the aggregate throughput Θ(C) in the limit σ→ ∞
of the corresponding network is

Θ(C) =

N
K if C < K,
N
C if C ≥ K.

These results follows immediately from the considerations made in Section 1.5
and from the fact that if G is a symmetric K-partite graph, then α(G) = N

K and
C∗(G) = K = χ(G).

We now present a few key examples of symmetric partite networks.

Turán graphs

The first example of a symmetric partite network is the Turán graph T(KL, K),
with K, L ∈ N and K ≥ 2, which is a complete K-partite graph G = (V, E)
with KL nodes whose components V1, . . . , Vk have all equal size L. More specif-
ically, the vertex set of T(KL, K) is V = {1, . . . , KL} and component Vj is de-
fined as Vj = {v ∈ V : dv/Le = j}. The fact that T(KL, K) is a complete
partite graph means that there is an edge between two nodes if and only
if they belong to different components, i.e. the edge set is E = {(v, w) ∈
V × V : dv/Le 6= dw/Le}. Two examples of Turán graphs are displayed in
Figures 2.1a and 2.1b, where the different components are visualized using
different colors. Properties (P1)-(P3) are trivially satisfied by T(KL, K), and
therefore the activity process {X(t)}t≥0 on T(KL, K) has K dominant states.
Figures 2.1c and 2.1d display the two state space diagrams corresponding
to the conflict graphs in Figures 2.1a and 2.1b, respectively. The more active
nodes an activity state has, the lighter green is used to color the correspond-
ing vertex in the state space diagram. It is then clear that the outermost nodes
in Figure 2.1c (respectively Figure 2.1d) correspond to the 3 (respectively 2)
dominant states of the conflict graph T(21, 3) (respectively T(16, 2)). In Sec-
tion 2.3 we will argue that any automorphism of the conflict graph induces
an automorphism on the corresponding state space X . Such induced symme-
tries of the state space are particularly evident in the case of Turán conflict
graphs, as illustrated in Figures 2.1c and 2.1d.
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(a) The Turán graph T(21, 3) (b) The Turán graph T(16, 2)

(c) The state space X corresponding to the conflict graph T(21, 3)

(d) The state space X corresponding to the conflict graph T(21, 3)

Figure 2.1: The examples of Turán graphs and and the corresponding state space dia-
grams
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Grid graphs

The second example of symmetric partite networks are grid graphs, i.e. finite
two-dimensional rectangular square lattices. More precisely, given two inte-
gers K, L ≥ 2, we consider the K× L grid graph Λ = ΛK,L with three possible
boundary conditions: Toroidal (periodic), cylindrical (semiperiodic) and open.
We denote them by ΛT

K,L, ΛC
K,L and ΛO

K,L, respectively. Figure 2.2 shows ex-
amples of the three possible types of boundary conditions. The vertex set of
such grid graphs is {0, . . . , L− 1} × {0, . . . , K− 1} and thus there are N = KL
nodes in total. Every node v ∈ Λ is characterized by its coordinates (v1, v2)
and is called even (odd) if the sum of its two coordinates is even (odd).

(a) Open grid ΛO
9,7 (b) Cylindrical grid ΛC

6,8

(c) Toric grid ΛT
6,12

Figure 2.2: Examples of grid graphs
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We denote by Ve and Vo the collection of even nodes and that of odd nodes
of Λ, respectively. In order for these grid graphs to be symmetric partite net-
works, we need some further assumptions. The open grid ΛO

K,L satisfies prop-
erty (P1), since it is a bipartite graph (all the neighbors in ΛO

K,L of an even
node are odd nodes and vice versa). We assume further that the product KL
is even, since otherwise the two components Ve and Vo would have differ-
ent sizes (respectively dKL/2e and bKL/2c) and an automorphism mapping
Ve into Vo cannot exist; see property (P2). If KL ≡ 0 (mod 2), then such an
automorphism exists, for instance the axial symmetry along the (vertical or
horizontal) line that splits the nodes in half, as shown in Figure 2.3.

Figure 2.3: The automorphism ξ of the open grid ΛO
6,7 induced by axial symmetry

along the dashed line

In contrast, the cylindrical and toric grids may not be bipartite. In order for
them to satisfy property (P1), we further assume that K is an even integer for
the cylindrical grid ΛC

K,L and that both K and L are even integers for the toric
grid ΛT

K,L. Under these additional assumptions, both these grid types satisfy
property (P2) as well, since also for them we can define an automorphism
ξ that maps Ve into Vo and vice versa (using an axial symmetry as before).
Figure 2.4 illustrates the case of the 6× 8 toric grid ΛT

6,8.

Figure 2.4: The automorphism ξ of the toric grid ΛT
6,8 induced by axial symmetry along

the dashed line
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For all three types of boundary conditions, we will prove in Chapter 5 that
Ve and Vo are the only two maximum independent sets of ΛO

K,L provided that
KL ≡ 0 (mod 2) and thus they all satisfy property (P3). Any automorphism
ξ of a grid graph ΛK,L induces an automorphism ξ of the corresponding state
space X , see Section 2.3 for further details. Figure 2.5 below displays the state
space X corresponding to the conflict graph ΛT

4,4. The axial symmetry of ΛT
4,4

(analogous to that presented in Figure 2.4) induces an automorphism of this
state space diagram, which is clearly visible as left-right symmetry.

Figure 2.5: The state space diagram X corresponding to the activity process on the
4× 4 grid graph ΛT

4,4

Triangular grid graphs

The last example of a symmetric partite network is a finite rectangular region
(with periodic boundary conditions) of the triangular lattice. More precisely,
given two integers K ≥ 2 and L ≥ 1, we consider the triangular grid graph
TK,L = (V, E) which consists of N = |V| = 6KL nodes of the triangular lat-
tice, which are placed on 2K rows of 3L nodes each (or equivalently on 6L
columns with K nodes each), see Figure 2.6. The graph TK,L = (V, E) satisfies

2K

3L

Figure 2.6: The triangular grid graph T3,3
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property (P1), since it has a natural tri-partition V = Va ∪ Vb ∪ Vc, illustrated
in Figure 2.6 by coloring the three components respectively in black, white,
and gray. The vertical and horizontal dimensions of the triangular grid graph
TK,L are chosen in such a way that the three components have the cardinality,
which is required for property (P2) to hold. By considering the axial symme-
tries along vertical lines, we can easily construct automorphisms that swap
two components while mapping the third one to itself. For instance, the axial
symmetry displayed in Figure 2.3 maps component Va (“the gray nodes”) into
component Vb (“the black nodes”), while the nodes in Vc (“the white nodes”)
are only permuted. Also in this case, the automorphisms induced by axial
symmetries of the triangular grid graph T3,3 on its state space X are clearly
visible in the state space diagram in Figure 1.6, which has axial symmetries
as well. Finally, we prove that triangular grid graphs satisfy property (P3) in
Chapter 6 by showing that that Va, Vb and Vc are the only three maximum
independent sets of these graphs.

Figure 2.7: The automorphism ξ of the triangular grid graph T3,3 induced by axial
symmetry along the dashed line
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2.3 transition times between dominant states

Given a symmetric partite conflict graph G, it is intuitive that the correspond-
ing state space X on which the activity process {X(t)}t≥0 evolves is highly
symmetric. In this section, we illustrate the consequences of properties (P1)-
(P3) for the structure of X and leverage this symmetry to derive results for
the transition times between its dominant states, see Proposition 2.3.1 and
Corollary 2.3.2. Furthermore, as already illustrated by (2.5), the stationary dis-
tribution of the activity process concentrates in the dominant states as σ→ ∞.
Proposition 2.3.3 complements this fact, by showing that the activity process
started in a dominant state spends most of its time there until another domi-
nant state is hit.

For compactness we henceforth we suppress from our notation the depen-
dence on the activity factor σ of all the random variables.

The first result exploits the automorphisms of the conflict graph G, whose
existence is guaranteed by property (P2), to construct a coupling between
different copies of the activity process and prove in this way properties of the
activity process and the first hitting times Tx

D\{x} with x ∈ D.

Proposition 2.3.1 (Transition time properties). Let {X(t)}t≥0 be the activity pro-
cess on a symmetric K-partite network G. Then at stationarity, for every dominant
state x ∈ D and every activity factor σ,

(i) The random variable X(Tx
D\{x}) has a uniform distribution over D \ {x};

(ii) The random variable Tx
D\{x} does not depend on x;

(iii) The random variables Tx
D\{x} and X(Tx

D\{x}) are independent.

Proof. Consider four dominant states x, y, v, w ∈ D such that x 6= v and
y 6= w, and the four corresponding components Vx, Vy, Vv and Vw. Since G
is a symmetric K-partite conflict graph, by property (P2) there exist two auto-
morphisms ξ1 and ξ2 of the graph G such that:

• ξ1(Vx) = Vy, while all the other components are mapped to themselves
(in particular ξ1(Vv) = Vv and ξ1(Vw) = Vw);

• ξ2(Vv) = Vw, while all the other components are mapped to themselves
(in particular ξ2(Vx) = Vx and ξ2(Vy) = Vy).

In particular, ξ1 maps the active nodes of x into those of y, and ξ2 maps the
active nodes of v into those of w. Note that since we did not assume that x 6= y
and v 6= w, we may have to consider the trivial automorphism in place of ξ1 or
ξ2. Consider the composition ξ = ξ1 ◦ ξ2 of these two automorphisms (which
is an automorphism itself). Such an automorphism ξ induces a permutation ξ
of the corresponding set X of admissible states on G, defined as

ξ(z) = (zξ(1), . . . , zξ(N)), z ∈ X .
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In fact, ξ is an automorphism of the state space diagram, seen as a graph with
vertex set X and such that any pair of admissible states z, z′ ∈ X is connected
by an edge if and only if ‖z− z′‖ ≤ 1. By construction, the automorphism ξ
maps x to y and v to w simultaneously, i.e.

ξ(x) = y, ξ(D \ {x}) = D \ {y}, and ξ(v) = w. (2.6)

Assume the activity process {X(t)}t≥0 on the conflict graph G to start in the
dominant state x at time 0. Let {Y(t)}t≥0 be the process that mimics the moves
of the process X(t) via the automorphism ξ, i.e. set

Y(t) := ξ(X(t)), ∀ t ≥ 0.

For any pair of admissible activity states z, z′ ∈ X , any transition of the pro-
cess Y(t) from u = ξ(z) to u′ = ξ(z′) is feasible and occurs at the same
rate as the transition from z to z′, since ξ is an automorphism. Therefore,
the processes {X(t)}t≥0 and {Y(t)}t≥0 are two copies of the activity process
on the conflict graph G living in the same probability space, and we have
then defined in this way a coupling between them. In view of (2.6), this cou-
pling immediately implies that the activity process {X(t)}t≥0 started at x hits
a dominant state in D \ {x} precisely when the activity process {Y(t)}t≥0
started at y = ξ(x) hits a dominant state in D \ {y}. We claim that for every
x, y, v, w ∈ D such that x 6= v and y 6= w, we get

P
(

X(Tx
D\{x}) = v, Tx

D\{x} ≤ t
)
= P

(
Y(Ty

D\{y}) = w, Ty
D\{y} ≤ t

)
. (2.7)

Indeed,

P
(

X(Tx
D\{x}) = v, Tx

D\{x} ≤ t
)
= P

(
ξ(X(Tx

D\{x})) = ξ(v), Tξ(x)
ξ(D\{x}) ≤ t

)
= P

(
Y(Ty

D\{y}) = w, Ty
D\{y} ≤ t

)
.

Taking x = y and the limit t → ∞ in (2.7), we obtain that for every v, w ∈
D \ {x}

P
(

X(Tx
D\{x}) = v

)
= P

(
Y(Tx

D\{x}) = w
)

.

Using the fact that {X(t)}t≥0 and {Y(t)}t≥0 have the same statistical law, be-
ing two copies of the activity process, it then follows that the random variable
X(Tx

D\{x}) has a uniform distribution over D \ {x}, that is property (i). In
particular,

P
(

X(Tx
D\{x}) = y

)
=

1
|D \ {x}| =

1
K− 1

. (2.8)

By summing over v ∈ D \ {x} in (2.7), we have that for every w ∈ D \ {y}
and every t ≥ 0

P
(

Tx
D\{x} ≤ t

)
= (K− 1) ·P

(
X(Ty

D\{y}) = w, Ty
D\{y} ≤ t

)
. (2.9)
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By summing over w ∈ D \ {y} in (2.9), we obtain that for every t ≥ 0

P
(

Tx
D\{x} ≤ t

)
= P

(
Ty
D\{y} ≤ t

)
, (2.10)

proving property (ii). Substituting (2.10) into identity (2.9) and using (2.8), we
deduce that every y, w ∈ D with y 6= w and for every t ≥ 0,

P
(

Y(Ty
D\{y}) = w, Ty

D\{y} ≤ t
)
= P

(
Y(Ty

D\{y}) = w
)

P
(

Ty
D\{y} ≤ t

)
,

that is property (iii).

Proposition 2.3.1 can be used to obtain the following stochastic representa-
tion for the transition time Tx

y between two dominant states x, y ∈ D:

Corollary 2.3.2 (Stochastic representation of the transition time Tx
y ). For x, y ∈

D, x 6= y :

Tx
y

d
=

ND
∑
i=1

T(i), (2.11)

where {T(i)}i∈N is a sequence of i.i.d. random variables distributed as Tx
D\{x} and

ND is an independent geometric random variable with success probability 1/(K− 1),

P(ND = m) =

(
K− 2
K− 1

)m−1 1
K− 1

, m ≥ 1.

In particular,

ETx
y = (K− 1) ·ETx

D\{x}. (2.12)

Furthermore, if additionally there exists a non-negative random variable Y such that
that

Tx
D\{x}

ETx
D\{x}

d−→ Y, as σ→ ∞,

then

Tx
y

ETx
y

d−→ 1
END

ND
∑
i=1

Y(i), as σ→ ∞, (2.13)

where {Y(i)}i∈N is a sequence of i.i.d. random variables distributed as Y.

Proof. Let ND be the random variable counting the number of non-consecutive
visits of the activity process to dominant states until the dominant state y is
hit. In view of Proposition 2.3.1(i), the random variable ND is geometrically
distributed with success probability 1

K−1 , i.e.

P(ND = m) =

(
K− 2
K− 1

)m−1 1
K− 1

, m = 1, 2, . . . .
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Therefore ND depends only on the number of dominant states and, in partic-
ular, it does not depend on the activity factor σ. The amount of time Tx

D\{x}
it takes for the activity process started in a dominant state x to hit a different
dominant state in D \ {x} does not depend on the starting dominant state,
by virtue of Proposition 2.3.1(ii). In view of these considerations and using
the independence property in Proposition 2.3.1(iii), we deduce (2.11). Iden-
tity (2.12) then immediately follows from Wald’s identity, since both ND and
Tx
D\{x} have finite expectation.
Lastly, we turn to the proof of the limit in distribution (2.13). Denoting by
LA(s) = E(e−sA), with s ≥ 0, the Laplace transform of a random variable A,
the stochastic representation (2.11) yields

LTx
y = GND

(
LTx
D\{x}

(s)
)

,

where GND (·) is the probability generating function of the random variable
ND , i.e. GND (z) = E(zND ) for every z ∈ [0, 1]. By assumption we have that for
any x ∈ D,

LTx
D\{x}/ETx

D\{x}
(s)→ LY(s), as σ→ ∞.

Using the fact that ETx
y = ETx

D\{x}END and (2.12) we obtain

LTx
y /ETx

y = GND

(
LTx
D\{x}/ETx

D\{x}
(s/END)

)
σ→∞−→ GND (LY(s/END)) ,

and the continuity theorem for Laplace transforms yields the conclusion.

For any subset of states A ⊆ X , let OA(t) denote the occupation time up to
time t of the subset A, which is the stochastic process counting the amount of
time that the activity process spends in the subset A in the time interval [0, t],

OA(t) :=
∫ t

s=0
1{X(s)∈A} ds, (2.14)

and let UA(t) denote the stochastic process counting the amount of time that
the activity process does not spend in the subset A in the time interval [0, t],

UA(t) := t−OA(t) =
∫ t

s=0
1{X(s) 6∈A} ds. (2.15)

Note that the processes {OA(t)}t≥0 and {UA(t)}t≥0 both depend on the ac-
tivity factor σ, since the activity process does, but we suppress the explicit
dependence for compactness.

Assume that the activity process starts at time 0 in the dominant state x ∈ D.
The next result illustrates the intuitive fact that in the limit σ→ ∞ the activity
process started in a state x ∈ D \ {y} at time 0 spends most of its time in
dominant states in D \ {y} before hitting the dominant state y.
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Proposition 2.3.3 (Average time spent in dominant states). Let G be a symmetric
K-partite network. Then, for every pair of dominant states x, y ∈ D with x 6= y, the
activity process on G started in x at time 0 satisfies

EUD\{y}(Tx
y )

ETx
y

↓ 0, as σ→ ∞, (2.16)

and

EOx(Tx
D\{x})

ETx
D\{x}

↑ 1, as σ→ ∞. (2.17)

Proof. First notice that the quantity EUD\{y}(Tx
y ) is finite as long as ETx

y is,
since

EUD\{y}(T
x
y ) = E

∫ Tx
y

s=0
1{X(s) 6∈D\{y}} ds ≤ E

∫ Tx
y

s=0
ds = ETx

y .

Note that OD\{y}(Tx
y )

d
=Ox(Tx

y ) + OD\{x,y}(Tx
y ) and thus

UD\{y}(T
x
y )

d
= Tx

y − (OD\{x,y}(T
x
y ) + Ox(Tx

y )),

and

EUD\{y}(Tx
y )

ETx
y

= 1−
EOD\{x,y}(Tx

y )

ETx
y

−
EOx(Tx

y )

ETx
y

. (2.18)

Consider the random time T∗ at which the activity process started in x at
time 0 returns to state x after having visited state y. The random time T∗ is a
regeneration point for the activity process and T∗ d

= Tx
y + Ty

x . Since Tx
y

d
= Ty

x by
virtue of Corollary 2.3.2, we derive

ET∗ = 2ETx
y . (2.19)

The renewal-reward theorem (see for instance [130]) yields

EOD\{x,y}(T∗)
ET∗

= π(D \ {x, y}). (2.20)

Furthermore,

EOD\{x,y}(T
∗) = EOD\{x,y}(T

x
y ) +EOD\{x,y}(T

y
x ) = 2EOD\{x,y}(T

x
y ). (2.21)

Combining (2.19)-(2.21) gives

EOD\{x,y}(Tx
y )

ETx
y

= π(D \ {x, y}) ↑ K− 2
K

, as σ→ ∞. (2.22)
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Using again the renewal-reward theorem, we get that

EOx(T∗)
ET∗

= π(x),

and, from (2.19) and the fact that EOx(T∗) = EOx(Tx
y ) it follows that

EOx(Tx
y )

ETx
y

= 2 · π(x) ↑ 2
K

, as σ→ ∞. (2.23)

Combining (2.18), (2.22) and (2.23) gives

EUD\{y}(Tx
y )

ETx
y

↓ 1− K− 2
K
− 2

K
= 0, as σ→ ∞.

Consider the random time T′ at which the activity process started in x at
time 0 returns to state x after having visited a state in the subset D \ {x}. The
random time T′ is a regeneration epoch for the activity process and, invok-
ing (2.12), its expected value satisfies the identity

ET′ = ETx
D\{x} + ∑

z∈D\{x}
P
(

X(Tx
D\{x}) = z

)
ETz

x

= (K− 1) · ETx
y + ETy

x = K ·ETx
D\{x}, (2.24)

where we have used Proposition 2.3.1 and (2.12). The renewal-reward theo-
rem says that EOx(T′)

ET′ = π(x), and, from (2.24) and the fact that EOx(T′) =
EOx(Tx

D\{x}) we get

EOx(Tx
D\{x})

ETx
D\{x}

= K · π(x) ↑ 1, as σ→ ∞.

2.4 stability of the queue-length process

In this section we prove that for a sufficiently large activity factor σ all queue-
length processes {Qi(t)}t≥0, i = 1, . . . , N, on symmetric K-partite networks
are positive recurrent when the normalized load ρ = Kλ/µ is strictly smaller
than 1. The crucial idea is that for sufficiently large σ the activity process
spends a sufficiently large fraction of time in dominant states, so that the
buffer content at each node has a negative expected drift. Furthermore, in
Proposition 2.4.3 we show specifically how large the activity factor should be
in order for positive recurrence to be feasible.

Although the aim of this section is to prove stability results for symmetric
K-partite networks, the next two auxiliary results hold in more generality.
Consider the activity process {X(t)}t≥0 on a general conflict graph G = (V, E)
of N nodes with heterogeneous rates. In particular, node i has back-off rate νi,
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transmission rate µi, probability pi of entering back-off after a transmission is
completed, and packet arrival rate λi, so that its load is ρi =

λi
µi

.
The first auxiliary result relates the average time that a given node is active

in the time interval [0, t] and the average number of packet transmissions of
a node up to time t. Consider a node i and assume that the activity process
starts at time 0 in a state x ∈ X such that xi = 0. Denote by Si(t) the stochastic
process counting the number of transmission completions at node i in the time
interval [0, t] and by Ai(t) the cumulative amount of time that node i has been
active in the time interval [0, t],

Ai(t) :=
∫ t

s=0
Xi(s)ds, t ≥ 0.

It is implicit in these definitions that Si(0) = 0 and Ai(0) = 0. Define the
continuous-time process

Mi(t) := Si(t)− µi Ai(t), t ≥ 0.

Let {Ft}t≥0 be the natural filtration of the Markov process {X(t), Q(t)}t≥0.

Proposition 2.4.1 (M(t) is a martingale). The stochastic process {Mi(t)}t≥0 is a
Ft-martingale. In particular, for every t ≥ 0,

ESi(t) = µiEAi(t). (2.25)

Proof. For simplicity, consider first the case in which pi = 1 for every i =
1, . . . , N, so that node i always enters back-off after a transmission is com-
pleted. The process {Mi(t)}t≥0 is clearly adapted to the filtration {Ft}t≥0,
since the processes Si(t) and Ai(t) are Ft-measurable for every t ≥ 0. Further-
more, for any t ≥ 0,

−µi Ai(t) ≤st Mi(t) ≤st Si(t),

and thus E|Mi(t)| ≤ max{µiEAi(t), ESi(t)} ≤ µit. Finally, the identity

E(Si(t)− Si(s) | Fs) = µiE(Ai(t)− Ai(s) | Fs)

holds, since the number of completed transmissions during a time interval of
length l where node i is continuously active has a Poisson distribution with
rate µil.

It is easy to see that the same arguments hold also in the case where the
probability pi for node i to enter back-off after a transmission is completed
is strictly smaller than 1. Indeed, having pi < 1 influences only the back-
off periods (in particular how often they occur), but it has no influence on
the relation between Si(t) and Ai(t), as long as the transmission times are
exponentially distributed.

The second auxiliary result proves that ρi < θi for all i = 1, . . . , N is a
sufficient and necessary condition for the queue-length process at each node
to be positive recurrent, as claimed in Subsection 1.2.3.
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Proposition 2.4.2 (Queue-length process is positive recurrent). Consider a net-
work described by a conflict graph G of N nodes. Then all queue-length processes
{Qi(t)}t≥0, i = 1, . . . , N, are positive recurrent if and only if

ρi < θi, ∀ i = 1, . . . , N. (2.26)

Proof. The activity process on G is an irreducible Markov process on X , which
is a finite state space, and therefore any activity state can be seen as renewal
point. Consider the activity state where all nodes are inactive, which we de-
note by 0 ∈ X . The moments at which the activity process {X(t)}t≥0 hits
0 are regeneration epochs with regeneration time τ := T0

0 . Consider node i
and define {Q̂n}n∈N to be the queue-length process at node i embedded at the
epochs when the activity process hits the state 0. Thanks to the strong Markov
property, this latter process is an irreducible time-homogeneous Markov chain
on N. Denote by Sn the number of (potential) packet transmissions during the
n-th cycle (which counts also the transmissions of dummy packets) and by Rn
the total number of packets which arrived during the n-th cycle. By construc-
tion, these two random variables are independent of each other and indepen-
dent from those of different cycles. We claim that the following inequality
holds for every n ∈N:

Q̂n+1 ≤ (Q̂n − Sn)
+ + Rn.

Indeed, we underestimate the total number of packets served by allowing
transmission only of the awaiting packets which arrived in the previous cycles.
Consider now another fictitious Markov chain {Qn}n∈N defined by the initial
condition Q(0) = Q̂(0) and by the classical Lindley recursion Qn+1 = (Qn −
Sn + Rn)+. Clearly,

Q̂n ≤ Qn + Rn, ∀ n ∈N,

hence if 0 is a positive recurrent state for {Qn}n∈N, then it is so for {Q̂n}n∈N

as well, since there is a positive probability that Rn = 0. Let Y be a random
variable distributed as R − S. It is well known that 0 is a positive recurrent
state for the Markov chain {Qn}n∈N if EY < 0. We will show that this is
indeed the case. The average number ES of packet transmissions during a
cycle at node i is equal to the transmission rate µi multiplied by the average
cumulative amount of time that node i is active in such a cycle, in view of
Proposition 2.4.1, and thus

ES = ESi(τ) = µiEAi(τ).

Therefore,

EY = ER−ES = λiEτ− µiEAi(τ) = λiEτ− µi
EAi(τ)

Eτ
Eτ = (λi− µiθi)Eτ,

where the last equality follows by the renewal-reward theorem, since

EAi(τ)

Eτ
= lim

t→∞

1
t

∫ t

0
Xi(s)ds = ∑

x∈X
π(x)xi = θi.
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Since Eτ > 0, assumption (2.26) immediately yields that EY < 0. Therefore,
also for the chain {Q̂n}n∈N the state 0 is positive recurrent and, since the cy-
cle time has finite expectation (the Markov process {X(t)}t≥0 is irreducible
on a finite state space, hence positive recurrent), it follows that the original
continuous-time process {Qi(t)}t≥0 is positive recurrent as well. For the con-
verse implication, it is easy to show that if ρi ≥ θi for some i = 1, . . . , N, then
the queue-length process {Qi(t)}t≥0 is not positive recurrent.

We now return to the case of symmetric K-partite graphs with homoge-
neous rates. As mentioned earlier in this section, the fraction of time θ that
each individual node is active will approach 1/K arbitrarily closely for suffi-
ciently large values of σ. This suggests that ρ = Kλ

µ < 1 is sufficient for stabil-
ity of the queue-length process at each node for large enough values of the
activity factor σ. We now show that this is indeed the case. If ρ < 1, there
exists an ε > 0 such that

λ

µ
<

1
K
− ε.

Since for every node θ ↑ 1
K as σ→ ∞, there exists an activity factor σε such that

θ > 1
K − ε. This fact implies that for a sufficiently large activity factor σ > σε,

for every node the inequality λ
µ < θ holds, and thus all queue-length processes

{Q(t)i}t≥0, i = 1, . . . , N, are positive recurrent by virtue of Proposition 2.4.2.
Furthermore, for symmetric K-partite networks we can obtain an explicit

lower bound in terms of the normalized load ρ for the value of the activity
factor σ that is required for all the queues to be stable. The lower bound,
presented in the next proposition, implies that σ should be of the same order
as (1− ρ)−1, corroborating the intuition that a high activity factor is necessary
to cope with a high load.

Proposition 2.4.3 (Necessary condition on the activity factor for stability). Con-
sider a symmetric K-partite network G = (V, E) on N nodes with N/K > 1. Then,
in order to for all queues to be stable, it is required that

σ >
1

1− ρ
− N

K
.

Proof. We have already proved in Proposition 2.4.2 that

ρi < θi, ∀ i = 1, . . . , N,

is a necessary condition for all queue-length processes to be positive recurrent.
These inequalities imply that the aggregate load must be smaller than the
mean total number of active nodes, yielding

N
λ

µ
= ∑

i∈V
ρi < ∑

i∈V
θi = ∑

i∈V
∑

x∈X
π(x)xi = ∑

x∈X
π(x) ∑

i∈V
xi

≤ N
K ∑

x∈D
π(x) +

(
N
K
− 1
)

∑
x∈X\D

π(x) =
N
K
− ∑

x∈X\D
π(x). (2.27)
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We have implicitly used the fact that all the components have N/K > 1 nodes
and that any non-dominant states have at most N/K − 1 active nodes. By
definition the normalized load ρ is equal to Kλ/µ, so it follows from (2.27)
that

ρ < 1− K
N

π(X \ D)

or, equivalently,

π(D) > 1− N
K
(1− ρ). (2.28)

On the other hand, the fraction of time that the system spends in the subset
D of dominant states in the long-run obeys

π(D) = ∑
x∈D

π(x) = ∑
x∈D

Z−1σN/K = Z−1KσN/K

≤ KσN/K

KσN/K + N/K · KσN/K−1 =
Kσ

Kσ + N
. (2.29)

Combining inequalities (2.28) and (2.29), we obtain

σ >
1− N

K (1− ρ)

1− ρ
=

1
1− ρ

− N
K

.

2.5 average steady-state delay lower bounds

In this section we derive lower bounds for the average steady-state packet
delay in symmetric partite networks. In the prologue of this chapter we have
highlighted the three crucial ideas behind the proof. The first of these three
observations has already been formalized by Proposition 2.4.3 in the previous
section. As far as the second observation is concerned, an intuitive explanation
is given in Chapter 1 and the precise results will be provided in Chapter 4. The
third observation states that the long-term average packet delay at any node in
the network is intimately related to the average transition time between domi-
nant states. This section is devoted this latter observation, which is formalized
by Theorem 2.5.1 below.

We henceforth assume µ to be fixed, and when we write σ → ∞, we allow
for either ν → ∞, p ↓ 0, or both. For compactness we only attach σ in brack-
ets to various quantities to reflect the dependence on both ν and p in limit
statements for σ→ ∞.

Let EW(σ) be the long-term average packet delay (waiting time plus service
time) of a given node, where again the attached σ in brackets describes the
dependence on both ν and p.

Theorem 2.5.1 (Long-term Average Delay). Consider a symmetric K-partite net-
work G. For any dominant states x, y ∈ D with x 6= y,

lim inf
σ→∞

EW(σ)

ETx
y (σ)

≥ K− 1
2(K− ρ)

.
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Proof. Assume that the activity process starts in a dominant state x and con-
sider a node, say node i, that is active in a different dominant state, say y 6= x.
Recall that properties (P1) and (P3) imply that node i is inactive in all the other
dominant states in D∗ := D \ {y}. Let

EL = lim
T→∞

1
T

∫ T

t=0
L(t)dt, (2.30)

with L(t) denoting the queue length at node i at time t, i.e. the total number
of packets, including the packet that may possibly be in the process of being
transmitted. Assuming that EW exists, Little’s law can then be invoked to
conclude that EL = λEW exists as well, so it suffices to establish a lower
bound for EL.

The fact that the quantity EL in (2.30) is well defined is guaranteed by
the renewal-reward theorem, which is valid for {L(t)}t≥0, since it is the pro-
jection (which is a measurable function) of a positive recurrent regenerative
process {X(t), Q(t)}, with the same regeneration time τ∗ of the original pro-
cess {X(t), Q(t)}t≥0, with Eτ∗ < ∞ and E

∫ τ∗
0 L(t)dt < ∞. Furthermore [130,

Theorem 2.1] states that

EL = lim
T→∞

1
T

∫ T

0
L(t)dt

w.p.1
=

E
[∫ τ∗

0 L(t)dt
]

Eτ∗
= lim

T→∞

1
T

∫ T

0
EL(t)dt. (2.31)

By definition, L(t) increases whenever a packet arrives at the node, as gov-
erned by a Poisson process of rate λ. Further observe that L(t) cannot decrease
when the activity process resides in any of the K− 1 dominant states different
from y, since they preclude the activity of node i. When the activity process
does not reside in a dominant state in D∗, node i could potentially be ac-
tive, and L(t) decreases whenever a transmission is completed and there are
packets in the node (L(t) 6= 0).

In order to derive a lower bound for EL, we consider an alternating renewal
process. Let {Z(t)}t≥0 be the process with Z(0) = L(0) that increases at rate λ
when the activity process resides in the subset of dominant states D∗ and
decreases at rate λ− µ at all other times, as long as Z(t) is positive. We will
show later that {Z(t)}t≥0 is a regenerative process and that the quantity

EZ = lim
T→∞

1
T

∫ T

t=0
Z(t)dt (2.32)

is well defined. Let us show first that EL ≥ EZ almost surely. Denote by
{R(t)}t≥0 the packet arrival process at node i, which is a Poisson process of
rate λ. Let Strue(t) be the integer-valued random variable counting the total
number of completed transmissions up to time t, excluding the transmissions
of dummy packets. By definition, we have that for every t ≥ 0,

EL(t) = ER(t)−EStrue(t),
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and, since the left-hand side is always non-negative, so is the right-hand side.
Moreover, since the process S(t) counts all completed transmissions up to time
t, the following stochastic inequality holds

S(t) ≥st Strue(t), ∀ t ≥ 0. (2.33)

Combining these facts, we obtain that for every t ≥ 0,

EL(t) = ER(t)−EStrue(t) ≥ [ER(t)−ES(t)]+

(2.25)
= [λt− µEA(t)]+ ≥ [λt− µEUD∗(t)]

+ = EZ(t). (2.34)

Hence, it follows from (2.31) and (2.34) that

EL = lim
T→∞

1
T

∫ T

0
L(t)dt

w.p.1
= lim

T→∞

1
T

∫ T

t=0
EL(t)dt

(2.34)
≥ lim

T→∞

1
T

∫ T

t=0
EZ(t)dt

w.p.1
= lim

T→∞

1
T

∫ T

0
Z(t)dt. (2.35)

We will now show that {Z(t)}t≥0 is a regenerative process and derive a
lower bound for the quantity EZ. We say that a bad renewal period starts each
time we observe a first entrance into a dominant state in D∗ = D \ {y} after
a visit to the dominant state y, and likewise a good renewal period starts each
time the process enters the dominant state y for the first time after a visit to
another dominant state in D∗. Thus the lengths of the good and bad renewal
periods correspond to the transition times Ty

D∗ and Tx
y (for any x ∈ D∗ thanks

to the symmetry), respectively. We define a cycle as the period consisting of a
bad and subsequent good renewal period.

Let UD∗ be the random variable representing the amount of time during a
bad renewal period that the activity process {X(t)}t≥0 does not reside in the
subset D∗. Since the dominant state y cannot be visited during a bad renewal
period, the random variable UD∗ counts the total amount of time spent in
non-dominant states during a bad renewal period. Thanks to the regenerative
structure of the process {Z(t)}t≥0, if X(0) = x for any x ∈ D∗ we have

UD∗ =
∫ Tx

y

s=0
1{X(s) 6∈D∗} ds.

Using the notation introduced in Section 2.3, we have UD∗
d
=UD∗(Tx

y ) and, in
particular, Proposition 2.3.3 applies.

In order to evaluate the quantity (2.32), let Tk and Vk be the durations of the
k-th bad and k-th good renewal periods, respectively. Let Uk be the amount
of time that the activity process does not reside in D∗ during the k-th bad
renewal period, and let Sm = ∑m

k=1(Tk + Vk) be the duration of the first m cy-
cles. Note that Tk and Vk are i.i.d. copies of the random variables Tx

y and Ty
D∗ ,

respectively. Assume that a bad renewal period starts at time 0 with Z(0) = 0,
and define the random variable M = inf{m ≥ 1 : Z(Sm) = 0}. Observe that
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t

Z(t)

T1 T2 T3 T4

Figure 2.8: Sample path of the process Z(t), with M = 4

SM is a regeneration epoch for the process {Z(t)}t≥0, and hence the renewal-
reward theorem implies that

lim
T→∞

1
T

∫ T

t=0
Z(t)dt =

E
∫ SM

t=0 Z(t)dt
ESM

. (2.36)

Considering the denominator, it follows from Wald’s equation, symmetry con-
siderations and (2.12) that

ESM = EM(ETx
y + ETy

D∗) = K ·EM ·ETy
D∗ =

K
K− 1

EM ·ETx
y . (2.37)

Turning attention to the numerator in (2.36), we first condition on the num-
ber of cycles M that have elapsed by the regeneration epoch, the durations
T1, T2, . . . , TM of the bad renewal periods involved, and the amounts of time
U1, U2, . . . , UM that the activity process does not reside in D∗. When Uk = 0,
inspection of Figure 2.8 shows that the area of the triangle associated with the
k-th cycle is

1
2

λT2
k +

1
2

λ2

µ− λ
T2

k =
1
2

λµ

µ− λ
T2

k ,

while the area of the parallelogram associated with the k-th cycle is

Zk

(
Tk +

λ

µ− λ
Tk

)
=

µ

µ− λ
ZkTk,

with Zk = Z(Sk) the value of the process Z(·) at the start of the k-th cycle.
In general, when Uk may not be zero, a similar geometric construction leads

to the conclusion that the two areas are

1
2

λTk

(
Tk −

µ

λ
Uk

)
+

1
2

λ2

µ− λ

(
Tk −

µ

λ
Uk

)2
≥ 1

2
λµ

µ− λ

(
Tk −

µ

λ
Uk

)2
,

and

Zk

(
Tk +

λ

µ− λ

(
Tk −

µ

λ
Uk

) )
=

µ

µ− λ
Zk (Tk −Uk) ,



50 temporal starvation and delays

respectively. Unconditioning, i.e. taking expectations with respect to the num-
ber of cycles M and the random variables Tk and Uk, k = 1, . . . , M, we find

E

∫ SM

t=0
Z(t)dt ≥ 1

2
λµ

µ− λ
E
( M

∑
k=1

(Tk −
µ

λ
Uk)

2
)
+

µ

µ− λ
E
( M

∑
k=1

Zk(Tk −Uk)
)

.

Since E
(

∑M
k=1 Zk(Tk −Uk)

)
≥ 0, this inequality, together with (2.37), yields

E
∫ SM

t=0 Z(t)dt
ESM

≥ K− 1
2K

λµ

(µ− λ)ETx
y

E
(

∑M
k=1(Tk − µ

λ Uk)
2
)

EM

=
K− 1

2K
λµ

(µ− λ)ETx
y

E
(

Tx
y −

µ

λ
UD∗

)2
,

where the random variables Tx
y and UD∗ have the joint distribution of the

duration of a bad renewal period and the amount of time that the activity
process does not reside inD∗ during that period. Applying Jensen’s inequality,
we obtain

E
∫ SM

t=0 Z(t)dt
ESM

≥ K− 1
2K

λµ

(µ− λ)ETx
y

(
ETx

y −
µ

λ
EUD∗

)2

≥ K− 1
2K

λµ

µ− λ
ETx

y

(
1− µ

λ

EUD∗
ETx

y

)2
.

In view of (2.16), we find that for any δ > 0, the liminf of the latter expression
(for large values of σ) is bounded from below by

K− 1
2K

λµ

µ− λ
ETx

y

(
1− δ

µ

λ

)2
.

Since δ > 0 is arbitrary, we deduce

lim inf
σ→∞

EL
ETx

y
≥ (K− 1)λ

2K
µ

µ− λ
=

(K− 1)λ
2(K− ρ)

,

and the statement of the theorem then follows by applying Little’s law.

Remark. As mentioned in Chapter 1, the stationary distribution of the ac-
tivity process is insensitive with respect to the distribution of the back-off
and transmission times. However, this insensitivity property does not apply
to the transient behavior of the activity process and, in particular, to transi-
tion times. In fact, for non-exponential distributions, the activity process is no
longer Markovian, unless one adopts a more elaborate state space description.
Nevertheless, we expect that some of the results extend to non-exponential
distributions as well, in view of the fact that the order of magnitude of transi-
tion times is closely related with (ratios of) stationary probabilities. A detailed
investigation of this more general scenario is beyond the scope of this thesis
and could be an interesting topic for further research.
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2.6 delay scaling in symmetric partite networks

In this section we derive the average long-term delay scaling for symmetric
partite networks and then illustrate in more detail the results for the specific
networks introduced in Section 2.2. The main result of this section shows
that, in order to determine the asymptotic scaling of the average delay in
symmetric partite networks, the key quantity to study is the asymptotic order
of magnitude Γ(G) of the average transition time between dominant states
when σ grows large. The proof combines the lower bound for the activity
factor σ given in Proposition 2.4.3 and the deep connection between delay
and transition times established in Theorem 2.5.1.

Corollary 2.6.1 (Asymptotic delay scaling). Consider a symmetric K-partite net-
work G. Assume further that there exists a constant Γ(G) > 0 such that for any pair
of dominant states x, y ∈ D

lim
σ→∞

log ETx
y (σ)

log σ
= Γ(G) > 0. (2.38)

If all queues are stable, then

lim inf
ρ↑1

log 1
1−ρ

EW(ρ) = lim inf
ρ↑1

log EW(ρ)

log
(

1
1−ρ

) ≥ Γ(G). (2.39)

Proof. By inspecting the final part of the proof of Theorem 2.5.1, we see that

lim inf
σ→∞

log EW(ρ) ≥ lim inf
σ→∞

log
(

K− 1
2(K− ρ)

ETx
y (σ)

)
≥ log

(
1
4

)
+ lim inf

σ→∞
log ETx

y (σ). (2.40)

In order for each of the queues to be stable, the activity factor σ must di-
verge to infinity when ρ ↑ 1 by virtue of Proposition 2.4.3. Thus, the previous
inequality yields

lim inf
ρ↑1

log EW(ρ) ≥ lim inf
σ→∞

log ETx
y (σ)− log 4.

Using again the fact that σ > 1
1−ρ − N

K , we obtain

lim inf
ρ↑1

log EW(ρ)

log( 1
1−ρ )

= lim inf
ρ↑1

log EW(ρ)

log( 1
1−ρ )

log( 1
1−ρ )

log( 1
1−ρ − N

K )

= lim inf
ρ↑1

log EW(ρ)

log( 1
1−ρ − N

K )

≥ lim inf
ρ↑1

log ETx
y (σ)− log 4

log σ

= lim inf
σ→∞

log ETx
y (σ)

log σ

(2.38)
≥ Γ(G).
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Corollary 2.6.1 says that the long-run average delay EW(ρ) in a symmetric
partite network G grows dramatically as the load ρ approaches 1, namely in
view of (2.39) it must roughly scale at least as(

1
1− ρ

)Γ(G)

, as ρ ↑ 1,

with Γ(G) ≥ 1. This is to be contrasted with the usual linear scaling 1
1−ρ

in conventional queueing networks. Furthermore, as we will see later in this
section, the exponential rate of growth Γ(G) usually increases with the size of
the network G.

In order to obtain the asymptotic order of magnitude of the transition time
Tx

y as in (2.38) and in this way find the value of the constant Γ(G), it is con-
venient to look at the uniformized version of the activity process that can be
put in the framework of Metropolis Markov chains, as we illustrated in Sec-
tion 1.3. In Subsection 2.6.1 we show how the result for first hitting times can
be translated back from discrete time to continuous time. In Subsection 2.6.2
we highlight the delay scaling results for the symmetric partite graphs de-
scribed in Section 2.2.

2.6.1 Uniformization of the activity process

Consider the activity process {X(t)}t≥0 with homogeneous rates on a general
conflict graph G of N nodes. Recall that we assumed µ to be fixed, and when
we write σ→ ∞ we allow for either ν→ ∞, p ↓ 0, or both. Define

α := lim inf
σ→∞

log p
log σ

≥ 0.

Since we are interested in the regime σ → ∞, we can assume without loss of
generality that the activity factor σ is bigger than 1 and thus ν ≥ pµ, which
implies that

max
x,y∈X

q(x, y) = Nν.

Therefore we can consider the uniformization at rate qmax = Nν for the activ-
ity process {X(t)}t≥0. The Markov chain {X̃(n)}n∈N obtained in this way is
in fact a Metropolis Markov chain (see Subsection 1.3.2 and Chapter 4), after
the identification σ = eβ. For any state x ∈ X and subset A ⊆ X , let τx

A be the
first hitting time of the set A for the Markov chain {X̃(n)}n∈N started in x at
time n = 0, i.e.

τx
A(σ) := inf{n > 0 : X̃(n) ∈ A}.

Recall that Tx
A(σ) denotes its continuous-time counterpart, namely the first

hitting time of the subset A for the Markov process {X(t)}t≥0 starting in x at
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t = 0. Let (Yn)n∈N be a sequence of i.i.d. exponential random variables with
mean 1

qmax
= 1

Nν . If X̃(0) = X(0) and n(t) := sup{m : ∑m
n=1 Yn ≤ t}, then

{X(t)}t≥0
d
= {X̃(n(t))}t≥0. (2.41)

Thus the hitting times Tx
A and τx

A are closely related, namely

Tx
A

d
=

τx
A

∑
n=1

Yn,

and hence

ETx
A(σ) =

1
qmax

Eτx
A(σ) =

1
Nσpµ

Eτx
A(σ). (2.42)

The next lemma shows we can deduce the asymptotic order of magnitude
of the expected hitting time ETx

A of the activity process {X(t)}t≥0 if we
know how to calculate that of the corresponding uniformized Markov chain
{X̃(n)}n∈N.

Lemma 2.6.2 (Hitting time scaling from discrete time to continuous time).
Assume that there exists a positive constant Γ(x, A) > 0 such that

lim
σ→∞

log Eτx
A(σ)

log σ
= Γ(x, A). (2.43)

Then

lim
σ→∞

log ETx
A(σ)

log σ
= Γ(x, A)− 1 + α.

Proof. Equation (2.42) implies that

log (µETx
A(σ)) = log Eτx

A(σ)− log (Nσp) .

Since

lim
σ→∞

Nσp
log σ

= lim
σ→∞

log N
log σ

+ lim
σ→∞

log σ

log σ
+ lim

σ→∞

log p
log σ

= 1− α,

we have

lim
σ→∞

log
(
µETx

A(σ)
)

log σ
= lim

σ→∞

[
log Eτx

A(σ)

log σ
− log Nσp

log σ

]
= lim

σ→∞

log Eτx
A(σ)

log σ
+ α− 1

(2.43)
= Γ(x, A)− 1 + α.
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2.6.2 Average delay scaling results

In this last subsection, we exhibit the values that the coefficient Γ(G) takes
when G is one of the symmetric partite graphs introduced in Section 2.2 and
show how the average delay in the corresponding network scales when the
load ρ approaches 1.

If G is a 2K× 2L grid graph with periodic boundary conditions, we prove in
Chapter 5 that Γ(G) = 2 min{K, L}, which means that for a square

√
N×
√

N
grid graph of N nodes, with

√
N an even integer, the long-run average delay

EW(ρ) at every node scales as ρ ↑ 1 roughly at least as(
1

1− ρ

)√N
.

The value of the constant Γ(G) is
√

N/2 if the grid graph has open boundary
conditions. Indeed, we prove that Γ(G) = min{K, L} in the case of a 2K× 2L
grid graph with open boundary conditions.

In Chapter 6 we establish that Γ(G) = min{K, 2L} when G is a 2K× 3L tri-
angular grid graph with periodic boundary conditions. Therefore, the asymp-
totic scaling for EW(ρ) as ρ ↑ 1 in this case reads(

1
1− ρ

)min{K,2L}
.

In the case of Turán graphs with N nodes and components of equal size N/K,
we prove in Chapter 3 that Γ(G) = N/K. In view of Corollary 2.6.1, this fact
implies that at every node the long-run average delay EW(ρ) scales as ρ ↑ 1
roughly at least as(

1
1− ρ

)N/K−1
.

We remark that the structure of the state space X corresponding to complete
partite graphs allows for more detailed asymptotic analysis of transition times,
to which Chapter 3 is devoted. This leads to sharper delay bounds for Turán
graphs, which are presented in Section 3.4 together with a comparison with
existing results, see [20, Theorem 1], for the same type of networks.
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This chapter is devoted to the activity process on complete partite graphs,
which provide a prototypical worst-case scenario for dense networks. In par-
ticular, we study the asymptotic behavior of hitting times as well as mixing
properties in the regime where the activation rates grow large. This asymp-
totic regime in which nodes activate aggressively is relevant in highly loaded
networks and gives rise to the pronounced starvation effects.

Section 3.1 presents a detailed model description and Section 3.2 gives an
overview of the main results. In Section 3.3 we study the asymptotic behavior
of the activity process within a single component of the conflict graph, which
will be leveraged in Section 3.4 to prove the main results for the hitting times
in conjunction with a geometric-sum representation of these latter. In Sec-
tion 3.5 we briefly discuss the lower bounds for the average packet delay that
follow from the framework developed in Chapter 2 and compare them with
the existing literature. Section 3.6 is devoted to the analysis of the through-
put starvation phenomenon, while in Section 3.7 we study the mixing time
of the activity process. In Section 3.8 we sketch how the approach extends to
scenarios where some of the nodes within the same component may interfere
as well, relying on the same geometric-sum representation, but using more
general asymptotic exponentiality results in [62] for the single-component be-
havior.

3.1 model description

We consider the saturated CSMA model described in Subsection 1.2.2 on com-
plete partite conflict graphs. In such networks the nodes can be partitioned into
K disjoint sets called components, such that two nodes interfere if and only if
they belong to different components. More precisely, nodes in the same com-
ponent do not share an edge, while each node has an edge with all nodes
in all other components. Denote by V1, . . . , VK the K components of G, with
K ∈ N finite, and define Lk := |Vk| as the size of component Vk. Note that
the components V1, . . . , VK are the K maximal independent sets of the graph
G. Moreover, component Vk corresponds to a maximum independent set if
and only if Lk ≥ Lj for all j = 1, . . . , K. Figure 3.1 shows an example of
such a dense conflict graph, where K = 5 and the components have sizes
(L1, L2, L3, L4, L5) = (3, 4, 5, 2, 6).

55
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Figure 3.1: Example of complete K-partite conflict graph with K = 5

Figure 3.2a shows the state space diagram corresponding to the conflict
graph in Figure 3.1. The network activity is described by the reversible Markov
process {X(t)}t≥0 defined in Subsection 1.2.2, with the additional assumption
that the average transmission time at every node is equal to 1. In other words,
we consider the Markov process {X(t)}t≥0 on X with transition rates (1.2)
where we take µi = 1 for every i = 1, . . . , N. The stationary distribution (1.3)
then reads

π(x) = lim
t→∞

P
(

X(t) = x
)
=

∏i∈V ν
xi
i

∑y∈X ∏i∈V ν
yi
i

, x ∈ X . (3.1)

We further assume that the exponential rate at which a node activates depends
only on a global aggressiveness parameter ν and on the component it belongs
to, namely

νi = fk(ν) if i ∈ Vk,

for some monotone function fk : R+ → R+ with limν→∞ fk(ν) = ∞. We
will refer to the function fk(·) as the activation rate of component Vk, for k =
1, . . . , K.

In view of symmetry, all states with the same number of active nodes in
a given component can be aggregated, and we only need to keep track of
the number l of active nodes, if any, and the index k of the component Vk
they belong to. More precisely, for each k = 1, . . . , K and l = 1, . . . , Lk, we
aggregate all the admissible joint activity states that have l active nodes in
component Vk into a new state (k, l) ∈ X ∗. The unique state where no node is
active will be denoted by 0 ∈ X ∗. This state aggregation yields a new Markov
process {X∗(t)}t≥0 still indexed by the aggressiveness parameter ν on a star-
shaped state space X ∗ with K “branches”, where each branch emanates from a
common root node and describes one of the components of the conflict graph.
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Figure 3.2b shows the aggregated state space corresponding to the previous
example.

(a) State space X

(b) Aggregated state space X ∗

Figure 3.2: State space X and aggregated state space X ∗, for the conflict graph in
Figure 3.1

For k = 1, . . . , K, let Bk := {(k, l) : 1 ≤ l ≤ Lk} denote the branch of the state
space X ∗ that corresponds to activity inside component Vk, where state (k, l)
indicates that l nodes are active in component Vk. Then

X ∗ =
K⋃

k=1

Bk ∪ {0},
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where 0 is the state in which all nodes are inactive. The transition rates of the
process {X∗(t)}t≥0 then read, for k = 1, . . . , K

q(0, (k, 1)) = Lk fk(ν),

q((k, 1), 0) = 1,

q((k, l), (k, l + 1)) = (Lk − l) fk(ν), l = 1, . . . , Lk − 1,

q((k, l), (k, l − 1)) = l, l = 2, . . . , Lk.

The stationary distribution of the process {X∗(t)}t≥0 can be easily derived
from the original process {X(t)}t≥0 and reads

π0(ν) =
(

1 +
K

∑
k=1

Lk

∑
l=1

(
Lk
l

)
fk(ν)

l
)−1

,

π(k,l)(ν) = π0(ν)

(
Lk
l

)
fk(ν)

l , l = 1, . . . , Lk, k = 1, . . . , K. (3.2)

We choose to use a different notation for the stationary distribution, putting
the state as subscript and writing explicitly the dependence on ν, to avoid
confusion with the notation of the original process {X(t)}t≥0. The state (k, Lk)
corresponds to the maximum activity state inside component Vk, which be-
comes the most likely state within the branch Bk as ν→ ∞, in view of (3.2).

For any pair of states x, y ∈ X ∗, with a minor abuse of notation we denote
also by Tx

y (ν) the transition time for the aggregated process {X∗(t)}t≥0 with
aggressiveness ν from state x to state y, i.e.

Tx
y (ν) := inf{t > 0 : X∗(t) = x | X∗(0) = y}.

Consider two different branches, say Bk1 and Bk2 with k1 6= k2, and two activ-
ity states, (k1, l1) ∈ Bk1 and (k2, l2) ∈ Bk2 . If the activity process {X∗(t)}t≥0
starts in a state in branch Bk1 , all nodes in Vk2 starve until branch Bk2 is hit.
It is then natural to investigate the asymptotic behavior of transition time
T(k1,l1)
(k2,l2)

(ν) as ν→ ∞.
We now introduce a few parameters that will turn out to play a key role in

the asymptotic distribution of the transition time. Define for k 6= k2,

γk := lim
ν→∞

fk(ν)
Lk

∑j 6=k2
f j(ν)

Lj
. (3.3)

To avoid technicalities, we assume throughout that all parameters γk are well
defined. In view of (3.2), γk may be interpreted as the stationary fraction of
time that the activity process spends in branch Bk as ν → ∞, excluding the
target branch Bk2 . As it turns out, γk also equals the fraction of time that the
activity process spends in branch Bk during the transition from 0 to (k2, l2) as
ν→ ∞.

Branch Bk is called dominant if γk > 0 and we let K∗ := {k 6= k2 : γk > 0}
be the index set of all dominant branches. Note that, by construction, the set
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K∗ is never empty and thus there is always at least one dominant branch. To
avoid confusion, we remark that the notion of dominant branch is slightly
different from that of dominant state given in Chapter 2. Indeed, due to the
heterogeneous activation rates, a branch Bk could be dominant even if the
corresponding component Vk does not have maximum size (and vice versa).

3.2 main results

In this section we present our main results, which are all related to the asymp-
totic behavior of the transition time T(k1,l1)

(k2,l2)
(ν) from a state (k1, l1) to a state

(k2, l2), with k1 6= k2, in the asymptotic regime of a large activation rate ν.
Our first result characterizes the asymptotic order of magnitude of the mean

transition time in terms of the activation rates and the network structure. For
any two real-valued functions f (·) and g(·), let f (ν) ∼ g(ν) as ν→ ∞ indicate
that limν→∞ f (ν)/g(ν) = 1 and, similarly, let f (ν) & g(ν) as ν → ∞ indicate
that limν→∞ f (ν)/g(ν) ≥ 1.

Theorem 3.2.1 (Asymptotic average transition time). If k1 6= k2, then

ET(k1,l1)
(k2,l2)

(ν) ∼ 1
Lk1

fk1(ν)
Lk1
−1 +

1
Lk2 fk2(ν)

∑
k∈K∗

fk(ν)
Lk , as ν→ ∞. (3.4)

The first term on the right-hand side of (3.4) corresponds to the asymptotic
mean escape time ET(k1,l1)

0 (ν) from the initial branch Bk1 , while the second term
describes the contribution of the mean time spent visiting dominant branches,
possibly including branch Bk1 as well. Let

α := lim
ν→∞

ET(k1,l1)
0 (ν)

ET(k1,l1)
(k2,l2)

(ν)
∈ [0, 1] (3.5)

denote the relative weight of Bk1 .
Our second result gives the asymptotic distribution of the transition time

T(k1,l1)
(k2,l2)

(ν) scaled by its mean as ν→ ∞.

Theorem 3.2.2 (Asymptotic distribution of the scaled transition time). If k1 6=
k2, then

T(k1,l1)
(k2,l2)

(ν)

ET(k1,l1)
(k2,l2)

(ν)

d−→ Z, as ν→ ∞.

The random variable Z can be expressed as

Z d
= αY + (1− α)W,

where the random variable Y is exponentially distributed with unit mean and the
random variable W is independent of Y with Laplace transform (3.21).
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The random variable W has a complicated distribution presented later, which
depends on the sizes and activation rates of the dominant branches only. The
possible distributions of Z are summarized in Table 3.1 in Section 3.4. In sev-
eral cases the distribution of Z is exponential, which may be expected in view
of the connection with many exponentiality results for the occurrence of rare
events [2, 3, 4, 62, 77, 79]. In addition, we identify several cases that lead to
non-exponentiality, typically due to the fact that the activity process spends a
substantial period in branches other than k1 and k2.

Our third result concerns the starvation phenomenon and in particular
gives an asymptotic lower bound on the probability of throughput starvation.
For k = 1, . . . , K, define the random variable

τk(t) :=
∫ t

0
1{X∗(s)∈Bk} ds,

which measures how much time the activity process {X∗(t)}t≥0 spends in
branch Bk during the interval [0, t]. We can think of τk(t) as a measure of the
throughput of component Vk over the time interval [0, t]. We speak of complete
starvation or zero throughput of component Vk in [0, t] when τk(t) = 0. The next
theorem provides insight into the time scales at which throughput starvation
occurs for a component of the network.

Theorem 3.2.3 (Throughput starvation). Assume X(0) = (k1, l1) and k2 6= k1. If
t(ν) ∼ ωET(k1,l1)

(k2,1) (ν), with ω ∈ R∪ {0}, then

lim
ν→∞

P(τk2(t(ν)) = 0) = P(Z ≥ ω), (3.6)

where Z is the asymptotic distribution of the scaled transition time introduced in
Theorem 3.2.1. In particular, if t(ν) = o(ET(k1,l1)

(k2,1) (ν)), then

lim
ν→∞

P(τk2(t(ν)) = 0) = 1,

i.e. all nodes in Vk2 have zero throughput for a period of length t(ν) with probability
one as ν→ ∞.

The limit in (3.6) says that, even if there is long-term fairness among the
components, for large values of ν all nodes in Vk2 will face starvation on all
time scales smaller than the mean transition time from the initial component
to Vk2 .

For the Markov process at hand, slow transitions and starvation effects are
intimately related with the mixing time. Indeed, due to the complete partite
structure of the conflict graph, the process is bound to be stuck in one of the
dominant branches, leading to slow convergence to equilibrium. In Section 3.7
we define the mixing time in terms of the total variation distance from station-
arity, and prove a lower bound for a large enough activation parameter ν. This
lower bound (see Proposition 3.7.1) indicates that the mixing time of the pro-
cess is at least as large as the mean escape time from the dominant branch,
which establishes a direct connection between transition times and mixing
times.
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3.3 hitting times within a single branch

In this section we study the activity process within a single component, where
it behaves as a birth-and-death process, bringing the asymptotic behavior
within the realm of classical results. In Section 3.4 we will leverage these re-
sults in conjunction with a geometric-sum representation to prove both Theo-
rems 3.2.1 and 3.2.2.

We start by presenting a few results for the case where the two states
(k1, l1) and (k2, l2) belong to the same branch, i.e. k1 = k2, and l1 > l2. In
this case, the presence of the other components does not affect the transi-
tion time, and hence we focus on a single branch, dropping the component
index until further notice. Within a single component of size L, the process
{X∗(t)}t≥0 evolves as an elementary birth-and-death process on the state
space {L, L − 1, . . . , 1, 0}, so we can exploit several classical results for such
processes. If we denote by f (ν) the activation rate for this component as a
function of ν, then the transition rates read

q(l, l + 1) = (L− l) f (ν), l = 0, . . . , L− 1,

q(l, l − 1) = l, l = 1, . . . , L.

3.3.1 Asymptotic growth rate

We first show how the mean transition time scales with the aggressiveness
parameter ν.

Proposition 3.3.1 (Asymptotic transition time average within a single branch).
For L ≥ l1 > l2 ≥ 0,

ETl1
l2
(ν) ∼ l2!(L− l2 − 1)!

L!
f (ν)L−l2−1, as ν→ ∞.

Proof. Observe that ETl1
l2
(ν) = ∑l2+1

l=l1
ETl

l−1(ν), so we can exploit a general
result for birth-and-death processes [76], which in the present case says that,
for 0 < l ≤ L,

ETl
l−1(ν) =

1
l

L

∑
n=l

πn(ν)

πl(ν)
.

Now (3.2) implies that πn(ν) = o(πL(ν)) as ν → ∞ for all n = l, . . . , L− 1, so
that

ETl
l−1(ν) ∼

1
l

πL(ν)

πl(ν)
=

(l − 1)!(L− l)!
L!

f (ν)L−l , as ν→ ∞.

Thus ETl
l−1(ν) = o(ETl2+1

l2
(ν)) as ν → ∞ for all l = l1, . . . , l2, and hence

ETl1
l2
(ν) ∼ ETl2+1

l2
(ν) as ν→ ∞ and the result follows.
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In order to gain insight in starvation effects, we are particularly interested
in the time for the activity process to reach the center state 0, referred to as
escape time, because at such points in time nodes in other components have an
opportunity to activate. Proposition 3.3.1 shows that

ETl1
0 (ν) ∼ 1

L
f (ν)L−1, as ν→ ∞. (3.7)

Hence, the mean escape time grows asymptotically as a power of f (ν), with
the exponent equal to the component size minus one, and independent of the
starting state l1.

3.3.2 Asymptotic exponentiality

We now turn to the scaled escape time, and show that it has an asymptotically
exponential distribution. We will leverage the following well-known result for
birth-and-death processes, which is commonly attributed to Keilson [78] or
Karlin and McGregor [75].

Theorem 3.3.2 (Absorption time distribution for birth-and-death processes).
Consider a birth-and-death process with generator matrix Q on {0, . . . , L} started at
state L. Assume that 0 is an absorbing state, and that the birth rates {λi}i=1,...,L−1
and death rates {µi}i=1,...,L are positive. Then the absorption time in state 0 is dis-
tributed as the sum of L independent exponential random variables whose rate param-
eters are the L nonzero eigenvalues of −Q.

Let Q(ν) be the generator matrix of the birth-and-death process {X∗(t)}t≥0
on the state space {L, L − 1, . . . , 1, 0}, with 0 an absorbing state. Denote by
{θi(ν)}i=1,...,L the non-zero eigenvalues of −Q(ν). It is known [97] that these
eigenvalues are distinct, real and strictly positive, so we denote 0 < θ1(ν) <
θ2(ν) < · · · < θL(ν). Theorem 3.3.2 gives

TL
0 (ν)

d
=

L

∑
i=1

Yi(ν), (3.8)

with Y1(ν), . . . , YL(ν) independent and exponentially distributed random vari-
ables with EYi(ν) = 1/θi(ν).

The following lemma relates the growth rates of the eigenvalues as ν → ∞
to the mean escape time ETL

0 (ν).

Lemma 3.3.3. limν→∞ θi(ν) ·ETL
0 (ν) = 1 if i = 1 and ∞ if i = 2, . . . , L.

The proof of Lemma 3.3.3 is presented in Appendix 3.A, and exploits de-
tailed information about the growth rates of the eigenvalues obtained via sym-
metrization and the Gershgorin circle theorem. Lemma 3.3.3 shows that the
smallest eigenvalue θ1(ν) becomes dominant as ν → ∞, but also proves the
asymptotic exponentiality of the escape time. Indeed, denoting by LX(s) =
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E(e−sX), with Re(s) > 0, the Laplace transform of a random variable X, (3.8)
gives

LTL
0 (ν)/ETL

0 (ν)
(s) =

L

∏
i=1

(
1 +

s
θi(ν) ·ETL

0 (ν)

)−1
.

Lemma 3.3.3 implies that

lim
ν→∞
LTL

0 (ν)/ETL
0 (ν)

(s) =
1

1 + s
.

The continuity theorem for Laplace transforms then yields that the scaled
escape time has an asymptotically exponential distribution as stated in the
next theorem, where Exp(λ) denotes an exponentially distributed random
variable with mean 1/λ.

Theorem 3.3.4 (Asymptotic exponentiality of the scaled escape time).

TL
0 (ν)

ETL
0 (ν)

d−→ Exp(1), as ν→ ∞.

This result can be understood as follows. For large ν, the probability of
hitting state 0 before the first return to state L becomes small. So the time
TL

0 (ν) consists of a geometrically distributed number of excursions from L
which return to L without hitting 0, followed by the remaining part of the
excursion that hits 0. Hence, apart from this final part, TL

0 (ν) is the sum of
a large geometrically distributed number of i.i.d. random variables, which
indeed is expected to be exponential.

The fact that the time until the first occurrence of a rare event is asymptot-
ically exponential, is a widely observed phenomenon [79]. Exponentiality of
the hitting time of some subset B of the state space typically arises when the
probability of hitting B in a single regenerative cycle is ‘small’, and the cycle
lengths are ‘not too heavy tailed’ [62, 79]. This is also true for our situation,
and hence an alternative proof of Theorem 3.3.4 can be obtained using [62,
Thm. 1] (which is a generalized version of [77]). We do not use the proba-
bilistic approach in [62] here, because the special case of a birth-and-death
process allows for explicit analysis. Let us finally remark that for reversible
Markov processes similar exponentiality results were established in [2, 3, 4].
Aldous [2] showed that a result like Theorem 3.3.4 can be expected when the
underlying Markov process converges rapidly to stationarity. This is indeed
the case for the Markov process {X∗(t)}t≥0 restricted to a single branch.

To extend Theorem 3.3.4 to the case of a general starting state 0 < l ≤ L, we
need the following technical lemma, whose proof is given in Appendix 3.B.

Lemma 3.3.5. Let T(ν), U(ν), V(ν), W(ν) be non-negative random variables. Con-
sider the properties

(1) limν→∞ EV(ν)/EU(ν) = limν→∞ EW(ν)/EU(ν) = 0.
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(2) For every ν > 0, U −V ≤st T ≤st U + W, i.e. for every t ≥ 0,

P
(

U −V > t
)
≤ P

(
T > t

)
≤ P

(
U + W > t

)
.

(3) U(ν)/EU(ν)
d−→ Z as ν→ ∞, where Z is a continuous random variable inde-

pendent of ν.

Then,

(i) If properties (1) and (2) hold, then limν→∞ ET(ν)/EU(ν) = 1.

(ii) If properties (1), (2) and (3) hold, then T(ν)/ET(ν) d−→ Z, as ν→ ∞.

Proposition 3.3.6 (Asymptotic exponentiality of the scaled escape time). For
any 0 < l ≤ L,

Tl
0(ν)

ETl
0(ν)

d−→ Exp(1), as ν→ ∞.

Proof. The birth-and-death structure of the process and the strong Markov
property yield the stochastic identity TL

0 (ν)
d
= TL

l (ν) + Tl
0(ν), which gives the

stochastic bounds TL
0 (ν)− TL

l (ν) ≤st Tl
0(ν) ≤st TL

0 (ν) (the two terms in the
lower bound being dependent). By virtue of Theorem 3.3.4 the limit in dis-
tribution TL

0 (ν)/ETL
0 (ν)

d−→ Exp(1) holds as ν → ∞. In order to complete the
proof, we can then use Lemma 3.3.5, taking U(ν) = TL

0 (ν), V(ν) = TL
l (ν) and

W(ν) = 0. The condition which needs to be checked is limν→∞ EV(ν)/EU(ν) =
0, which follows directly from Proposition 3.3.1.

3.3.3 More general coefficients and applications

We can extend our analysis to more general activation and deactivation dy-
namics inside a single branch, described by

q(l, l + 1) = al f (ν), l = 1, . . . , L− 1,

q(l, l − 1) = dl , l = 2, . . . , L,

where al , dl are positive real coefficients. Specifically, Proposition 3.3.1 can be
generalized to the following result. For L ≥ l1 > l2 ≥ 0,

ETl1
l2
(ν) ∼ 1

dl2+1

( L−1

∏
i=l2+1

ai
di+1

)
f (ν)L−l2−1, as ν→ ∞. (3.9)

Also Lemma 3.3.3 and thus Proposition 3.3.6 can be shown to hold for these
more general rates (see Appendix 3.A).

These results for general coefficients have some interesting applications, be-
yond the model considered in this chapter. We present here an application to
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an M/M/c/c model in two extreme regimes: Heavy-traffic and light-traffic
conditions. Let {M(t)}t≥0 be the continuous-time Markov process on the state
space {0, 1, . . . , c}, describing the number of busy servers at time t. Suppose
that the service rate of each server is 1 and the arrival rate is ν, which will
grow large in a heavy-traffic regime. The escape time Ts

0(ν), choosing an = 1
and dn = n, n = 1, . . . , c, then describes the time it takes for this system to
drain (i.e. to have all the servers idle) when starting with s ≥ 1 busy servers.
In other words,

Ts
0(ν) := inf{t > 0 : M(t) = 0 | M(0) = s}.

Then (3.9) gives

ETs
0(ν) ∼

νc−1

c!
, as ν→ ∞,

which does not depend on the starting state s ≥ 1. Furthermore, the scaled
drain time obeys

Ts
0(ν)

ETs
0(ν)

d−→ Exp(1), as ν→ ∞.

We now turn to a light-traffic regime where the arrival rate λ becomes
small, and let s ∈ {0, 1, . . . , c} count instead the number of idle servers. The
quantity of interest in this case is the time Tb(λ) it takes for the system to
fill up, i.e. to reach the situation where none of the servers is idle, having
started with s ≥ 1 idle servers. This hitting time, measured in time units 1/λ,
corresponds again to the absorption time Ts

0(ν), with f (ν) = 1/λ, an = c− n
and dn = 1, n = 1, . . . , c. The light-traffic regime is characterized by λ ↓ 0,
which corresponds to the limiting regime ν→ ∞. Then (3.9) gives

ETb

(
1
ν

)
= ν ·ETs

0(ν) ∼ (c− 1)! νc−1, as ν→ ∞,

which does not depend on the starting state s ≥ 1. The asymptotic scaled fill
time obeys

Tb(
1
ν )

ETb(
1
ν )

=
Ts

0(ν)

ETs
0(ν)

d−→ Exp(1), as ν→ ∞.

3.4 proofs of theorems 3 .2 .1 and 3 .2 .2

In this section we investigate the asymptotic behavior of the transition time
T(k1,l1)
(k2,l2)

(ν) as ν → ∞ for any pair of states (k1, l1) and (k2, l2), with k1 6= k2.
In Subsection 3.4.1 we provide a stochastic representation of the transition
time, which we use to derive the asymptotic mean transition time in Sub-
section 3.4.2 leading to Theorem 3.2.1. In Subsection 3.4.3 we will obtain the
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asymptotic distribution of the scaled transition time leading to Theorem 3.2.2.
In Subsection 3.4.4 we consider in detail the random variable W that occurs
in Theorem 3.2.2. We give an overview of all possible forms of asymptotic
behavior and the conditions under which they occur in Subsection 3.4.5.

3.4.1 Stochastic representation of the transition time

Consider the evolution of the process while it makes a transition from a state
(k1, l1) to a state (k2, l2) and define the following random variables:

• T(k1,1)
0 (0): time to reach state 0 after state (k1, 1) is visited for the first

time;

• Nk(ν): number of times the process makes a transition 0→ (k, 1), k 6= k2,
before the first transition 0→ (k2, 1) occurs;

• T̂0
(k,1)(i): time spent in state 0 before the i-th transition to state (k, 1),

k 6= k2, i = 1, . . . , Nk(ν);

• T̂0
(k2,1): time spent in state 0 before the first transition to state (k2, 1);

• T(k,1)
0 (i): time to return to state 0 after the i-th transition to state (k, 1),

k 6= k2, i = 1, . . . , Nk(ν);

• T(k2,1)
(k2,l2)

: time to reach state (k2, l2) after the first hitting of state (k2, 1).

Note that the dependence on the parameter ν of all the random variables rep-
resenting time durations we just introduced is suppressed for compactness.
With the above definitions, it is readily seen that the following stochastic rep-
resentation holds.

Proposition 3.4.1 (Stochastic representation of the transition time). The transi-
tion time T(k1,l1)

(k2,l2)
can be represented as

T(k1,l1)
(k2,l2)

d
= T(k1,l1)

(k1,1) + T(k1,1)
0 (0) + ∑

k 6=k2

Nk(ν)

∑
i=1

(
T̂0
(k,1)(i) + T(k,1)

0 (i)
)

+ T̂0
(k2,1) + T(k2,1)

(k2,l2)
, (3.10)

where all the random variables representing time durations are mutually independent
as well as independent of the random variables Nk(ν), k 6= k2.

Denote F(ν) = ∑K
k=1 Lk fk(ν). The random variables T(k,1)

0 (i) are i.i.d. copies
of T(k,1)

0 , i = 1, . . . , Nk(ν), k 6= k2, while the random variables T̂0
(k2,1) and

T̂0
(k,1)(i), k 6= k2, i = 1, . . . , Nk(ν), are i.i.d. copies of Exp(F(ν)), which is the

residence time in state 0. Write X d
=Geo(p) when X is a random variable

with geometric distribution P(X = n) = p(1− p)n, n ∈ N ∪ {0}. Define the
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random variable N(ν) := ∑k 6=k2
Nk(ν), counting the total number of entrances

in branches other than k2 before hitting the target branch Bk2 . For all k =
1, . . . , K, denote pk(ν) := Lk fk(ν)/F(ν). Clearly,

N(ν)
d
=Geo(pk2(ν)),

and the marginal distribution of Nk(ν) is Geo(
pk2

(ν)

pk2
(ν)+pk(ν)

).

We want to distinguish the branches that significantly affect the dynamics of
the process (and hence the transition time) from those that do not. The quan-
tity ENk(ν) ·ET(k,1)

0 (ν), for k 6= k2, is the mean time that the process spends in
branch Bk along the transition 0→ (k2, l2). Note that Proposition 3.3.1 gives

ET(k,1)
0 (ν) ∼ 1

Lk
fk(ν)

Lk−1, as ν→ ∞, (3.11)

and

ENk(ν) =
pk(ν)

pk2(ν)
=

Lk fk(ν)

Lk2 fk2(ν)
. (3.12)

Therefore,

ENk(ν) ·ET(k,1)
0 (ν)

ENj(ν) ·ET(j,1)
0 (ν)

∼ fk(ν)
Lk

f j(ν)
Lj

, as ν→ ∞,

which shows that indeed only the visits to dominant branches asymptotically
contribute to the mean transition time.

3.4.2 Asymptotic mean transition time

We present here the proof of Theorem 3.2.1. Consider the stochastic represen-
tation (3.10) of the transition time T(k1,l1),(k2,l2)(ν). Proposition 3.3.1 implies
that

ET(k1,l1)
(k1,1) (ν) ∼

1
Lk1(Lk1 − 1)

fk1(ν)
Lk1
−2, as ν→ ∞,

and that

ET(k1,1)
0 (ν) ∼ 1

Lk1

fk1(ν)
Lk1
−1, as ν→ ∞.

Hence ET(k1,l1)
(k1,1) (ν) = o(ET(k1,1)

0 (ν)) as ν → ∞. Moreover ET̂0
(k,1)(ν) = o(1).

Lemma 3.4.2 below implies that ET(k2,1)
(k2,l2)

(ν) = o(ET(k1,l1)
(k2,l2)

(ν)). The asymp-
totic relation (3.4) then follows using the definition of K∗, the asymptotic es-
timate (3.11) and the identity (3.12). Lemma 3.4.2 guarantees that once the
process has entered the target branch Bk2 , even if it may exit from it, the mean
time it takes to reach the target state (k2, l2) is negligible with respect to the
mean overall transition time.
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Lemma 3.4.2.

ET(k2,1)
(k2,l2)

(ν) = o
(

ET(k1,l1)
(k2,l2)

(ν)
)

, as ν→ ∞.

Proof. Consider the event

E(ν) = {the first l2 − 1 transitions are all towards the state (k2, l2)}

=
l2−1⋂
i=1

{the i-th transition is from (k2, i) to (k2, i + 1)}.

Exploiting the fact that all these events are independent, we can compute

P(E(ν)) =
l2−1

∏
i=1

P
(

the i-th transition is from (k2, i) to (k2, i + 1)
)

=
l2−1

∏
i=1

(Lk2 − i) fk2(ν)

(Lk2 − i) fk2(ν) + i
,

and clearly limν→∞ P(E(ν)) = 1. We have that

E{T(k2,1)
(k2,l2)

(ν) | E(ν)} =
l2−1

∑
m=1

1
(Lk2 −m) fk2(ν) + m

=: g(ν),

where g(ν) ↓ 0 as ν→ ∞. For n = 1, . . . , l2 − 1, consider the event

E c
n(ν) = {the first transition towards state 0 is the n-th one}.

Note that the event E c(ν) can be decomposed as E c(ν) =
⋃l2−1

n=1 E c
n(ν). Using

the events E(ν) and E c
n(ν), we can write

ET(k2,1)
(k2,l2)

(ν) =E{T(k2,1)
(k2,l2)

(ν) | E(ν)}P(E(ν))

+
l2−1

∑
n=1

E{T(k2,1)
(k2,l2)

(ν) | E c
n(ν)}P(E c

n(ν)). (3.13)

If the event E c
1(ν) occurs, then the first transition is towards state 0. In this

case, we have

E{T(k2,1)
(k2,l2)

(ν) | E c
1(ν)} ≤ E{T(k2,1)

0 (ν) | E c
1(ν)}+ ET0

(k2,l2)
(ν)

≤ 1
(Lk2 − 1) fk2(ν) + 1

+ ET(k1,l1)
(k2,l2)

(ν), (3.14)

and

P(E c
1(ν)) =

1
(Lk2 − 1) fk2(ν) + 1

. (3.15)
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Moreover, for n = 2, . . . , l2 − 1, we have

E{T(k2,1)
(k2,l2)

(ν) | E c
n(ν)} ≤ E{T(k2,1)

(k2,n−1)(ν) | E
c
n(ν)}+ ET(k2,n−1)

(k2,l2)
(ν)

≤ E{T(k2,1)
(k2,n−1)(ν) | E(ν)}+ ET0

(k2,l2)
(ν)

≤ E{T(k2,1)
(k2,l2)

(ν) | E(ν)}+ ET(k1,l1)
(k2,l2)

(ν). (3.16)

From (3.13)-(3.16) it follows that

ET(k2,1)
(k2,l2)

(ν) ≤ g(ν) + ET(k1,l1)
(k2,l2)

(ν)P(E c(ν)) + E{T(k2,1)
0 (ν) | E c

1(ν)}

≤ 2g(ν) + ET(k1,l1)
(k2,l2)

(ν)P(E c(ν)).

We divide both sides by ET(k1,l1)
(k2,l2)

(ν), which is greater than 1 for ν sufficiently
large, thanks to (3.7). Since g(ν) and P(E c(ν)) are both o(1), the proof of the
lemma is complete.

3.4.3 Asymptotic distribution of the transition time

We now turn to the proof of Theorem 3.2.2. It is clear that only the domi-
nant branches that asymptotically contribute to the expected magnitude of
the transition time will play a role, possibly along with the escape time from
the initial branch. As we will show, the various dominant branches may play
different roles, depending on whether the expected number of visits during
the transition time is zero, O(1) or infinite in the limit as ν→ ∞. We introduce

A(ν) := T(k1,1)
0 and B(ν) := ∑

k∈K∗

Nk(ν)

∑
i=1

T(k,1)
0 (i), (3.17)

whose mean values correspond to the two terms at the right-hand side of (3.4).
From the definition (3.5) of the coefficient α it follows that

α = lim
ν→∞

EA(ν)

EA(ν) + EB(ν)
.

When α = 0 the term A(ν) becomes asymptotically negligible compared to
B(ν), while the opposite holds when α = 1. Proposition 3.3.6 already describes
the asymptotic behavior of A(ν) after scaling. We need to understand the
asymptotic behavior of B(ν) and for this purpose, it will be convenient to use
a slightly different representation for it.

Define p∗(ν) := ∑k∈K∗ pk(ν) and p̂(ν) := p∗(ν)
pk2

(ν)+p∗(ν)
. Introduce the ran-

dom variable N∗(ν) := Geo(1− p̂(ν)), which represents the number of vis-
its to the dominant branches, before entering the target branch Bk2 . Intro-
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duce the sequence (τ(i)(ν))i≥1 of i.i.d. random variables, τ(i)(ν)
d
= τ(ν), where

τ(ν)
d
= T(k,1)

0 (ν) with probability pk(ν)/p∗(ν) for every k ∈ K∗. Then

B(ν) d
=

N∗(ν)

∑
i=1

τ(i)(ν). (3.18)

For k ∈ K∗ we define

βk := lim
ν→∞

Lk fk(ν)

Lk2 fk2(ν)
. (3.19)

In view of (3.2), βk may be interpreted as the stationary ratio between the
number of visits to branch k and to branch k2 as ν → ∞. Thanks to (3.12), βk
also represents the asymptotic mean number of visits to branch Bk before the
first entrance in branch Bk2 as ν→ ∞, when the process starts in state 0, i.e.

βk = lim
ν→∞

ENk(ν). (3.20)

To avoid technicalities, we henceforth assume that all the parameters βk are
well defined. Moreover, we introduce the parameter β := ∑k∈K∗ βk, which is
the asymptotic mean number of visits to dominant branches before hitting Bk2
as ν → ∞, i.e. β = limν→∞ EN∗(ν). Based on the definition of the parameter
βk in (3.19), we partition the index set K∗ of the dominant branches into three
subsets, namely

K∗ = N ∪A∪ S ,

using the following rule:

• k ∈ N if βk = 0;

• k ∈ A if βk ∈ R+;

• k ∈ S if βk = ∞.

The branches inN ,A and S will be called non-attracting, attracting and strongly
attracting, respectively. Define moreover the coefficients γN := ∑k∈N γk, γA :=
∑k∈A γk and γS := ∑k∈S γk, with the parameters γk as defined in (3.3).

We are now ready to present the proof of Theorem 3.2.2. Specifically, we
prove that if k1 6= k2, 1 ≤ l1 ≤ Lk1 and 1 ≤ l2 ≤ Lk2 , then

T(k1,l1)
(k2,l2)

(ν)

ET(k1,l1)
(k2,l2)

(ν)

d−→ αY + (1− α)W, as ν→ ∞,

where α is the constant defined in (3.5), Y is an exponential random variable
with unit mean and W is a random variable independent of Y, with Laplace
transform

LW(s) =
1

1 + ∑
k∈A

γks
1 + γks/βk

+ sγS
. (3.21)
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The crucial idea of the proof is to use Lemma 3.3.5 with the dominant term
U(ν) defined as the sum of the two random variables introduced in (3.17), i.e.

U(ν) := A(ν) + B(ν) = T(k1,1)
0 + ∑

k∈K∗

Nk(ν)

∑
i=1

T(k,1)
0 (i).

Theorem 3.2.1 implies that ET(k1,l1)
(k2,l2)

(ν) ∼ EU(ν) as ν → ∞ and its proof
shows that all the other terms present in the stochastic representation (3.10)
are negligible compared to U(ν). Note that

U(ν)

EU(ν)
=

A(ν)

EU(ν)
+

B(ν)
EU(ν)

=
EA(ν)

EU(ν)

A(ν)

EA(ν)
+

EB(ν)
EU(ν)

B(ν)
EB(ν)

.

Recall that A(ν) and B(ν) are independent by construction. If we knew that

there exist two random variables Y and W such that A(ν)/EA(ν)
d−→ Y and

B(ν)/EB(ν) d−→W as ν→ ∞, then

U(ν)

EU(ν)
d−→ αY + (1− α)W, as ν→ ∞,

and Lemma 3.3.5 would imply that

T(k1,l1)
(k2,l2)

(ν)

ET(k1,l1)
(k2,l2)

(ν)

d−→ αY + (1− α)W, as ν→ ∞.

Proposition 3.3.6 immediately gives that

A(ν)

EA(ν)
d−→ Y, as ν→ ∞,

where Y is an exponential random variable with mean one.
Thus it remains to establish that the random variable B(ν)/EB(ν) converges

to W in distribution. For B(ν) defined in (3.17) it follows from (3.18) that
EB(ν) = EN∗(ν)Eτ(ν) and that

LB(ν)/EB(ν)(s) = GN∗(ν)

(
Lτ(ν)/EB(ν)(s)

)
= GN∗(ν)

(
Lτ(ν)/Eτ(ν)

( s
EN∗(ν)

))
,

(3.22)

where

GN∗(ν)(z) = E(zN∗(ν)) =
1

1 + (1− z)EN∗(ν)
. (3.23)
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We need then to derive the asymptotic distribution of the random variable
τ(ν)/Eτ(ν). Let Tk(ν) = T(k,1)

0 (ν). Then Lτ(ν)(s) = ∑k∈K∗
pk(ν)
p∗(ν)
LTk(ν)

(s) and,
using ENk(ν) = pk(ν)/pk2(ν) from (3.12), we get

Lτ(ν)/Eτ(ν)(s/EN∗(ν)) = Lτ(ν)

( s
EN∗(ν)Eτ(ν)

)
= ∑

k∈K∗

pk(ν)

p∗(ν)
LTk(ν)

( s
EN∗(ν)Eτ(ν)

)
= ∑

k∈K∗

ENk(ν)

EN∗(ν)
LTk(ν)/ETk(ν)

( sETk(ν)

EN∗(ν)Eτ(ν)

)
.

From the definition of γk in (3.3) and the identity in distribution (3.18), by
means of (3.11) and (3.12), we can see that

γk = lim
ν→∞

ENk(ν)ETk(ν)

EN∗(ν)Eτ(ν)
, k ∈ K∗, (3.24)

which shows that, as claimed at the end of Section 3.1, γk equals the asymp-
totic fraction of time that the activity process spends in the branch Bk during
the transition from 0 to (k2, l2) as ν→ ∞. For k ∈ K∗, define

hk(ν) :=
ETk(ν)

EN∗(ν)Eτ(ν)
, (3.25)

and note that limν→∞ hk(ν) = γk/βk. Indeed, it follows from (3.20) and (3.24)
that

lim
ν→∞

hk(ν) = lim
ν→∞

ETk(ν)

EN∗(ν)Eτ(ν)
= lim

ν→∞

ENk(ν)ETk(ν)

EN∗(ν)Eτ(ν)

1
ENk(ν)

=
γk
βk

.

Combining (3.22)-(3.25) yields

LB(ν)/EB(ν)(s)

=
[
1 +

(
1−Lτ(ν)/Eτ(ν)(s/EN∗(ν))

)
EN∗(ν)

]−1

=

[
1 +

(
1− ∑

k∈K∗

ENk(ν)

EN∗(ν)
LTk(ν)/ETk(ν)

( sETk(ν)

EN∗(ν)Eτ(ν)

))
EN∗(ν)

]−1

=

[
1 +

(
EN∗(ν)− ∑

k∈K∗
ENk(ν)LTk(ν)/ETk(ν)

(shk(ν))
)]−1

=

[
1 + ∑

k∈K∗
ENk(ν)

(
1−LTk(ν)/ETk(ν)

(shk(ν))
)]−1

. (3.26)

In order to obtain an explicit expression for LB(ν)/EB(ν)(s) as ν→ ∞, we need
the following technical lemma, which is proved in Appendix 3.C.
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Lemma 3.4.3. The following statements hold:

(i) If k ∈ N , then

lim
ν→∞

ENk(ν)
(

1−LTk(ν)/ETk(ν)
(shk(ν))

)
= 0.

(ii) If k ∈ A, then

lim
ν→∞

ENk(ν)
(

1−LTk(ν)/ETk(ν)
(shk(ν))

)
=

γks
1 + γks/βk

.

(iii) If k ∈ S , then

lim
ν→∞

ENk(ν)
(

1−LTk(ν)/ETk(ν)
(shk(ν))

)
= γks.

From Lemma 3.4.3 and (3.26) it follows that

LW(s) = lim
ν→∞
LB(ν)/EB(ν)(s) =

[
1 + ∑

k∈A

γks
1 + γks/βk

+ ∑
k∈S

γks

]−1

.

The independence of Y and W easily follows from the independence of the
corresponding terms in the stochastic representation (3.10).

3.4.4 The random variable W: Properties and interpretation

The random variable W is defined by its Laplace transform, see (3.21). We re-
mark that the shape of the distribution W is fully determined by the branches
in A and S , independently of the branches in N . Indeed the random variable
W can be represented as

W d
= (1− γN )W,

where W is a unit-mean random variable that in no way depends on the
parameters of the branches in the set N . On the other hand, the presence
of the factor (1− γN ) reflects the fact that the branches in N do affect the
mean of the asymptotic scaled transition time: Indeed convergence of the first
moments holds if and only if α = 1 or N = ∅. Indeed,

αEY + (1− α)EW = α + (1− α)(1− γN ),

and, if N 6= ∅, then γN > 0 and so α EY + (1− α)EW < 1 when α 6= 1.
Whenever either A or S is empty, the distribution of W is known explicitly,

cf. Table 3.1. However, also in the scenario where both A and S are non-empty,
it is still possible to give an interpretation of the distribution of W. If A 6= ∅,
define m := |A| and label the branches belonging to A as 1, 2, . . . , m. Let
βA := ∑m

k=1 βk ∈ (0, ∞) be the asymptotic mean number of visits to attracting
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branches as ν → ∞. Consider a hyper-exponentially distributed random vari-
able H with rates βk/γk and probabilities βk/βA, k = 1, . . . , m, whose Laplace
transform is

LH(s) =
m

∑
k=1

βk
βA

βk/γk
βk/γk + s

.

Furthermore, consider a marked Poisson process with rate λ = βA/γS
and i.i.d. marks distributed according to H. The random variable W in (3.21)
corresponds to the sum of a random time T , with T exponentially distributed
with mean 1/µ = γS , and the total size W(T ) of the marks associated with
all the events in interval [0, T ]. Indeed

LT +W(T )(s) =
∫ ∞

t=0
e−ste

λt
(

∑m
k=1

βk
βA

βk/γk
βk/γk+s−1

)
µe−µt dt

=

[
1 +

λ

µ

(
m

∑
k=1

βk
βA

βk/γk
βk/γk + s

)
+

s
µ

]−1

=

[
1 + βA

(
m

∑
k=1

βk
βA

s
βk/γk + s

)
+ sγS

]−1

=

[
1 + ∑

k∈A

γks
1 + γks/βk

+ sγS

]−1

.

The stochastic equality W d
= T +W(T ) may be interpreted as follows. De-

fine pA := ∑k∈A pk(ν) and pS := ∑k∈S pk(ν). The total number of visits dur-
ing the transition time to the branches in S is geometrically distributed with
parameter pk2 /pS . Since the durations of these visits are independent and
each relatively short compared to the transition time, the total normalized
amount of time spent in the branches in S is exponentially distributed in the
limit as ν→ ∞ with mean γS . The visits to the branches in S are interspersed
with visits to the branches inA. The number of visits to branches in S between
two consecutive visits to branches in A is geometrically distributed with pa-
rameter pA/pS . The normalized durations of the visits to the branches in A
have the hyper-exponential distribution H as specified above. By similar ar-
guments as mentioned above, the normalized amounts of time between these
visits are independent and exponentially distributed in the limit as ν → ∞
with mean γS · pk2 /pA = γS/βA. In other words, the visits to the branches in
A occur as a Poisson process with rate λ = βA/γS .

3.4.5 An overview of the possible limiting distributions

In this subsection we present an overview of all the possible limiting distribu-
tions of the scaled transition time by means of Table 3.1.

The case α = 1 always yields asymptotic exponentiality: This happens when
the escape time from branch Bk1 dominates the total transition time. As soon
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as α 6= 1, the set of dominant branches starts to play an important role. In par-
ticular, the shape of the asymptotic distribution depends only on the branches
in the sets A and S and changes substantially whenever one of these two sub-
sets (or both) are empty. In the case α = 0 a diverse range of behaviors may
occur, with asymptotic exponentiality only in a somewhat degenerate spe-
cial case 1c. The behavior for α ∈ (0, 1) is just a weighted combination of
the extreme cases α = 0 and α = 1, as described in Theorem 3.2.2. It does
not give rise to fundamentally different behavior, but interestingly enough, it
does yield asymptotic exponentiality in some very special cases.

If all nodes have the same activation rate, then without loss of generality, we
may assume fk(ν) = ν, k = 1, . . . , K. Under this homogeneity assumption, the
sizes of components become crucial. Indeed, if one defines L∗ := maxk 6=k2 Lk
to be the size of the largest component, then K∗ = {k 6= k2 : Lk = L∗}. In this
case the orders of magnitude of the two dominant terms defined in (3.17) of
the stochastic representation (3.10) are

EA(ν) = ET(k1,1)
0 (ν) ∼ νLk1

−1

Lk1

, as ν→ ∞,

and

EB(ν) = E

(
∑

k∈K∗

Nk(ν)

∑
i=1

T(k,1)
0 (i)

)
∼ |K∗|

νL∗−1

Lk2

, as ν→ ∞,

and hence for 1 ≤ l1 ≤ Lk1 , 1 ≤ l2 ≤ Lk2 and k1 6= k2,

ET(k1,l1)
(k2,l2)

(ν) ∼
(
1{k1∈K∗}

L∗
+
|K∗|
Lk2

)
νL∗−1, as ν→ ∞. (3.27)

Moreover, βk/γk = (1− α)/α for every k ∈ A and thus only two possible
scenarios can occur, namely 1b* and 2b***. The discriminating factor between
these two scenarios is the value of α. More specifically, if k1 /∈ K∗, then α = 0
and thus we are in scenario 1b*. If instead k1 ∈ K∗, then α = Lk2 /(|K∗|L∗),
which means that scenario 2b*** occurs and hence asymptotic exponentiality
arises.

In Table 3.1, we denote by (Hi)i∈N a sequence of i.i.d. hyper-exponential

random variables, i.e. Hi
d
= H (see the definition of H in Subsection 3.4.4),

while G is a geometric random variable G d
=Geo

( 1
1+βA

)
, independent of all

the other random variables.
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To illustrate the range of possible limiting distributions, we present some
simulation results. We consider the simplest system that is sufficiently rich to
show the wide range of behaviors presented in Table 3.1. Specifically, we con-
sider a complete 3-partite network, whose three components have sizes L1, L2
and L3, and assume that the process starts in state (1, L1) and the target state
is (3, L3). We use activation rates of the form fk(ν) = νak . For compactness,
we write a for (a1, a2, a3) and L for (L1, L2, L3). This choice for the activation
rates allows to invert the Laplace transform of W in all the cases and thus
obtain a probability density function f (x), which can be compared with the
simulation data. All simulations have been performed choosing the parameter
ν = 150 and simulating the transition time for each network 20000 times with
a customized code written in the programming language C. The results are
shown in Figures 3.3 and 3.4.
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Figure 3.3: Plots of the empirical probability density function of the scaled transition
times and the density f (x) of αY + (1− α)W
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Figure 3.4: Plots of the empirical probability density function of the scaled transition
times and the density f (x) of αY + (1− α)W
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3.5 delay bounds revisited

In the special case in which the K components V1, . . . , VK of the conflict graph
G have all equal size |Vj| = · · · = |VK| = L = N/K, G is a symmetric partite
network (see the definition in Section 2.2). We further assume, only in this
section, that all nodes have the same activation rate, i.e. fk(ν) = ν for every
k = 1, . . . , K, so that we are back in the framework of Chapter 2.

After having identified ν = σ, it immediately follows from (3.27) that
Γ(G) = N/K− 1 and in this way we obtain the lower bound for the long-term
average delay on complete K-partite graphs presented in Section 2.4, namely

EW(ρ) &
(

1
1− ρ

)N/K−1
, as ρ ↑ 1.

However, using (3.27) and the structure of this conflict graph, we can sharpen
this lower bound. Firstly, a careful inspection of the proof of Theorem 2.5.1
shows that the inequality

EW(ρ) ≥ K− 1
2(K− ρ)

ET(k1,L)
(k2,L) (ν)

holds in fact for any activation rate ν > 0 and not only in the limit ν → ∞.
Furthermore, from (3.27) it follows that

ET(k1,L)
(k2,L) (σ) ∼

K2

N
σN/K−1, as σ→ ∞. (3.28)

Theorem 2.5.1 then yields

lim inf
σ→∞

EW(σ)

ET(k1,L)
(k2,L) (σ)

≥ K− 1
2(K− ρ)

K2

N
σN/K−1,

and, in view of Proposition 2.4.3, the long-term average delay EW(ρ) at any
node scales as ρ ↑ 1 at least as

(K− 1)
2(K− ρ)

K2

N

(
1

1− ρ
− N

K

) N
K −1

. (3.29)

A similar result for the long-run average delay can be deduced from [20, The-
orem 2], namely that for every ρ ∈ (0, 1),

EW(ρ) ≥ (K− 1)2ρN/K+1

2NKN/K−1(K− (K− 1)ρ)

(
1

1− ρ

)N/K−1
. (3.30)

Note that the constant appearing in this inequality in front of the leading term
( 1

1−ρ )
N/K−1 is smaller than the one in (3.29), so our result is sharper. However,

inequality (3.30) holds for any load ρ ∈ (0, 1), while our result is meaningful
only asymptotically.
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3.6 throughput starvation and near-saturation

In this section we show how the results for the asymptotics of the transition
time T(k1,l1)

(k2,l2)
(ν) in Theorems 3.2.1 and 3.2.2 can be exploited to gain insight

into phenomena like throughput starvation or near-saturation. More specifi-
cally, we present the proof of Theorem 3.2.3, which gives an asymptotic lower
bound on the probability of throughput starvation, and in Subsection 3.6.1 we
prove Proposition 3.6.3, a complementary result which indicates over what
time scales throughput near-saturation occurs.

Proof of Theorem 3.2.3. Recall that in Section 3.2 we defined τk(t) as τk(t) =∫ t
0 1{X∗(s)∈Bk} ds. Observe that τk2(t(ν)) > 0 if and only if t(ν) > T(k1,l1)

(k2,1) (ν),
because the throughput of branch Bk2 remains zero until the activity process
enters Bk2 . Hence

P(τk2(t(ν)) > 0) = P
(

T(k1,l1)
(k2,1) (ν) < t(ν)

)
= P

( T(k1,l1)
(k2,1) (ν)

ET(k1,l1)
(k2,1) (ν)

<
t(ν)

ET(k1,l1)
(k2,1) (ν)

)
.

Taking the limit as ν→ ∞, Theorem 3.2.2, gives

lim
ν→∞

P(τk2(t(ν)) > 0) ≤ P(Z < ω),

and (3.6) follows.

3.6.1 Throughput near-saturation

Assume that at time t = 0 there is at least one node active in component Vk,
i.e. X(0) = (k, l) ∈ Bk. Define the total full-component active time in [0, t] as

τk[0, t] :=
∫ t

0
1{X(s)=(k,Lk)} ds,

the residual time in component Vk during [0, t] as

Rk[0, t] :=
∫ t

0
1{X(r)∈Bk ∀ r∈[0,s]} ds,

and the full-component active time contained in the residual time in Vk during
[0, t] as

τres
k [0, t] :=

∫ t

0
1{X(r)∈Bk ∀ r∈[0,s]}1{X(s)=(k,Lk)} ds.

For compactness, we have suppressed the implicit dependence on the param-
eter ν and the initial state (k, l) in the notation. From this point onwards, we
will also drop the subscript k to keep the notation light. Note that

R[0, t] d
= min{t, T(k,l)

0 } and τres[0, t] d
= τ[0, R[0, t]].
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The random variables τ[0, t], R[0, t] and τres[0, t], being particular occupancy
times, are non-decreasing in t on every sample path of the activity process
{X(t)}t≥0. Therefore, the random variables

τ[0, ∞] := lim
t→∞

τ[0, t],

R[0, ∞] := lim
t→∞

R[0, t] = T(k,l)
0 ,

τres[0, ∞] := lim
t→∞

τres[0, t]

are well defined. For 0 ≤ s ≤ t ≤ ∞, we define

τ[s, t] := τ[0, t]− τ[0, s],

R[s, t] := R[0, t]− R[0, s],

τres[s, t] := τres[0, t]− τres[0, s].

From the above definition, it is easily seen that for every sample path, τres[s, t]
provides a lower bound for both τ[s, t] and R[s, t], as stated in the next lemma.

Lemma 3.6.1. For 0 ≤ s ≤ t ≤ ∞, τres[s, t] ≤ τ[s, t] and τres[s, t] ≤ R[s, t].

Proof. Rearranging terms, both the differences τ[s, t] − τres[s, t] and R[s, t] −
τres[s, t] can be written as integrals with a non-negative integrand.

In particular, Lemma 3.6.1 implies that, for every 0 ≤ s ≤ t ≤ ∞

Eτres[s, t] ≤ ER[s, t]. (3.31)

However, as stated in the next lemma, in the limit as ν → ∞, the ratio of the
expected values of τres[0, ∞] and T(k,l)

0 = R[0, ∞] converges to 1.

Lemma 3.6.2. For any initial state X(0) = (k, l) ∈ Bk,

lim
ν→∞

Eτres[0, ∞]

ET(k,l)
0

= 1.

Proof. Since the ratio is clearly less than 1 by (3.31), it suffices to show that the
liminf as ν → ∞ is larger than 1. Applying the result in [131] and using (3.2),
one obtains that for every 1 ≤ l ≤ Lk, if X(0) = (k, l), then

Eτres[0, ∞] = E
( ∫ T(k,l)

0

0
1{X(s)=(k,Lk)} ds

)
≥ 1

Lk
fk(ν)

Lk−1,

and thus, involving (3.7),

lim inf
ν→∞

Eτres[0, ∞]

ET(k,l)
0

≥ lim inf
ν→∞

fk(ν)
Lk−1/Lk

ET(k,l)
0

= 1.
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The next proposition establishes a near-saturation property in the sense that
if X(0) = (k, l) ∈ Bk, then for any time period t(ν) = o(ET(k,l)

0 ) every node
in component Vk will be active an arbitrarily large fraction of the time with
probability one as ν→ ∞.

Proposition 3.6.3 (Throughput near-saturation). Suppose that X(0) = (k, l) ∈
Bk and that T(k,l)

0 /ET(k,l)
0

d−→ Z as ν → ∞. Then for every ω ∈ [0, 1] and every
δ > 0,

lim inf
ν→∞

P
(

τ[0, ωET(k,l)
0 ] ≥ (1− δ)ωET(k,l),0

)
≥ P(Z ≥ ω).

In particular, for any t(ν) = o(ET(k,l)
0 (ν)),

lim inf
ν→∞

P
(

τ[0, t(ν)] ≥ (1− δ)t(ν)
)
= 1.

Remark. As mentioned earlier, the hypothesis that T(k,l)
0 /ET(k,l)

0
d−→ Z is not

just a convenient assumption, but something that we actually know. In particu-
lar, Proposition 3.3.6 says that Z d

=Exp(1). Moreover, since the result holds for
every initial state in Bk, it is true also for a random initial state in Bk. Indeed,
as seen in Section 3.3, the convergence in distribution of T(k,l)

0 (ν)/ET(k,l)
0 (ν)

to Z as ν→ ∞ does not depend on the initial state, as long as it belongs to Bk.

Proof. We abbreviate in this proof the hitting time T(k,l)
0 as T. First, Lemma 3.6.1

implies that

P(τ[0, ωET] ≥ (1− δ)ωET) ≥ P(τres[0, ωET] ≥ (1− δ)ωET).

Moreover, by definition of R[0, t] = min{t, T}, we have

P(R[0, ωET] ≥ ωET) = P(T ≥ ωET).

In view of the assumption that T(ν)/ET(ν) d−→ Z as ν → ∞, it therefore suf-
fices to prove that for every ω ∈ [0, 1] and every δ > 0,

lim inf
ν→∞

P(τres[0, ωET] ≥ (1− δ)ωET) ≥ lim inf
ν→∞

P(R[0, ωET] ≥ ωET).

Suppose that this latter statement is false, i.e. there exist ω0 ∈ [0, 1], δ > 0 and
η > 0 such that

lim inf
ν→∞

P(τres[0, ω0ET] ≥ (1− δ)ω0ET) ≤ lim inf
ν→∞

P(R[0, ω0ET] ≥ ω0ET)− η.

(3.32)

Then it can be shown that there exists εω0,δ > 0 such that

lim inf
ν→∞

Eτres[0, ω0ET]
ET

≤ lim inf
ν→∞

ER[0, ω0ET]
ET

− εω0,δ. (3.33)
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Indeed,

lim inf
ν→∞

(
ER[0, ω0ET]

ET
− Eτres[0, ω0ET]

ET

)
= lim inf

ν→∞

∫ ∞

0
P
(R[0, ω0ET]

ET
≥ y

)
−P

(τres[0, ω0ET]
ET

≥ y
)

dy

≥ lim inf
ν→∞

∫ ω0

(1−δ)ω0

P
(R[0, ω0ET]

ET
≥ y

)
−P

(τres[0, ω0ET]
ET

≥ y
)

dy

≥
∫ ω0

(1−δ)ω0

lim inf
ν→∞

(
P
(R[0, ω0ET]

ET
≥ y

)
−P

(τres[0, ω0ET]
ET

≥ y
))

dy

≥ ηδω0 > 0,

where the third last inequality is a consequence of Lemma 3.6.1, the second
last inequality follows from the generalized Fatou’s lemma, while the last
inequality follows from (3.32) and is illustrated by Figure 3.5. Thus we can
take εω0,δ := ηδω0. Equation (3.31) yields

(1− δ)ω0
ω0

η

y

Figure 3.5: P(τres[0, ω0ET]/ET ≥ y) (lower line) and P(R[0, ω0ET]/ET ≥ y) (upper
line)

lim inf
ν→∞

Eτres[ω0ET, ∞]

ET
≤ lim inf

ν→∞

ER[ω0ET, ∞]

ET
, (3.34)

and thus, summing term by term (3.33) and (3.34) and using the fact that
ER[0, ∞] = ET by definition, we get

lim inf
ν→∞

Eτres[0, ∞]

ET
≤ lim inf

ν→∞

ER[0, ∞]

ET
− εω0,δ = 1− εω0,δ,

which contradicts Lemma 3.6.2.
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3.7 mixing times

In the previous sections we have analyzed the transient behavior of the aggre-
gated Markov process {X∗(t)}t≥0 in terms of hitting times and we have shown
how this leads to starvation of individual nodes over certain time scales. In
this section we turn attention to the long-run behavior of the Markov process
{X∗(t)}t≥0 and in particular examine the rate of convergence to the stationary
distribution. We measure the rate of convergence in terms of the total varia-
tion distance and the so-called mixing time, which describes the time required
for the distance to stationarity to become small.

The mixing time becomes particularly relevant when the network has two
or more dominant components which together attract the entire probability
mass in the limit as ν → ∞. Indeed, in this case, the mixing time provides an
indication of how long it takes the activity process to reach a certain level of
fairness among the dominant components. We will prove a lower bound for
the mixing time using the notion of conductance.

Define Pt
ν(x, y) := P(X∗(t) = y | X∗(0) = x) and denote by Pt

ν(x, ·) the dis-
tribution at time t of the Markov process {X∗(t)}t≥0 started at time 0 in x.
We will also use the notation µPt

ν to denote the distribution at time t of the
Markov process {X∗(t)}t≥0 with initial distribution µ at time 0. The maxi-
mal distance over x ∈ X ∗, measured in terms of total variation, between the
distribution at time t and the stationary distribution π(ν) is defined as

d(t, ν) := max
x∈X ∗

‖Pt
ν(x, ·)− π·(ν)‖TV.

Define the mixing time of the process {X∗(t)}t≥0 as

tmix(ε, ν) := inf{t ≥ 0 : d(t, ν) ≤ ε}.
For a fixed r ∈ (0, 1) consider the subset K̃(r) of branches whose stationary
probability is asymptotically no more than r, i.e.

K̃(r) := {k : lim
ν→∞

πBκ
(ν) ≤ r}.

Define κ = κ(r) as the index corresponding to the branch Bκ which has asymp-
totically the largest mean escape time among those in K̃(r), i.e. such that for
every j ∈ K̃(r),

lim
ν→∞

ET(κ,1)
0 (ν)

ET(j,1)
0 (ν)

= lim
ν→∞

Lj fκ(ν)Lκ−1

Lκ f j(ν)
Lj−1 ≥ 1. (3.35)

The next result shows that the mixing time is asymptotically at least of the
same order of magnitude as the escape time from branch Bκ .

Proposition 3.7.1 (Activity process mixing time). For any r ∈ (0, 1) and ε ∈
(0, 1− r), there exists a constant Cε,r > 0 such that

tmix(ε, ν) & Cε,r
fκ(ν)Lκ−1

Lκ
, as ν→ ∞.
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Proposition 3.7.1 shows that it can take an extremely long time for the pro-
cess {X∗(t)}t≥0 to reach stationarity, especially when ν is large. Such a long
mixing time is typically due to the activity process being stuck for a consider-
able period in one of the components, and thus not visiting the states in the
other components. In fact, the statement of the proposition can be rewritten
as

tmix(ε, ν) & Cε,rET(κ,1)
0 (ν), as ν→ ∞.

We will prove Proposition 3.7.1 exploiting the presence of a bottleneck in the
state space and using the notion of conductance.

For any subset S ⊆ X ∗, let πS(ν) = ∑s∈S πs(ν) be the stationary probability
of the subset S. Define the probability flow out of S as

QS,Sc(ν) := ∑
s∈S,s′∈Sc

πs(ν)q(s, s′),

where q(s, s′) is the transition rate between states s, s′ ∈ X for the aggregated
process {X∗(t)}t≥0 introduced in Section 3.1. Define moreover the conductance
of S ⊆ X ∗ as

ΦS(ν) :=
QS,Sc(ν)

πS(ν)
.

The conductance profile of the process {X∗(t)}t≥0 is defined as

Φr(ν) := min
S⊂X : πS(ν)≤r

ΦS(ν).

The following result, valid for any Markov process on a finite state space
X ∗ with conductance profile Φr, shows how the conductance of the process
yields a lower bound on the mixing time. It is a continuous-time version of [99,
Theorem 7.3] and the proof is relegated to Appendix 3.D.

Lemma 3.7.2. For any r ∈ (0, 1) and any ε ∈ (0, 1− r),

tmix(ε, ν) ≥ 1− r− ε

Φr(ν)
.

In order to get a sharp bound for the conductance and hence a sharp lower
bound for the mixing time, we need to identify a subset S with low conduc-
tance. As proved in [93], it suffices to look at the connected subsets of the state
space. Therefore the branches in K̃(r) become good candidates for being the
lowest-conductance subsets of X ∗. From (3.2) it follows that for any state (k, l)
in branch Bk with l < Lk,

π(k,l)(ν)

π(k,Lk)
(ν)

=

(
Lk
l

)
f (ν)l−Lk , as ν→ ∞.
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Using this fact, we obtain the following asymptotic estimate for the conduc-
tance of branch Bk as ν→ ∞

ΦBk (ν) =
π(k,1)(ν) · 1

∑Lk
l=1 π(k,l)(ν)

=

π(k,1)(ν)

π(k,Lk)
(ν)

∑Lk
l=1

π(k,l)(ν)

π(k,Lk)
(ν)

≥
π(k,1)(ν)

π(k,Lk)
(ν)
∼ Lk fk(ν)

1−Lk .

Thanks to the definition (3.35) of κ = κ(r), πBk (ν) ≤ r. Since by definition
Φr(ν) ≤ ΦBk (ν), the asymptotic estimate for ΦBk (ν) and Lemma 3.7.2 imply
that for every ε ∈ (0, 1

4 ) and for ν sufficiently large

tmix(ε, ν) & (1− r− ε)
fκ(ν)Lκ−1

Lκ
, as ν→ ∞,

which completes the proof of the lower bound claimed in Proposition 3.7.1.

3.8 model extensions

So far we have assumed that two nodes interfere if and only if they belong
to different components. In this section, we continue to assume that nodes
that belong to different components interfere, but we allow nodes within the
same component to interfere as well. If two or more nodes within component
Vk interfere with each other, there will be fewer admissible activity states
of smaller size. In particular, it is not longer the case that all the Lk nodes
of component Vk can be active simultaneously, which makes the transition
between different components potentially faster.

The components are assumed to be minimal, in the sense that they cannot
be split into two non-trivial components, while retaining the full interference
across components. As before, each independent set of the conflict graph must
be a subset of one of the components, because two nodes that belong to dif-
ferent components by definition interfere. However, some subsets within the
same component may no longer be independent sets in the conflict graph.

In the previous sections, we further assumed all nodes within the same com-
ponent to have the same activation rate, so that state aggregation could be ap-
plied to obtain an equivalent Markov process with a star-shaped state space.
In this section, we allow the nodes within the same component to have pos-
sibly different activation rates. With minor abuse of notation, denote by fl(ν)
the activation rate of node l, and define Fk(ν) := ∑j∈Vk

fl(ν) as the aggregate
activation rate of all nodes in the k-th component. Due to this heterogeneity,
it is not possible anymore to aggregate activity states with equal number of
active nodes in a component as we did in Section 3.1. Hence, we go back to
the setting of Subsection 1.2.2 and consider the activity process {X(t)}t≥0 on
the state space X . In particular, an activity state x ∈ X is a N-dimensional 0-1
vector.
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For every x ∈ X define Ix ⊆ V to be the subset of nodes which are active in
state x, i.e.

Ix := {i ∈ V : xi = 1}.
For every x ∈ X , Ix is by construction an independent set in the conflict graph
G. Define moreover Xk := {x ∈ X : Ix ⊆ Vk, x 6= 0}. Then

X = {0} ∪
⋃

k∈K

Xk.

Each component satisfies the following monotonicity property: If Ix ∈ Xk,
then for every nonempty Iy ⊆ Ix, we have Iy ∈ Xk. Indeed, if x is an admis-
sible state and it belongs to Xk, then any state obtained from it by switching
off some nodes is still admissible and belongs to Xk as well. The next lemma
shows that between any pair of activity states corresponding to the same com-
ponent, there continues to exist a path which does not visit the state 0 ∈ X .

Lemma 3.8.1. If x, y are two admissible states in Xk both with at least one active
node, then there exists a path in Xk from x to y that does not pass through the state
0 ∈ X , i.e. a finite sequence ω = (ω1, . . . , ωn) of admissible states with ω1 = x,
q(ωj, ωj+1) > 0 for every j = 1, . . . , n− 1 and ωn = y such that 0 6∈ ω.

Proof. Consider the two independent sets Ix and Iy corresponding to the activ-
ity states x and y, respectively. Since x, y ∈ Xk and they both have at least one
active node, it follows that Ix, Iy ⊆ Vk and that Ix, Iy 6= ∅. If Ix ∩ Iy 6= ∅, then
the statement is trivially true. Suppose instead that Ix ∩ Iy = ∅ and without
loss of generality take Ix = A and Iy = B. Since all singletons {a}, a ∈ A, and
{b}, b ∈ B, are subsets of Vk, thanks to the monotonicity property of Vk we
have that each one of the corresponding activity states 1{a}, a ∈ A, and 1{b},
b ∈ B is admissible and can be reached starting from x and y, respectively,
without passing through the state 0 ∈ X . If there exists two states, a ∈ A and
b ∈ B such that a does not interfere with b, then the activity state 1{a,b} would
be admissible and we can construct a path from x to y which does not pass
through state 0, namely

x = 1A → · · · → 1{a} → 1{a,b} → 1{b} → · · · → 1B = y.

Consider now the case where every node in A interferes with every node in B
and denote by C the subset Vk \ (A ∪ B). Furthermore, define CA ⊆ C as the
collection of the nodes c ∈ C that interfere with all the nodes in A and define
CB ⊆ C analogously. We claim that every c ∈ C interferes either with all the
nodes in A or with all the nodes in B, i.e.

C = CA ∪ CB.

Indeed, if there exist a ∈ A, b ∈ B such that both a and b do not interfere with
c, then we could construct a path from x to y which does not pass through
state 0, namely

x = 1A → · · · → 1{a} → 1{a,c} → 1{c} → 1{b,c} → 1{b} → · · · → 1B = y.
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Furthermore,

C 6= CA ∩ CB,

since otherwise all nodes in C would interfere with all nodes in A and in B
and Vk could be split into C and A ∪ B, violating the minimality assumption.
Hence, one of the two sets CA \ CB or CB \ CA is not empty, say CA \ CB
without loss of generality. Also the other subset CB \ CA is not empty, since
otherwise we could split Vk into A and Vk \ A.

If all nodes in CA interfere with all nodes in CB, then A ∪ CB and B ∪ CA
would be a non-trivial split of the component Vk, thus there exists two nodes,
ca ∈ CA and cb ∈ CB, that do not interfere with each other. But then we can
construct a path

x = 1A → · · · → 1{cb} → 1{ca ,cb} → 1{ca ,cb} → · · · → 1B = y,

which does not pass through the state 0 ∈ X .

State 0 ∈ X continues to be a bottleneck state which must be visited along
any path between activity states corresponding to different components. For a
node l ∈ V, denote by el the activity state in X where only the node l is active.
Clearly, l ∈ Vk if and only if el ∈ Xk. Recall that for any two states x, y ∈ X we
denoted by Tx

y the first hitting time of state y starting in state x for the activity
process {X(t)}t≥0.

Let x, y ∈ X be two activity states, with Ix ⊆ Vk1 and Iy ⊆ Vk2 , k1 6= k2. In
order to give a stochastic representation of the transition time Tx

y , similar in
spirit to (3.10), we define the following random variables for l ∈ V \ ({0} ∪
Vk2):

• Nl(ν): number of times the process makes a transition 0 → el ∈ Xk,
k 6= k2, before the first transition to Vk2 occurs;

• T̂0
el
(i): time spent in state 0 before the i-th transition to state el ∈ Xk, with

k 6= k2, i = 1, . . . , Nl(ν);

• Tel
0 (i): time to return to state 0 after the i-th transition to state el ∈ Xk,

with k 6= k2, i = 1, . . . , Nl(ν).

Moreover, for l ∈ Vk2 , define T̂0
el
(ν) as the time spent in state 0 before the first

transition to state el ∈ Xk2 . Lemma 3.8.1 implies that the transition time Tx
y

may be represented as

Tx
y = Tx

0 + ∑
k 6=k2

∑
l∈Vk

Nl

∑
i=1

(T̂0
el
(i) + Tel

0 (i)) + ∑
l∈Vk2

Il(T̂0
el
+ Tel

y ), (3.36)

where Il , l ∈ Vk2 , are 0-1 variables with ∑l∈Vk2
Il = 1 and P(Il = 1) =

fl(ν)/Fk2(ν), l ∈ Vk2 , and the variables Tel
0 , l ∈ Vk, are transition times when
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considering the component Vk in isolation. Moreover, in the above representa-
tion the dependence on the parameter ν is suppressed for compactness and all
the random variables representing time durations are mutually independent
as well as independent of the random variables Nl(ν), l ∈ V \ ({0} ∪Vk2).

In order to determine the asymptotic behavior of the transition time Tx
y (ν)

as ν → ∞, we now proceed to analyze the asymptotic behavior of the escape
times Tel

0 , l ∈ Vk, in the stochastic representation. Unless stated otherwise, we
henceforth let z ∈ Xk and focus on the Markov process {X(t)}t≥0 restricted
to the state space X+

k = Xk ∪ {0}.
The steady-state probability of a state u ∈ X+

k is

πu(ν) =
1

Zk(ν)
∏
l∈Vk

fl(ν)
ul ,

with normalization constant

Zk(ν) = ∑
u′∈X+

k

∏
l∈Vk

fl(ν)
u′l .

Define

gk(ν) := max
u∈Xk

∏
l∈Vk

fl(ν)
ul and ηk := min

l∈Vk
lim

ν→∞
logν fl(ν).

We make the mild technical assumptions that η ∈ (0, ∞) and that ψk =
limν→∞ Zk(ν)/gk(ν) exists. Then the following two asymptotic properties of
the escape time Tz

0 (ν) can be established:

ETz
0 (ν) ∼

ψkgk(ν)

Fk(ν)
, as ν→ ∞, (3.37)

and

Tz
0 (ν)

ETz
0 (ν)

d−→ Exp(1), as ν→ ∞. (3.38)

In order to provide a brief sketch of the proof arguments, we first introduce
some further useful notation. Let Nz,0(ν) be a random variable representing
the number of visits to state 0 in between two consecutive visits to state z. Let
Rz(ν) be the residence time in state z and T+

z,z(ν) the first return time to state z.
Noting that

πz(ν) =
ERz(ν)

ET+
z,z(ν)

, ERz(ν) ≤ 1 and πz(ν) =
1

Zk(ν)
∏
l∈Vk

fl(ν)
zl ,

we obtain

νηET+
z,z(ν)

ψkgk(ν)
=

νηERz(ν)

πz(ν)ψkgk(ν)
≤ νη

∏
l∈Vk

fl(ν)zl

Zk(ν)

ψkgk(ν)
= o(1), as ν→ ∞.
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Using similar arguments as in [118], it may be shown that

P
(

Tu
z (ν) > gk(ν)ν

−ηk/2
)
≤ r < 1

for all states u with Iu ∈ Bk, implying (by the strong Markov property)

P
(

Tu
z (ν) > ngk(ν)ν

−ηk/2
)
≤ rn,

and that P
(

T0
z (ν) < T+

0,0(ν)
)
≥ s(ν), with s(ν) → 1 as ν → ∞. This means

that after a visit to state 0, the number of additional visits to that state before
the first visit to state z is stochastically bounded from above by a geometrically
distributed random variable with parameter 1− s(ν). This implies

ENz,0(ν) ∼ P
(

Nz,0(ν) ≥ 1
)

as ν→ ∞. (3.39)

It may then be deduced that the distribution of T+
z,z(ν) satisfies the uniform

integrability condition in [62] and [62, Theorem 1] then yields the asymptotic
exponentiality property in (3.38) and

ETz
0 (ν) ∼

ET+
z,z(ν)

P
(

Nz,0(ν) ≥ 1
) .

Observing that

π0(ν)

ER0(ν)
= ENz,0(ν)

πz(ν)

ERz(ν)
,

and invoking (3.39), we deduce that the term in the right-hand side asymptot-
ically behaves as

ET+
z,z(ν)πz(ν)ER0(ν)

π0(ν)ERz(ν)
=

ER0(ν)

π0(ν)
=

Zk(ν)

Fk(ν)
∼ ψkgk(ν)

Fk(ν)
,

yielding (3.37) as stated.

The two asymptotic properties (3.37) and (3.38) for the order of magnitude
and the scaled distribution of the escape time Tz

0 (ν) mirror those stated in (3.7)
and Proposition 3.3.6. Using these two properties and the stochastic represen-
tation (3.36), similar results can be established for the asymptotic behavior of
the transition time Tx

y (ν) as in Theorems 3.2.1 and 3.2.2. For any l ∈ Vk, define

Θl(ν) =
fl(ν)gk(ν)

Fk(ν)
.

In this case the set K∗ needs to be defined as those l ∈ ⋃
k 6=k2

Vk such that
limν→∞ Θl(ν)/Θm(ν) > 0 for all m ∈ ⋃

k 6=k2
Vk. Also, additional conditions

need to be imposed in order to ensure that

∑
l∈Vk2

fl(ν)

Fk2(ν)
ETel

y (ν) = o(ETx
y (ν)), as ν→ ∞,



3.8 model extensions 91

which guarantees that the expected time to reach state y, once the process hits
the target component Vk2 , is asymptotically small with respect to the overall
transition time Tx

y (ν).

appendix

3.a Proof of Lemma 3.3.3

We will prove a slightly more general version of Lemma 3.3.3, assuming the
rates of the process are those described in Subsection 3.3.3. Order the state
space as X ∗ = {L, L− 1, . . . , 1, 0} and consider the generator matrix Q(ν) of
the process {X(t)}t≥0 with 0 an absorbing state. That is,

Q(ν) =



qL dL 0 . . . 0

aL−1 f (ν) qL−1 dL−1 0

0 aL−2 f (ν) qL−2 dL−2 0

...
. . . . . . . . .

0 a1 f (ν) q1 d1

0 . . . 0 0 0 0


,

where the diagonal elements are ql(ν) = −al f (ν) − dl for l = 1, . . . , L1 and
qL(ν) = −dL. The matrix Q(ν) can be written as

Q(ν) =

(
T(ν) t(ν)

0T 0

)
,

where T(ν) is an L × L invertible matrix. Since the characteristic polynomi-
als of −Q(ν) and −T(ν) satisfy the relation p−Q(ν)(z) = −z p−T(ν)(z), the
spectrum of −Q(ν) consists of that of −T(ν) plus the eigenvalue zero with
multiplicity one. Denote by D(ν) the L× L diagonal matrix, whose diagonal
entries are {

√
ξl(ν)}l=L,L−1,...,1, where the ξ’s are the so-called potential coeffi-

cients, defined recursively as

ξL(ν) = 1 and ξl(ν) =
dl+1

al f (ν)
ξl+1(ν), l = L− 1, . . . , 1.

The L× L matrix G(ν) = −D(ν)1/2T(ν)D(ν)−1/2 is tridiagonal and symmet-
ric with diagonal entries Gl,l(ν) = qL−l+1(ν) and Gl,l+1(ν) = gl+1,l(ν) =

−
√

dlal−1 f (ν). Since G(ν) is similar to −T(ν), they have the same spectrum.
Denote by D(p, R) the closed disc centered in p with radius R, i.e. D(p, R) =
{z ∈ C : |z − p| ≤ R}. Consider the Gershgorin discs {Dl(ν)}L

l=1 of G(ν),
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defined as Dl(ν) := D(−ql(ν), Rl(ν)), where the radius Rl(ν) is the sum
of the absolute values of the non-diagonal entries in the L − l + 1-th row,
i.e. Rl(ν) := ∑m 6=L−l+1 |GL−l+1,m(ν)|. Then

DL(ν) = D(dL,
√

dLaL−1 f (ν)),

DL−1(ν) = D(dL−1 + aL−1 f (ν),
√

dLaL−1 f (ν) +
√

dL−1aL−2 f (ν)),

...

D2(ν) = D(d2 + a2 f (ν),
√

d3a2 f (ν) +
√

d2a1 f (ν)),

D1(ν) = D(d1 + a1 f (ν),
√

d2a1 f (ν)).

We now exploit the second Gershgorin circle theorem, which is reproduced
here for completeness.

Theorem (Gershgorin circle theorem). If the union of j Gershgorin discs of a real
r× r matrix A is disjoint from the union of the other r− j Gershgorin discs, then the
former union contains exactly j and the latter the remaining r− j eigenvalues of A.

In our case, for ν sufficiently large, the disc DL(ν) does not intersect with the
union

⋃L−1
l=1 Dl(ν), thus the smallest eigenvalue θ1(ν) lies in DL(ν) and the

other L− 1 ones in
⋃L−1

l=1 Dl(ν). Hence, for ν sufficiently large, the following
inequalities hold

θ1(ν) ≤ A + B
√

f (ν), and θi(ν) ≥ C f (ν)− D
√

f (ν), i = 2, . . . , L,

where A, B, C, D ∈ R+ and, more precisely,

A = dL, B =
√

dLaL−1, C = min
l=1,...,L−1

al and

D = max{
√

dLaL−1 +
√

dL−1aL−2, . . . ,
√

d3a2 +
√

d2a1,
√

d2a1}.

Therefore, for ν sufficiently large,

0 <
θ1(ν)

θi(ν)
≤ A + B

√
f (ν)

C f (ν)− D
√

f (ν)
,

and so limν→∞ θ1(ν)/θi(ν) = 0 for i = 2, . . . , L. Hence,

ETL
0 (ν) · θ1(ν) = 1 +

L

∑
i=2

θ1(ν)

θi(ν)
→ 1, as ν→ ∞,

while for 2 ≤ i ≤ L,

ETL
0 (ν) · θi(ν) >

θi(ν)

θ1(ν)
→ ∞, as ν→ ∞.



3.8 model extensions 93

3.b Proof of Lemma 3.3.5

The proof of statement (i) consists of a lower and an upper bound which
asymptotically coincide. Indeed, using the bounds in property (2), one obtains
that

lim inf
ν→∞

ET(ν)
EU(ν)

≥ lim inf
ν→∞

EU(ν)−EV(ν)

EU(ν)
= 1,

and

lim sup
ν→∞

ET(ν)
EU(ν)

≤ lim sup
ν→∞

EU(ν) + EW(ν)

EU(ν)
= 1.

Once again, the proof of statement (ii) consists of a lower and an upper
bound which asymptotically coincide for all the continuity points of the tail
distribution of Z, which will be denoted by F(s) = P(Z > s).

For the lower bound, argue as follows. Property (1) implies that for any
δ ∈ (0, 1), EW(ν) ≤ δEU(ν) for ν sufficiently large. Thus, using the lower
bound in property (3), for ν sufficiently large,

P
( T(ν)

ET(ν)
> t
)
≥ P

( U(ν)−V(ν)

EU(ν) + EW(ν)
> t
)

≥ P
(

U(ν)−V(ν) > EU(ν)(1 + δ)t
)

≥ P
(

U(ν) > EU(ν)(1 + 2δ)t
)
−P

(
V(ν) > δEU(ν)t

)
.

Property (3) implies that

lim
ν→∞

P
( U(ν)

EU(ν)
> (1 + 2δ)t

)
= F

(
(1 + 2δ) t

)
.

Property (1) implies that for ν sufficiently large, EV(ν) ≤ δ2EU(ν), so that

P
(

V(ν) > δEU(ν)t
)
≤ EV(ν)

δEU(ν)t
≤ δ

t
,

by Markov’s inequality. Taking liminf’s, we obtain

lim inf
ν→∞

P
( T(ν)

ET(ν)
> t
)
≥ F

(
(1 + 2δ)t

)
− δ

t
.

Letting δ ↓ 0, we find

lim inf
ν→∞

P
( T(ν)

ET(ν)
> t
)
≥ F (t) . (3.40)
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For the upper bound, argue as follows. Property (1) implies that for any
δ ∈ (0, 1), EV(ν) ≤ δEU(ν) for ν sufficiently large. Thus, using the upper
bound in property (3), for ν sufficiently large,

P
( T(ν)

ET(ν)
> t
)
≤ P

( U(ν) + W(ν)

EU(ν)−EV(ν)
> t
)

≤ P
(

U(ν) + W(ν) > (1− δ)EU(ν)t
)

≤ P
(

U(ν) > (1− 2δ)EU(ν)t
)
+ P

(
W(ν) > δEU(ν)t

)
.

Property (3) implies that

lim
ν→∞

P
( U(ν)

EU(ν)
> (1− 2δ)t

)
= F

(
(1− 2δ)t

)
.

Property (1) implies that for ν sufficiently large, EW(ν) ≤ δ2EU(ν), so that

P
(

W(ν) > δEU(ν)t
)
≤ EW(ν)

δEU(ν)t
≤ δ

t
,

by Markov’s inequality. Taking limsup’s, we obtain

lim sup
ν→∞

P
( T(ν)

ET(ν)
> t
)
≤ F

(
(1− 2δ) t

)
+

δ

t
.

Letting δ ↓ 0, we find

lim sup
ν→∞

P
( T(ν)

ET(ν)
> t
)
≤ F (t) . (3.41)

Combining (3.40) and (3.41) completes the proof.

3.c Proof of Lemma 3.4.3

Statement (i) is trivial, since 0 ≤ LTk(ν)/ETk(ν)
(s) ≤ 1 for all s ∈ [0, ∞[ and

βk = limν→∞ ENk(ν) = 0 for every k ∈ N . Statement (ii) follows immediately

after substituting βk ∈ R+ and γk ∈ (0, 1] in the limit, since Tk(ν)/ETk(ν)
d−→

Exp(1). The proof of claim (iii) is more involved and we need an auxiliary
lemma.

Let Sk(ν) := ∑
Nk(ν)
i=1 T(i)

k (ν). From the integrability of Nk(ν) and Tk(ν) it
follows that ESk(ν) = ENk(ν) ·ETk(ν). Consider the random variable

S̃(ν) = hk(ν)
Nk(ν)

∑
i=1

T(i)
k (ν)

ET(i)
k (ν)

= hk(ν)ENk(ν)
Sk(ν)

ESk(ν)
.
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Since Nk(ν) has a geometric distribution, the Laplace transform of the random
variable Sk(ν)/ESk(ν) is given by

LSk(ν)/ESk(ν)
(s) = GNk(ν)

(
LTk(ν)/ETk(ν)

(s/ENk(ν))
)

=
1

1 + (1−LTk(ν)/ETk(ν)
(s/ENk(ν))) ·ENk(ν)

,

and, hence,

LS̃(ν)(s) = LSk(ν)/ESk(ν)
(shk(ν)ENk(ν))

=
1

1 +
(

1−LTk(ν)/ETk(ν)
(shk(ν))

)
·ENk(ν)

. (3.42)

One can check that, if k ∈ S , then

(a) Nk(ν)/ENk(ν)
d−→ Exp(1), and

(b) lim
ν→∞

Var (Tk(ν)/ETk(ν))

ENk(ν)
= 0.

Claim (a) is a standard result for geometric random variables, which uses
only the fact that limν→∞ ENk(ν) = ∞ for k ∈ S . Moreover, since Tk(ν) is a
first-passage time of a birth-and-death process, using [73, Corollary 4], we can
obtain explicitly the asymptotic order of magnitude of Var(Tk(ν)) and prove
that limν→∞ Var(Tk(ν))/(ETk(ν))

2 = 1, from which claim (b) follows.
These two facts and the technical lemma below, see Lemma 3.C.1, imply

that Sk(ν)/ESk(ν)
d−→ Exp(1), and hence

lim
ν→∞
LS̃(ν)(s) = lim

ν→∞
LSk(ν)/ESk(ν)

(shk(ν)ENk(ν)) =
1

1 + sγk
.

This fact, together with (3.42), implies that

lim
ν→∞

(
1−LTk(ν)/ETk(ν)

(shk(ν))
)
·ENk(ν) = sγk,

and the proof of statement (iii) is concluded. We now state and prove the
technical lemma mentioned above.

Lemma 3.C.1. For every ν > 0, let (Xi(ν))i∈N be a sequence of i.i.d. integrable

random variables, Xi(ν)
d
= X(ν) and let N(ν) be an integer-valued random variable,

independent of all the Xi(ν)’s and integrable. Assume further that

(1) N(ν)/EN(ν)
d−→ Z as ν→ ∞, with P(Z = 0) = 0;

(2) lim
ν→∞

Var (X(ν)/EX(ν))

EN(ν)
= 0.
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Define S(ν) := ∑
N(ν)
i=1 Xi(ν). Then,

S(ν)
ES(ν)

d−→ Z, as ν→ ∞.

Proof. Wald’s identity guarantees that SN(ν) is integrable and that ES(ν) =
EN(ν)EX(ν) for every ν > 0. Hence, without loss of generality, we can as-
sume that EX(ν) = 1 and study the asymptotic distribution of S(ν)/EN(ν).
Define Sn(ν) := ∑n

i=1 Xi(ν). Note that we can rewrite

S(ν)
EN(ν)

=
S(ν)
N(ν)

N(ν)

EN(ν)
.

Now we claim that

S(ν)
N(ν)

P→ 1, as ν→ ∞. (3.43)

Indeed, for every ε > 0 we may write

P
(
|S(ν)/N(ν)−EX(ν)| > δ

)
=

∞

∑
n=0

P
(
|S(ν)/N(ν)−EX(ν)| > δ, N(ν) = n

)
=
bεEN(ν)c

∑
n=0

P(. . .) +
∞

∑
n=bεEN(ν)c+1

P(. . .)

≤
bεEN(ν)c

∑
n=0

P(N(ν) = n)

+
∞

∑
n=bεEN(ν)c+1

P
(
|S(ν)/N(ν)−EX(ν)| > δ, N(ν) = n

)
≤ P(N(ν) ≤ εEN(ν))

+
∞

∑
n=bεEN(ν)c+1

P
(
|Sn(ν)/n−EX(ν)| > δ

)
P(N(ν) = n).

Using Chebyshev’s inequality, we find that the second term is bounded from
above by

∞

∑
n=bεEN(ν)c+1

Var(X(ν))

δ2n
P(N(ν) = n)

≤ Var(X(ν))

εEN(ν)δ2

∞

∑
n=bεEN(ν)c+1

P(N(ν) = n)

≤ Var(X(ν))

εEN(ν)δ2 .
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For every ξ > 0 and every ε > 0, there exists νε,ξ > 0 such that for ν > νε,ξ ,

P(N(ν) ≤ εEN(ν)) ≤ P(Z ≤ ε) + ξ and
VarX(ν)

εEN(ν)
≤ ξ.

The first inequality follows from the fact that the c.d.f. of N(ν)/EN(ν) con-
verges pointwise to that of Z, by assumption (1). On the other hand, the
second inequality follows immediately from assumption (2). Therefore, for
ν > νε,ξ ,

P
(
|S(ν)/N(ν)−EX(ν)| > δ

)
≤ P(Z ≤ ε) + ξ +

ξ

δ2 .

Take e.g. ε = δ, ξ = δ3. Then for ν sufficiently large,

P
(
|S(ν)/N(ν)−EX(ν)| > δ

)
≤ P(Z ≤ δ) + δ3 + δ.

Letting δ ↓ 0 and using the fact that P(Z = 0) = 0, we obtain (3.43). Then
assumption (1) and Slutsky’s theorem imply the conclusion.

3.d Proof of Lemma 3.7.2

In this proof we use the same notation introduced in Section 3.6, but without
writing explicitly the dependence on ν. Denote by µS the function defined by

µS(x) :=

πx if x ∈ S,

0 otherwise.

Note that since ∑y∈X ∗ µS(y) = πS, in general µS is not a probability distri-
bution, but µS/πS always is. Denote by µS

t the distribution on X ∗ at time
t of the Markov process {X(t)}t≥0 if the initial distribution was equal to π
conditioned on being in S, i.e. µS

0 := µS/πS. For every y ∈ X ∗ we can write

µS
t (y) = ∑

x∈X ∗

µS(x)
πS

Pt(x, y) = ∑
x∈S

πx

πS
Pt(x, y). (3.44)

We now claim that

πS||µS
t − µS

0 ||TV = ∑
x∈S

∑
y∈Sc

πxPt(x, y) (3.45)

and

∑
x∈S

∑
y∈Sc

πxPt(x, y) ≤ t ·QS,Sc . (3.46)
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Let us first prove equality (3.45). A well-known characterization of the total
variation distance (see for instance [99, Remark 4.3]) states that if µ, µ′ are two
probability distributions on X ∗, then

||µ− µ′||TV = ∑
y∈X ∗ : µ(y)≥µ′(y)

[
µ(y)− µ′(y)

]
.

Applying this to the distributions µS
t and µS

0 , we get

||µS
t − µS

0 ||TV = ∑
y∈X ∗ : µS

t (y)≥µS
0 (y)

[
µS

t (y)− µS
0 (y)

]
. (3.47)

If y ∈ S, then

µS
t (y) = ∑

x∈S

πx

πS
Pt(x, y) ≤ ∑

x∈X ∗

πx

πS
Pt(x, y) =

πy

πS
= µS

0 (y),

and therefore we can restrict the sum on the right-hand side of (3.47) to the
states y ∈ Sc. Moreover, if y ∈ Sc, then by definition µS

0 (y) = 0. Therefore,

||µS
t − µS

0 ||TV = ∑
y∈Sc

µS
t (y).

By multiplying both sides of the last equality by πS and using (3.44), we get

πS||µS
t −µS

0 ||TV = πS ∑
y∈Sc

µS
t (y) = πS ∑

y∈Sc
∑
x∈S

πx

πS
Pt(x, y) = ∑

x∈S
∑

y∈Sc
πxPt(x, y),

and (3.45) is proved.
We now turn our attention to the claim in (3.46). For any x, y ∈ X ∗, define

the random variable Nx→y(t) as the number of transitions from state x to state
y during the time interval [0, t], so that

P
(

X(t) ∈ Sc | X(0) = x
)
≤ ∑

x′∈S, y′∈Sc
P
(

Nx′→y′(t) ≥ 1 | X(0) = x
)

,

from which we get that
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∑
x∈S

∑
y∈Sc

πxPt(x, y)

= ∑
x∈S

πxP
(

X(t) ∈ Sc | X(0) = x
)

≤ ∑
x∈S

πx ∑
x′∈S, y′∈Sc

P
(

Nx′→y′(t) ≥ 1 | X(0) = x
)

= ∑
x∈S

πx ∑
x′∈S, y′∈Sc

∫ t

u=0
P
(

X(u) = x′ | X(0) = x
)

q(x′, y′)du

= ∑
x′∈S, y′∈Sc

q(x′, y′)
∫ t

u=0

(
∑
x∈S

πxP
(

X(u) = x′ | X(0) = x
))

du

≤ ∑
x′∈S, y′∈Sc

q(x′, y′)
∫ t

u=0
πx′ du

= t ∑
x′∈S

∑
y′∈Sc

πx′q(x′, y′) = t ·QS,Sc ,

and (3.46) is then proved. Note that we used the fact that

∑
x∈S

πxP
(

X(u) = x′ | X(0) = x
)
≤ ∑

x∈X ∗
πxP

(
X(u) = x′ | X(0) = x

)
= ∑

x∈X ∗
πxPu(x, x′) = πx′ .

From (3.45) and (3.46) it follows that

||µS
t − µS

0 ||TV ≤ t Φ(S).

Assume that the subset S is such that πS ≤ r, with r ∈ [0, 1]. Then, since
µS(Sc) = 0,

||µS
0 − π||TV = max

A⊂X ∗
|πA − µS

0 (A)| ≥ πSc = 1− πS ≥ 1− r,

and, using the triangular inequality, we get

1− r ≤ ||µS
0 − π||TV ≤ ||µS

0 − µS
t ||TV + ||µS

t − π||TV.

Since the state space X is finite, we have the following equality for the distance
from stationarity:

d(t) = max
x∈X ∗

‖Pt(x, ·)− π(ν)‖TV = sup
µ∈P(X ∗)

‖µPt − π(ν)‖TV,

where P(X ∗) denotes the collection of all probability distributions on X ∗. By
taking µ = µS and time t = tmix(ε), by definition of mixing time, we have that
||µS

t − π||TV ≤ d(tmix(ε)) = ε and therefore

1− r ≤ tmix(ε)Φ(S) + ε.

Rearranging and minimizing over S concludes the proof.





4H I T T I N G T I M E A S Y M P T O T I C S F O R M E T R O P O L I S
M A R K O V C H A I N S

This chapter is dedicated to reversible Freidlin-Wentzel Markov chains with
Metropolis transition probabilities and, in particular, to the study of the asymp-
totic behavior of first hitting times in the low-temperature regime. The main
contribution of this chapter is the extension of the model-independent frame-
work [106] in order to obtain asymptotic results for the hitting time τx

A for
any starting state x, not necessarily metastable, and any target subset A, not
necessarily the set of stable configurations. In particular, we identify the two
crucial exponents Γ−(x, A) and Γ+(x, A) that appear in the upper and lower
bounds in probability for τx

A in the low-temperature regime. These two ex-
ponents might be hard to derive for a given model and, in general, they are
not equal. However, we obtain a sufficient condition that guarantees that they
coincide and also yields the order of magnitude of the first moment of τx

A
on a logarithmic scale. Furthermore, we give another slightly stronger condi-
tion under which the hitting time τx

A normalized by its mean converges in
distribution to an exponential random variable. This generalization is crucial
to study asymptotic properties of transition times between dominant states of
the CSMA models described in Section 1.2, which fit in this framework after
uniformization, see Subsection 1.3.2 and Chapter 7 for further details.

This chapter is structured as follows. In Section 4.1 we introduce the formal
definitions of the above-described framework and give an overview of our ap-
proach. Such an approach will be then developed in Section 4.2, in which we
present our main results. Some of the proofs are rather technical and therefore
presented later in Section 4.3.

4.1 introduction

Let X be a finite state space and let H : X → R be the Hamiltonian, i.e. a non-
constant energy function. We consider the family of Markov chains {Xβ

t }t∈N on
X with Metropolis transition probabilities Pβ indexed by a positive parameter
β

Pβ(x, y) :=

c(x, y)e−β[H(y)−H(x)]+ , if x 6= y,

1−∑z 6=x Pβ(x, z), if x = y,
(4.1)

where c : X ×X → [0, 1] is a matrix that does not depend on β. The matrix c
is the connectivity function and we assume it to be

• Stochastic, i.e. ∑y∈X c(x, y) = 1 for every x ∈ X ;
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• Symmetric, i.e. c(x, y) = c(y, x) for every x, y ∈ X ;

• Irreducible, i.e. for any x, y ∈ X , x 6= y, there exists a finite sequence ω
of states ω1, . . . , ωn ∈ X such that ω1 = x, ωn = y and c(ωi, ωi+1) > 0,
for i = 1, . . . , n− 1. We will refer to such a sequence as a path from x to
y and we will denote it by ω : x → y.

We call the triplet (X , H, c) an energy landscape. The Markov chain {Xβ
t }t∈N is

reversible with respect to the Gibbs measure

µβ(x) :=
e−βH(x)

∑y∈X e−βH(y)
. (4.2)

Furthermore, it is well-known (e.g. [29, Proposition 1.1]) that the Markov
chain {Xβ

t }t∈N is aperiodic and irreducible on X . Hence, {Xβ
t }t∈N is ergodic

on X with stationary distribution µβ.
For a nonempty subset A ⊂ X and a state x ∈ X , we denote by τx

A the first
hitting time of the subset A for the Markov chain {Xβ

t }t∈N with initial state x
at time t = 0, i.e.

τx
A := inf{t > 0 : Xβ

t ∈ A | Xβ
0 = x}.

Let X s be the set of stable states of the energy landscape (X , H, c), that is the set
of global minima of H on X . Since X is finite, the set X s is always nonempty.
Define the stability level Vx of a state x ∈ X by

Vx := min
y∈Ix

Φ(x, y)− H(x) = Φ(x, Ix)− H(x), (4.3)

where Ix := {z ∈ X : H(z) < H(x)} is the set of states with energy lower than
x and Φ(x, y) := minω:x→y maxz∈ω H(z) is the communication height between
x and y (see Subsection 4.2.1). We set Vx := ∞ if Ix is empty, i.e. when x is
a stable state. Denote by Xm the set of metastable states, which are the local
minima of H in X \ X s with maximum stability level. In symbols,

Xm := {x ∈ X : Vx = max
z∈X\X s

Vz}. (4.4)

The first hitting time τx
A is often called tunneling time when x is a stable state

and the target set is some A ⊆ X s \ {x}, or transition time from metastable to
stable when x ∈ Xm and A = X s.

4.1.1 Overview of the chapter

Hitting times for Freidlin-Wentzel Markov chains are central in the mathemat-
ical study of metastability. In the literature, several different approaches have
been introduced to study the time it takes for a particle system to reach a sta-
ble state starting from a metastable configuration. Two approaches have been
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independently developed based on large deviations techniques: The pathwise
approach, first introduced in [26] and then developed in [116, 117, 118], and the
graphical approach in [27, 28, 29, 30, 31, 135]. Other approaches to metastability
are the potential theoretic approach [21, 22, 23] and, more recently introduced,
the martingale approach [11, 12, 14], see [37] for a more detailed review.

In this thesis we follow the pathwise approach, which has already been used
to study many finite-volume models in a low-temperature regime, see [13, 34,
35, 36, 39, 40, 56, 88, 41, 42, 87, 110, 111, 113, 114], where the state space is
seen as an energy landscape and the paths which the Markov chain will most
likely follow are those with a minimum energy barrier. In [116, 117, 118] the
authors derive general results for first hitting times for the transition from
metastable to stable states, the critical configurations (or bottlenecks) that the
system visits during this transition and the tube of trajectories that the system
typically follows on its transition to the stable state. These are the three main
problems usually tackled in the study of metastability. In [106] the results on
hitting times are obtained with minimal model-dependent knowledge, since
it is only necessary to find all the metastable states and the minimal energy
barrier which separates them from the stable states.

In this chapter we generalize the classical pathwise approach [106] to study
the first hitting time τx

A for a Metropolis Markov chain for any pair of starting
state x and target subset A. The interest of extending these results to the
tunneling time between two stable states was already mentioned in [106, 118],
but our framework is even more general and we could study τx

A for any pair
(x, A).

Our analysis relies on the classical notion of a cycle, which is a maximal con-
nected subset of states lying below a given energy level. The exit time from a
cycle in the low-temperature regime is well-known in the literature [29, 30, 37,
116, 118] and is characterized by the depth of the cycle, which is the minimum
energy barrier that separates the bottom of the cycle from its external bound-
ary. The usual strategy presented in the literature to study the first hitting time
from x ∈ Xm to A = X s is to look at the decomposition into maximal cycles
(by inclusion) of the relevant part of the energy landscape, i.e. X \ X s. The
first model-dependent property one has to prove is that the starting state x is
metastable, which guarantees that there are no cycles in X \ X s deeper than
the maximal cycle containing the starting state x, denoted by CA(x). In this
scenario, the time spent in maximal cycles different from CA(x), and hence
the time it takes to reach X s from the boundary of CA(x), is comparable to or
negligible with respect to the exit time from CA(x), making the exit time from
CA(x) and the first hitting time τx

A of the same order.
In contrast, for a general starting state x and target subset A all maximal

cycles of X \ A can potentially have a non-negligible impact on the transi-
tion from x to A in the low-temperature regime. By analyzing these maxi-
mal cycles and the possible cycle-paths, we can establish bounds in probability
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for the hitting time τx
A on a logarithmic scale, i.e. obtain a pair of exponents

Γ−(x, A), Γ+(x, A) such that for every ε > 0

lim
β→∞

P
(

eβ(Γ−(x,A)−ε) ≤ τx
A ≤ eβ(Γ+(x,A)+ε)

)
= 1.

The sharpness of the exponents Γ−(x, A) and Γ+(x, A) crucially depends on
how precisely one can determine which maximal cycles are likely to be visited
and which ones are not, see Section 4.2 for further details. Furthermore, we
give a sufficient condition (see Assumption A in Section 4.2), which is the
absence of deep typical cycles, which guarantees that Γ−(x, A) = Γ = Γ+(x, A),
proving that the random variable β−1 log τx

A converges in probability to Γ as
β→ ∞, and that limβ→∞ β−1 log Eτx

A = Γ. In many cases of interest, one could
show that Assumption A holds for the pair (x, A) without detailed knowledge
of the typical paths from x to A. Indeed, by proving that the model exhibits
absence of deep cycles (see Proposition 4.2.18), similarly to [106], also in our
framework the study of the hitting time τx

A is decoupled from an exact control
of the typical paths from x to A. More precisely, one can obtain asymptotic
results for the hitting time τx

A in probability, in expectation and in distribution
without the detailed knowledge of the critical configuration or of the tube of
typical paths. Proving the absence of deep cycles when x ∈ Xm and A = X s

corresponds precisely to identifying the set of metastable states Xm, while,
when x ∈ X s and A = X s \ {x}, it is enough to show that the energy barrier
that separates any state from a state with lower energy is not bigger than the
energy barrier separating any two stable states.

Moreover, we give another sufficient condition (see Assumption B in Sec-
tion 4.2), called “worst initial state” assumption, to show that the hitting time
τx

A normalized by its mean converges in distribution to an exponential unit-
mean random variable. However, checking Assumption B for a specific model
can be very involved, and hence we provide a stronger condition (see Propo-
sition 4.2.20), which includes the case of the tunneling time between stable
states and the classical transition time from a metastable to a stable state.

The hard-core model on complete K-partite graphs, which is the discrete-
time version of the activity process studied in Chapter 3, is used as an example
to illustrate scenarios where Assumptions A or B are violated. Indeed, the
energy landscape corresponding to this model is simple enough to allow for
explicit calculations for the hitting times between any pair of configurations.
In particular, we show in Subsection 4.2.7 that whenever Assumption A is
not satisfied Γ−(x, A) 6= Γ+(x, A) and the asymptotic result for Eτx

A of the
first moment does not hold, while whenever Assumption B is not satisfied the
scaled hitting time is not exponentially distributed.

Lastly, we show that by understanding the global structure of an energy
landscape (X , H, c) and the maximum depths of its cycles, we can also derive
results for the mixing time of the corresponding Metropolis Markov chains
{Xβ

t }t∈N, as illustrated in Subsection 4.2.8. In particular, our results show
that in the special case of an energy landscape with multiple stable states
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and without other deep cycles, the hitting time between any two stable states
and the mixing time of the chain are of the same order of magnitude in the
low-temperature regime. This is the case also for the Metropolis hard-core
dynamics on grid graphs (see Theorems 5.2.1, 5.2.2 and 5.2.3 in Chapter 5)
and triangular grid graphs (see Theorem 6.2.1 and 6.2.2 in Chapter 6).

4.2 asymptotic behavior of hitting times for metropolis markov

chains

In this section we present model-independent results valid for any Markov
chains with Metropolis transition probabilities (4.1) defined in Section 4.1. In
Subsection 4.2.1 we introduce the classical notion of a cycle. If the considered
model allows only for a very rough energy landscape analysis, well-known
results for cycles are shown to readily yield upper and lower bounds in prob-
ability for the hitting time τx

A: Indeed, one can use the depth of the initial
cycle CA(x) as Γ−(x, A) (see Proposition 4.2.4) and the maximum depth of a
cycle in the partition of X \ A as Γ+(x, A) (see Proposition 4.2.7). If one has a
good handle on the model-specific optimal paths from x to A, i.e. those paths
along which the maximum energy is precisely the min-max energy barrier
between x and A, sharper exponents can be obtained, as established in Propo-
sition 4.2.10, by focusing on the relevant cycle, where the process {Xβ

t }t∈N

started in x spends most of its time before hitting the subset A. We sharpen
these bounds in probability for the hitting time τx

A even further with Proposi-
tion 4.2.15 by studying the tube of typical paths from x to A or standard cascade,
a task that in general requires a very detailed but local analysis of the energy
landscape. To complete the study of the hitting time in the regime β → ∞,
we prove in Subsection 4.2.5 the convergence of the first moment of the hit-
ting time τx

A on a logarithmic scale under suitable assumptions (see Theo-
rem 4.2.17) and give in Subsection 4.2.6 sufficient conditions for the scaled
hitting time τx

A/Eτx
A to converge in distribution as β → ∞ to an exponential

unit-mean random variable, see Theorem 4.2.19. Furthermore, we illustrate in
detail two special cases which fall within our framework, namely the classical
transition from a metastable state to a stable state and the tunneling between
two stable states, which is the relevant one for the models considered in this
thesis. In Subsection 4.2.7 we briefly present the hard-core model on a com-
plete K-partite graph, which is an example of a model where the asymptotic
exponentiality of the scaled hitting times does not always hold. Lastly, in Sub-
section 4.2.8 we present some results for the mixing time and the spectral gap
of Metropolis Markov chains and show how they are linked with the critical
depths of the energy landscape.

In the rest of this section and in Section 4.3, {Xβ
t }t∈N will denote a gen-

eral Metropolis Markov chain with energy landscape (X , H, c) and inverse
temperature β, as defined in Section 4.1.
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4.2.1 Cycles: Definitions and classical results

We recall here the definition of a cycle and present some well-known proper-
ties.

A path ω : x → y has been defined in Section 4.1 as a finite sequence of
states ω1, . . . , ωn ∈ X such that ω1 = x, ωn = y and c(ωi, ωi+1) > 0, for
i = 1, . . . , n − 1. A subset A ⊂ X with at least two elements is connected if
for all x, y ∈ A there exists a path ω : x → y, such that ωi ∈ A for every
i = 1, . . . , |ω|. Given a nonempty subset A ⊂ X and x 6∈ A, we define Ωx,A as
the collection of all paths ω : x → y for some y ∈ A that do not visit A before
hitting y, i.e.

Ωx,A := {ω : x → y | y ∈ A, ωi 6∈ A ∀ i < |ω|}. (4.5)

We remark that only the endpoint of each path in Ωx,A belongs to A. Given a
path ω = (ω1, . . . , ωn) in X , we denote by |ω| := n its length and define its
height or elevation by

Φω := max
i=1,...,|ω|

H(ωi). (4.6)

The communication height between a pair x, y ∈ X is the minimum value that
has to be reached by the energy in every path ω : x → y, i.e.

Φ(x, y) := min
ω:x→y

Φω. (4.7)

Given two nonempty disjoint subsets A, B ⊂ X , we define the communication
height between A and B by

Φ(A, B) := min
x∈A,y∈B

Φ(x, y). (4.8)

Given a nonempty set A ⊂ X , we define its external boundary by

∂A := {y /∈ A | ∃ x ∈ A : c(x, y) > 0}.

For a nonempty set A ⊂ X we define its bottom F (A) as the set of all minima
of the energy function H(·) on A, i.e.

F (A) := {y ∈ A | H(y) = min
x∈A

H(x)}.

We call a nonempty subset C ⊂ X a cycle if it is either a singleton or a con-
nected set such that

max
x∈C

H(x) < H(F (∂C)). (4.9)

In other words, cycles are connected subsets of sublevel sets of the energy
function H. A cycle C for which condition (4.9) holds is called non-trivial cycle.
If C is a non-trivial cycle, we define its depth as

Γ(C) := H(F (∂C))− H(F (C)). (4.10)
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Any singleton C = {x} for which condition (4.9) does not hold is called trivial
cycle. We set the depth of a trivial cycle C to be equal to zero, i.e. Γ(C) = 0.
Given a non-trivial cycle C, we will refer to the set F (∂C) of minima on its
boundary as its principal boundary. Note that

Φ(C,X \ C) =

H(x) if C = {x} is a trivial cycle,

H(F (∂C)) if C is a non-trivial cycle.

In this way, we have the following alternative expression for the depth of a
cycle C, which has the advantage of being valid also for trivial cycles:

Γ(C) = Φ(C,X \ C)− H(F (C)). (4.11)

The next lemma gives an equivalent characterization of a cycle.

Lemma 4.2.1. A nonempty subset C ⊂ X is a cycle if and only if it is either a
singleton or a connected set that satisfies

max
x,y∈C

Φ(x, y) < Φ(C,X \ C).

The proof easily follows from definitions (4.7), (4.8) and (4.9) and the fact
that if C is not a singleton and is connected, then

max
x,y∈C

Φ(x, y) = max
x∈C

H(x). (4.12)

We remark that the equivalent characterization of a cycle given in Lemma 4.2.1
is the “correct definition” of a cycle in the case where the transition proba-
bilities are not necessarily Metropolis but satisfy the more general Freidlin-
Wentzell condition

lim
β→∞
− 1

β
log Pβ(x, y) = ∆(x, y) ∀ x, y ∈ X , (4.13)

where ∆(x, y) is an appropriate rate function ∆ : X 2 → R+ ∪{∞}. The Metropo-
lis transition probabilities correspond to the case (see [38] for more details)
where

∆(x, y) =

[H(y)− H(x)]+ if c(x, y) > 0,

∞ otherwise.

The next theorem collects well-known results for the asymptotic behavior
of the exit time from a cycle as β becomes large, where the depth Γ(C) of the
cycle plays a crucial role.

Theorem 4.2.2 (Properties of the exit time from a cycle). Consider a non-trivial
cycle C ⊂ X .
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(i) For any x ∈ C and for any ε > 0, there exists k1 > 0 such that for all β
sufficiently large

P
(

τx
∂C < eβ(Γ(C)−ε)

)
≤ e−k1β.

(ii) For any x ∈ C and for any ε > 0, there exists k2 > 0 such that for all β
sufficiently large

P
(

τx
∂C > eβ(Γ(C)+ε)

)
≤ e−ek2β

.

(iii) For any x, y ∈ C, there exists k3 > 0 such that for all β sufficiently large

P
(

τx
y > τx

∂C

)
≤ e−k3β.

(iv) There exists k4 > 0 such that for all β sufficiently large

sup
x∈C

P
(

Xβ
τx

∂C
6∈ F (∂C)

)
≤ e−k4β.

(v) For any x ∈ C, ε > 0 and ε′ > 0, for all β sufficiently large

P
(

τx
∂C < eβ(Γ(C)+ε), Xβ

τx
∂C
∈ F (∂C)

)
≥ e−ε′β.

(vi) For any x ∈ C, any ε > 0 and all β sufficiently large

eβ(Γ(C)−ε) < Eτx
∂C < eβ(Γ(C)+ε).

The first three properties can be found in [118, Theorem 6.23], the fourth
one is [118, Corollary 6.25] and the fifth one in [106, Theorem 2.17]. The sixth
property is given in [116, Proposition 3.9] and implies that

lim
β→∞

1
β

log Eτx
∂C = Γ(C). (4.14)

The third property states that, given that C is a cycle, for any starting state
x ∈ C, the Markov chain {Xβ

t }t∈N visits any state y ∈ C before exiting from C
with a probability exponentially close to one. This is a crucial property of the
cycles and in fact can be given as alternative definition, see for instance [29,
30]. The equivalence of the two definitions has been proved in [38] in greater
generality for a Markov chain satisfying the Freidlin-Wentzell condition (4.13).
Leveraging this fact, many properties and results from [29] will be used or
cited.

We denote by C(X ) the set of cycles of X . The next lemma, see [118, Propo-
sition 6.8], implies that the set C(X ) has a tree structure with respect to the
inclusion relation, where X is the root and the singletons are the leaves.
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Lemma 4.2.3 (Cycle tree structure). Two cycles C, C′ ∈ C(X ) are either disjoint
or comparable for the inclusion relation, i.e. C ⊆ C′ or C′ ⊆ C.

Lemma 4.2.3 also implies that the set of cycles to which a state x ∈ X
belongs is totally ordered by inclusion. Furthermore, we remark that if two
cycles C, C′ ∈ C(X ) are such that C ⊆ C′, then Γ(C) ≤ Γ(C′); this latter
inequality is strict if and only if the inclusion is strict.

4.2.2 Classical bounds in probability for hitting time τx
A

In this subsection we start investigating the first hitting time τx
A. Thus, we

will tacitly assume that the target set A is a nonempty subset of X and the
initial state x belongs to X \ A. Moreover, without loss of generality, we will
henceforth assume that

A = {y ∈ X | ∀ω : x → y ω ∩ A 6= ∅}, (4.15)

which means that we add to the original target subset A all the states in X
that cannot be reached from x without visiting the subset A. Note that this
assumption does not change the distribution of the first hitting time τx

A, since
the states which we may have added in this way could not have been visited
without hitting the original subset A first.

Given a nonempty subset A ⊂ X and x ∈ X , we define the initial cycle
CA(x) by

CA(x) := {x} ∪ {z ∈ X : Φ(x, z) < Φ(x, A)}. (4.16)

If x ∈ A, then CA(x) = {x} and thus is a trivial cycle. If x 6∈ A, the subset
CA(x) is either a trivial cycle (when Φ(x, A) = H(x)) or a non-trivial cycle
containing x, if Φ(x, A) > H(x). In any case, if x 6∈ A, then CA(x) ∩ A = ∅.
For every x ∈ X , we denote by Γ(x, A) the depth of the initial cycle CA(x),
i.e.

Γ(x, A) := Γ(CA(x)). (4.17)

Clearly if CA(x) is trivial (and in particular when x ∈ A), then Γ(x, A) = 0.
Note that by definition the quantity Γ(x, A) is always non-negative, and in
general

Γ(x, A) = Φ(x, A)− H(F (CA(x))) ≥ Φ(x, A)− H(x),

with equality if and only if x ∈ F (CA(x)).
If x 6∈ A, then the initial cycle CA(x) is, by construction, the maximal cycle

(in the sense of inclusion) that contains the state x and has an empty intersec-
tion with A. Therefore, any path ω : x → A has at some point to exit from
CA(x), by overcoming an energy barrier not smaller than its depth Γ(x, A).
The next proposition gives a probabilistic bound for the hitting time τx

A by
looking precisely at this initial ascent up until the boundary of CA(x).
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Proposition 4.2.4 (Initial-ascent bound). Consider a nonempty subset A ⊂ X and
x 6∈ A. For any ε > 0 there exists κ > 0 such that for β sufficiently large

P
(

τx
A < eβ(Γ(x,A)−ε)

)
< e−κβ. (4.18)

The proof is essentially adopted from [118] and follows easily from Theo-
rem 4.2.2(i), since by definition of CA(x), we have that τx

A ≥st τx
∂CA(x).

Before stating an upper bound for the tail probability of the hitting time
τx

A, we need some further definitions. Given a nonempty subset B ⊂ X , we
denote byM(B) the collection of maximal cycles that partitions B, i.e.

M(B) := {C ∈ C(X ) | C maximal by inclusion and C ⊆ B}. (4.19)

Lemma 4.2.3 implies that every nonempty subset B ⊂ X has a partition into
maximal cycles and hence guarantees thatM(B) is well defined. Note that if
C ∈ C(X ) is itself a cycle, then M(C) = {C}. The following lemma shows
that initial cycles can be used to obtain the partition in maximal cycles of any
subset of the state space.

Lemma 4.2.5. [106, Lemma 2.26] Given a nonempty subset A ⊂ X , the collection
{CA(x)}x∈X\A of initial cycles is the partition into maximal cycles of X \ A, i.e.

M(X \ A) = {CA(x)}x∈X\A.

We can extend the notion of depth to subsets B ( X which are not necessar-
ily cycles by using the partition of B into maximal cycles. More precisely, we
define the maximum depth Γ̃(B) of a nonempty subset B ( X as the maximum
depth of a cycle contained in B, i.e.

Γ̃(B) := max
C∈M(B)

Γ(C). (4.20)

Trivially Γ̃(C) = Γ(C) if C ∈ C(X ). The next lemma gives two equivalent
characterizations of the maximum depth Γ̃(B) of a nonempty subset B ( X .

Lemma 4.2.6 (Equivalent characterizations of the maximum depth). Given a
nonempty subset B ( X ,

Γ̃(B) = max
x∈B

Γ(x,X \ B) = max
x∈B

{
min

y∈X\B
Φ(x, y)− H(x)

}
. (4.21)

In view of Lemma 4.2.6, Γ̃(B) is the maximum initial energy barrier that
the process started inside B possibly has to overcome to exit from B. As es-
tablished by the next proposition, one can get a (super-)exponentially small
upper bound for the tail probability of the hitting time τx

A, by looking at the
maximum depth Γ̃(X \ A) of the complementary set X \ A, where the process
resides before hitting the target subset A.
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Proposition 4.2.7 (Deepest-cycle bound, [29, Proposition 4.19]). Consider a
nonempty subset A ( X and x 6∈ A. For any ε > 0 there exists κ′ > 0 such
that for β sufficiently large

P
(

τx
A > eβ(Γ̃(X\A)+ε)

)
< e−eκ′β

. (4.22)

By definition we have Γ(x, A) ≤ Γ̃(X \ A), but in general Γ(x, A) 6= Γ̃(X \
A) and neither bound presented in this subsection is actually tight, so we will
proceed to establish sharper but more involved bounds in the next subsection.

4.2.3 Optimal paths and refined bounds in probability for hitting time τx
A

The quantity Γ(x, A) appearing in Proposition 4.2.4 only accounts for the en-
ergy barrier that has to be overcome starting from x, but there is such an
energy barrier for every state z 6∈ A and it may well be that to reach A it is
inevitable to visit a state z with Γ(z, A) > Γ(x, A). Similarly, also the exponent
Γ̃(X \ A) appearing in Proposition 4.2.7 may not be sharp in general. For in-
stance, the maximum depth Γ̃(X \ A) could be determined by a deep cycle C
in X \ A that cannot be visited before hitting A or that is visited with a van-
ishing probability as β→ ∞. In this subsection, we refine the bounds given in
Propositions 4.2.4 and 4.2.7 by using the notion of optimal path and identifying
the subset of the state space X in which these optimal paths lie.

Given a nonempty subset A ⊂ X and x 6∈ A, define the set of optimal paths
Ωopt

x,A as the collection of all paths ω ∈ Ωx,A along which the maximum energy
Φω is equal to the communication height between x and A, i.e.

Ωopt
x,A := {ω ∈ Ωx,A | Φω = Φ(x, A)}. (4.23)

Define the relevant cycle C+
A (x) as the minimal cycle in C(X ) such that CA(x) (

C+
A (x), i.e.

C+
A (x) := min{C ∈ C(X ) | CA(x) ( C}. (4.24)

The cycle C+
A (x) is well defined, since the cycles in C(X ) that contain x are

totally ordered by inclusion, as remarked after Lemma 4.2.3. By construction,
C+

A (x) ∩ A 6= ∅ and thus C+
A (x) contains at least two states, so it has to be a

non-trivial cycle. The minimality of C+
A (x) with respect to the inclusion gives

that

max
z∈C+

A (x)
H(z) = Φ(x, A),

and then, by using Lemma 4.2.1, one obtains

Φ(x, A) < H(F (∂C+
A (x))). (4.25)

The choice of the name relevant cycle for C+
A (x) comes from the fact that

all paths the Markov chain will follow to go from x to A will almost surely
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not exit from C+
A (x) in the limit β → ∞. Indeed, for the relevant cycle C+

A (x)
Theorem 4.2.2(iii) reads

lim
β→∞

P
(

τx
A < τx

∂C+
A (x)

)
= 1. (4.26)

The next lemma, which is proved in Section 4.3, states that an optimal path
from x to A is precisely a path from x to A that does not exit from C+

A (x).

Lemma 4.2.8 (Optimal path characterization). Consider a nonempty subset A ⊂
X and x 6∈ A. Then

ω ∈ Ωopt
x,A ⇐⇒ ω ∈ Ωx,A and ω ⊆ C+

A (x).

Lemma 4.2.8 implies that the relevant cycle C+
A (x) can be equivalently de-

fined as

C+
A (x) =

{
y ∈ X | Φ(x, y) ≤ Φ(x, A)

}
=
{

y ∈ X | Φ(x, y) < Φ(x, A) + δ0/2
}

, (4.27)

where δ0 is the minimum energy gap between an optimal and a non-optimal
path from x to A, i.e.

δ0 = δ0(x, A) := min
ω∈Ωx,A\Ωopt

x,A

Φω −Φ(x, A).

In view of Lemma 4.2.8 and (4.26), the Markov chain started in x follows in
the limit β → ∞ almost surely an optimal path in Ωopt

x,A to hit A. It is then
natural to define the following quantities for a nonempty subset A ⊂ X and
x 6∈ A:

Ψmin(x, A) := min
ω∈Ωopt

x,A

max
z∈ω

Γ(z, A), (4.28)

and

Ψmax(x, A) := max
ω∈Ωopt

x,A

max
z∈ω

Γ(z, A). (4.29)

Definition (4.28) implies that every optimal path ω ∈ Ωopt
x,A has to enter at some

point a cycle inM(X \ A) of depth at least Ψmin(x, A), while definition (4.29)
means that every cycle visited by any optimal path ω ∈ Ωopt

x,A has depth less
than or equal to Ψmax(x, A).

An equivalent characterization for the energy barrier Ψmax(x, A) can be
given, but we first need one further definition. Define RA(x) as the subset of
states which belong to at least one optimal path in Ωopt

x,A, i.e.

RA(x) := {y ∈ X | ∃ω ∈ Ωopt
x,A : y ∈ ω}. (4.30)
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Note that A ∩ RA(x) 6= ∅, since the endpoint of each path in Ωx,A belongs to
A, by definition (4.5). In view of Lemma 4.2.8, RA(x) ⊆ C+

A (x). We remark that
this latter inclusion could be strict, since in general RA(x) 6= C+

A (x). Indeed,
there could exist a state y ∈ C+

A (x) such that all paths ω : x → y that do not
exit from C+

A (x) always visit the target set A before reaching y, and thus they
do not belong to Ωopt

x,A (see definitions (4.5) and (4.23)), see Figure 4.1.

x

CA(x)

RA(x)

C+
A (x)

A

X

(a) The subset RA(x) (in light gray)

x

C+
A (x)

A

X

(b) The partition into maximal cycles of RA(x), including
the initial cycle CA(x) (in dark gray)

Figure 4.1: Example of an energy landscape X with highlighted the subset A (in black),
the relevant cycle C+

A (x) and the subset C+
A (x) \ (RA(x)∪ A) (with diagonal

mesh)

The next lemma characterizes the quantity Ψmax(x, A) as the maximum
depth of the subset RA(x) \ A (see definition (4.20)).

Lemma 4.2.9 (Equivalent characterization of Ψmax(x, A)).

Ψmax(x, A) = Γ̃(RA(x) \ A). (4.31)

Using the two quantities Ψmin(x, A) and Ψmax(x, A), we can obtain sharper
bounds in probability for the hitting time τx

A, as stated in the next proposition,
which is proved in Section 4.3.
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Proposition 4.2.10 (Optimal paths depth bounds). Consider a nonempty subset
A ⊂ X and x ∈ X \ A. For any ε > 0 there exists κ > 0 such that for β sufficiently
large

P
(

τx
A < eβ(Ψmin(x,A)−ε)

)
< e−κβ, (4.32)

and

P
(

τx
A > eβ(Ψmax(x,A)+ε)

)
< e−κβ. (4.33)

This proposition is in fact a sharper result than Propositions 4.2.4 and 4.2.7,
since

Γ(x, A) ≤ Ψmin(x, A) ≤ Ψmax(x, A) ≤ Γ̃(X \ A). (4.34)

Indeed, since the starting state x trivially belongs to every path in Ωopt
x,A, we

have that Γ(x, A) ≤ maxz∈ω Γ(z, A) for every ω ∈ Ωopt
x,A and thus Γ(x, A) ≤

Ψmin(x, A). Moreover, since by definition C+
A (x) \ A ⊆ X \ A, Lemma 4.2.9

yields that Ψmax(x, A) ≤ Γ̃(X \ A).
If Γ(x, A) = Γ̃(X \ A), it follows from (4.34) that Ψmin(x, A) = Ψmax(x, A).

However, in general, the exponents Ψmin(x, A) and Ψmax(x, A) are not equal
and may not be sharp either, as illustrated by the energy landscape in Fig-
ure 4.2.

In this example, there are two paths to go from x to A: The path ω which
goes from x to y and then follows the solid path until A, and the path ω′,
which goes from x to y and then follows the dashed path through z and
eventually hitting A. Note that Φω = Φω′ = Φ(x, A), so both ω and ω′ are
optimal paths from x to A. By inspection, we get that Ψmax(x, A) = Γ(z, A).
However, the path ω′ does not exit the cycle CA(y) passing by its principal
boundary and, in view of Theorem 4.2.2(iv), it becomes less likely than the
other path as β→ ∞. In fact, the transition from x to A is likely to occur on a
smaller time-scale than suggested by the upper bounds in Proposition 4.2.10

and in particular the exponent Ψmax(x, A) is not sharp in this example.
In the next subsection, we will show that a more precise control in prob-

ability of the hitting time τx
A is possible, at the expense of a more involved

analysis of the energy landscape.
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x

y

z A
(a) Energy profile of the energy landscape with the initial cycle CA(x) (in grey) and

the relevant cycle C+
A (x) (below the dashed black line)

x y

z

A

(b) Partition into maximal cycles of X \ A for the same energy landscape

Figure 4.2: An example energy landscape for which Ψmax(x, A) is not sharp

4.2.4 Sharp bounds for hitting time τx
A using typical paths

As illustrated at the end of the previous subsection, the exponents Ψmin(x, A)
and Ψmax(x, A) appearing in the probability bounds (4.32) and (4.33) for the
hitting time τx

A may not be sharp in general. In this subsection we obtain expo-
nents that are potentially sharper than Ψmin(x, A) and Ψmax(x, A) by looking
in more detail at the cycle decomposition of C+

A (x) \ A and by identifying in-
side it the tube of typical paths from x to A. In particular, we focus on how the
process moves from two maximal cycles in the partition of C+

A (x) \ A and de-
termine which of these transitions between maximal cycles are the most likely
ones.

Some further definitions are needed. We introduce the notion of cycle-path
and a way of mapping every path ω ∈ Ωx,A into a cycle-path Cω. Recall
that for a nonempty subset A ⊂ X , ∂A is its external boundary and F (A)
is its bottom, i.e. the set of the minima of the energy function H in A. A
cycle-path is a finite sequence (C1, . . . , Cm) of (trivial and non-trivial) cycles
C1, . . . , Cm ∈ C(X ) such that

Ci ∩ Ci+1 = ∅ and ∂Ci ∩ Ci+1 6= ∅, for every i = 1, . . . , m− 1.
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It can be easily proved that, in a cycle-path (C1, . . . , Cm), if Ci is a non-trivial
cycle for some i = 1, . . . , m, then its predecessor Ci−1 and successor Ci+1 (if
any) are trivial cycles, see [37, Lemma 2.5]. We can consider the collection Px,A
of cycle-paths that lead from x to A and consist of maximal cycles in X \ A
only, namely

Px,A := {cycle-path (C1, . . . , Cm) |
C1, . . . , Cm ∈ M(X \ A), x ∈ C1, ∂Cm ∩ A 6= ∅}. (4.35)

Recall that the collection of cyclesM(X \ A) can be constructed using initial
cycles, as established by Lemma 4.2.5.
We define a mapping Ωx,A → Px,A by assigning to a path ω = (ω1, . . . , ωn) ∈
Ωx,A the cycle-path Cω = (C1, . . . , Cm(ω)) ∈ Px,A as follows. Set t0 = 1, C1 =
CA(x), and then define recursively

ti := min{k > ti−1 | ωk 6∈ Ci} and Ci+1 := CA(ωti ).

The path ω is a finite sequence and ωn ∈ A, so there exists an index m(ω) ∈
N such that ωtm(ω)

= ωn ∈ A and there the procedure stops. The way the
sequence (C1, . . . , Cm(ω)) is constructed shows that it is indeed a cycle-path.
Moreover, by using the notion of initial cycle CA(·) to define C1, . . . , Cm(ω),
they are automatically maximal cycles inM(X \ A). Lastly, the fact that ω ∈
Ωx,A implies that x ∈ C1 and that ∂Cm(ω) ∩ A 6= ∅, hence Cω ∈ Px,A and
the mapping is well-defined. We remark that this mapping is not injective,
since two different paths in Ωx,A can be mapped into the same cycle-path
in Px,A. In fact, a single cycle-path groups together all the paths that visit
the same cycles (the same number of times and in the same order). Cycle-
paths are the appropriate mesoscopic objects to investigate while studying the
transition x → A: Indeed one neglects in this way the microscopic dynamics
of the process and focuses only on the relevant mesoscopic transitions from
one maximal cycle to another. Furthermore, we note that for a given path
ω ∈ Ωx,A, the maximum energy barrier along ω is the maximum depth in its
corresponding cycle-path Cω, i.e.

max
z∈ω

Γ(z, A) = max
C∈Cω

Γ(C).

For every cycle C ∈ C(X ) define

B(C) :=

F (∂C) if C is a non-trivial cycle,

{z ∈ ∂C | H(z) ≤ H(y)} if C = {y} is a trivial cycle.
(4.36)

In other words, if C is a non-trivial cycle, then B(C) is its principal boundary,
while when C = {y} is a trivial cycle B(C) is the subset of states connected
to y with energy lower than y. We will refer to B(C) as principal boundary of C
also in the case where C is a trivial cycle.
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We say that a cycle-path (C1, . . . , Cm) is connected via typical jumps to A or
simply vtj-connected to A if

B(Ci) ∩ Ci+1 6= ∅, ∀ i = 1, . . . , m− 1, and B(Cm) ∩ A 6= ∅. (4.37)

The next lemma, presented in [38], guarantees that there always exists a cycle-
path from the initial cycle CA(x) that is vtj-connected to A for any nonempty
target subset A ⊂ X and x 6∈ A.

Lemma 4.2.11. [38, Proposition 3.22] For any nonempty subset A ⊂ X and x 6∈ A,
there exists a cycle-path C∗ = (C1, . . . , Cm∗) vtj-connected to A with x ∈ C1 and
C1, . . . , C∗m ⊂ X \ A.

By inspecting the proof of [38, Proposition 3.22], one notices that the given
cycle-path C∗ = (C1, . . . , Cm∗) consists only of cycles in X \ A which are
maximal by inclusion, so that C1, . . . , Cm∗ ∈ M(X \ A), and, in particular,
C1 = CA(x). Hence C∗ ∈ Px,A and therefore the collection Px,A is not empty.

We define ω ∈ Ωx,A to be a typical path from x to A if its corresponding
cycle-path Cω is vtj-connected to A, and we denote by Ωvtj

x,A the collection of
all typical paths from x to A, i.e.

Ωvtj
x,A := {ω ∈ Ωx,A | ω is typical}.

The existence of a vtj-connected cycle-path C∗ = (C1, . . . , Cm∗) ∈ Px,A guaran-
tees that Ωvtj

x,A 6= ∅. Indeed, take y0 = x, yi ∈ B(Ci) ∩ Ci+1, i = 1, . . . , m∗ − 1
and ym∗ ∈ B(Cm∗)∩ A and consider a path ω∗ that visits precisely the saddles
y0, . . . , ym∗ in this order and stays in cycle Ci between the visit to yi−1 and yi.
Then ω∗ is a typical path from x to A.

The following lemma gives an equivalent characterization of a typical path
from x to A.

Lemma 4.2.12 (Equivalent characterization of a typical path). Take a nonempty
subset A ⊂ X and x 6∈ A. Then

ω ∈ Ωvtj
x,A ⇐⇒ ω ∈ Ωx,A and Φ(ωi+1, A) ≤ Φ(ωi, A) ∀ i = 1, . . . , |ω|− 1.

The proof of this result is presented in Section 4.3. Lemma 4.2.12 shows that
every typical path from x to A is an optimal path from x to A, i.e.

Ωvtj
x,A ⊆ Ωopt

x,A, (4.38)

since if ω ∈ Ωvtj
x,A, then Φ(ωi, A) ≤ Φ(ω1, A) = Φ(x, A) for every i = 2, . . . , |ω|

and thus Φω = Φ(x, A).
Let TA(x) be the tube of typical paths from x to A, which is defined as

TA(x) := {y ∈ X | ∃ω ∈ Ωvtj
x,A : y ∈ ω}. (4.39)

In other words, TA(x) is the subset of states y ∈ X that can be reached from
x by means of a typical path which does not enter A before visiting y. The
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endpoint of every path in Ωvtj
x,A belongs to A, thus TA(x) ∩ A 6= ∅. Since

by (4.38) every typical path is an optimal path, it follows from definitions (4.30)
and (4.39) that

TA(x) ⊆ RA(x).

The tube of typical paths can be visualized as the standard cascade emerging
from state x and reaching eventually A, in the sense that it is the part of the
energy landscape that would be wet if a water source is placed at x and the
water would “find its way” until the sink, that is subset A. This standard
cascade possibly consists of basins/lakes (non-trivial cycles), saddle points
(trivial cycles) and waterfalls (trivial cycles). From definition (4.39), it follows
that if z ∈ TA(x), then

TA(z) ⊆ TA(x). (4.40)

x

C+
A (x)

A

X

Figure 4.3: Example of an energy landscape with the tube of typical TA(x) highlighted
in gray

Denote by TA(x) the collection of cycles C ∈ M(X \ A) for which there
exists a vtj-connected cycle-path C1, . . . , Cn ⊂ X \ A with C1 = CA(x) and
Cn = C, i.e.

TA(x) := {C ∈ M(X \ A) | ∃C1, . . . , Cn vtj-connected cycle-path

with C1 = CA(x) and Cn = C}.
Note that the cycles in TA(x) form the partition into maximal cycles of TA(x) \
A, i.e.

TA(x) =M(TA(x) \ A),

and that, by construction, there exists C ∈ TA(x) such that B(C) ∩ A 6= ∅.
The boundary of TA(x) consists of states either in A or in the non-principal
part of the boundary of a cycle in C ∈ TA(x):

∂TA(x) \ A =
⋃

C∈TA(x)

(∂C \ B(C)). (4.41)



4.2 asymptotic behavior of hitting times for metropolis markov chains 119

The typical paths in Ωvtj
x,A are the only ones with non-vanishing probability of

being visited by the Markov chain {Xβ
t }t∈N started in x before hitting A in the

limit β→ ∞, as established by the next lemma which is proved in Section 4.3.

Lemma 4.2.13 (Exit from the typical tube TA(x)). Consider a nonempty subset
A ⊂ X and x 6∈ A. Then there exists κ > 0 such that for β sufficiently large

P
(

τx
∂TA(x) ≤ τx

A

)
≤ e−κβ.

Given a nonempty subset A ⊂ X and x 6∈ A, define the following quantities:

Θmin(x, A) := min
ω∈Ωvtj

x,A

max
z∈ω

Γ(z, A), (4.42)

and

Θmax(x, A) := max
ω∈Ωvtj

x,A

max
z∈ω

Γ(z, A). (4.43)

In other words, definition (4.42) means that every typical path ω ∈ Ωvtj
x,A has

to enter at some point a cycle of depth at least Θmin(x, A). On the other hand,
definition (4.29) implies that all cycles visited by any typical path ω ∈ Ωvtj

x,A
have depth less than or equal to Θmax(x, A). Hence, Θmax(x, A) can equiva-
lently be characterized as the maximum depth (see definition (4.20)) of the
tube TA(x) of typical paths from x to A, as stated by the next lemma.

Lemma 4.2.14 (Equivalent characterization of Θmax(x, A)).

Θmax(x, A) = Γ̃(TA(x) \ A) = max
C∈TA(x)

Γ(C). (4.44)

Since by (4.38) every typical path from x to A is an optimal path from x to
A, definitions (4.28), (4.29), (4.42) and (4.43) imply that

Ψmin(x, A) ≤ Θmin(x, A) ≤ Θmax(x, A) ≤ Ψmax(x, A). (4.45)

We now have all the ingredients needed to formulate the first refined result
for the hitting time τx

A, which is proved in Section 4.3. The main idea behind
the next proposition is to look at the shallowest-typical gorge inside TA(x) that
the process has to overcome to reach A and at the deepest-typical gorge inside
TA(x) where the process has a non-vanishing probability to be trapped before
hitting A.

Proposition 4.2.15 (Typical-cycles bounds). Consider a nonempty subset A ⊂ X
and x 6∈ A. For any ε > 0 there exists κ > 0 such that for β sufficiently large

P
(

τx
A < eβ(Θmin(x,A)−ε)

)
< e−κβ, (4.46)

and

P
(

τx
A > eβ(Θmax(x,A)+ε)

)
< e−κβ. (4.47)
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The proof, which is a refinement of that of Proposition 4.2.10, is presented
in Section 4.3.

In general, the exponents Θmin(x, A) and Θmax(x, A) may not be equal, as
illustrated by the energy landscape in Figure 4.4.

x

y

z A
(a) Energy profile of the energy landscape with the initial cycle CA(x) (in grey) and the

relevant cycle C+
A (x) (below the dashed black line)

x y

z

A

(b) Partition into maximal cycles of X \ A for the same energy landscape

Figure 4.4: An example energy landscape for which Θmin(x, A) < Θmax(x, A)

Also in this example, there are two paths to go from x to A: The path
ω which goes from x to y and then follows the solid path until A, and the
path ω′, which goes from x to y and then follows the dashed path through
z and eventually hitting A. Both paths ω and ω′ always move from a cycle
to the next one visiting the principal boundary, hence they are both typical
paths from x to A. By inspection, we get that Θmax(x, A) = Γ(z, A), since
the typical path ω′ visits the cycle CA(z). Using the path ω we deduce that
Θmin(x, A) = Γ(y, A) and therefore Θmin(x, A) < Θmax(x, A).

If the two exponents Θmin(x, A) and Θmax(x, A) coincide, then, in view of
Proposition 4.2.15, we get sharp bounds in probability on a logarithmic scale
for the hitting time τx

A, as stated in the next corollary.

Corollary 4.2.16. Consider a nonempty subset A ⊂ X and x 6∈ A. Assume that

Θmin(x, A) = Θ(x, A) = Θmax(x, A). (4.48)
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Then, for any ε > 0

lim
β→∞

P
(

eβ(Θ(x,A)−ε) < τx
A < eβ(Θ(x,A)+ε)

)
= 1. (4.49)

There are many examples of models and pairs (x, A) for which Θmin(x, A) =
Θmax(x, A). The most classical ones are the models that exhibit a metastable be-
havior: If one takes x ∈ Xm and A = X s, then it follows that Θmin(x, A) =
Vx = Θmax(x, A) (by virtue of the definition (4.3) of stability level) and Corol-
lary 4.2.16 holds, see also [106, Theorem 4.1].

4.2.5 First moment convergence

We now turn our attention to the asymptotic behavior of the mean hitting time
Eτx

A as β→ ∞. In particular, we will show that it scales (almost) exponentially
in β and we will identify the corresponding exponent. There may be some sub-
exponential pre-factors, but, without further assumptions, one can only hope
to get results on a logarithmic scale, due to the potential complexity of the
energy landscape. We remark that a precise knowledge of the tube of typical
paths is not always necessary to derive the asymptotic order of magnitude of
the mean hitting time Eτx

A, as established by Proposition 4.2.18.
To prove the convergence of the quantity 1

β log Eτx
A, we need the following

assumption.

Assumption A (Absence of deep typical cycles) Given the energy landscape
(X, H, c), we assume

(A1) Θmin(x, A) = Θ(x, A) = Θmax(x, A), and

(A2) Θmax(z, A) ≤ Θ(x, A) for every z ∈ X \ A.

Condition (A1) says that every path ω : x → A visits one of the deepest
typical cycles of the tube TA(x). Condition (A2) guarantees that by starting
in another state z 6= x, the deepest typical cycle the process can enter is not
deeper than those in TA(x). Checking the validity of Assumption A can be
very difficult in general, but we give a sufficient condition in Proposition 4.2.18

which is satisfied in many models of interest, including the hard-core model
on grid graphs and triangular grid graphs (as illustrated in Chapter 5 and
Chapter 6, respectively) and the Widom-Rowlison model on grid graphs (see
Chapter 7. We further remark that (A1) is precisely the assumption of Corol-
lary 4.2.16. Therefore, in the scenarios where Assumption A holds, we also
have the asymptotic result (4.49) in probability for the hitting time τx

A.
The next theorem says that if Assumption A is satisfied, then the asymptotic

order of magnitude of the mean hitting time Eτx
A as β→ ∞ is Θ(x, A).

Theorem 4.2.17 (First moment convergence). If Assumption A is satisfied, then

lim
β→∞

1
β

log Eτx
A = Θ(x, A).
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In many models of interest, calculating Γ̃(X \ A) is easier than calculating
Θmin(x, A) or Θmax(x, A). Indeed, even if Γ̃(X \ A) is a quantity that still re-
quires a global analysis of the energy landscape, one needs to compute just
the communication height Φ(z, A) between any state z ∈ X \ A and the target
set A, without requiring a full understanding of the complex cycle structure
of the energy landscape. Besides this fact, the main motivation to look at the
quantity Γ̃(X \ A) is that it allows to give a sufficient condition for Assump-
tion A, as established in the following proposition.

Proposition 4.2.18 (Absence of deep cycles). If

Φ(x, A)− H(x) = Γ̃(X \ A), (4.50)

then Assumption A holds.

Proof. From the inequality

Φ(x, A)− H(x) ≤ Θmin(x, A) ≤ Θmax(x, A) ≤ Γ̃(X \ A),

we deduce that Θmin(x, A) = Θmax(x, A) and (A1) is proved. Moreover, by
definition of Γ̃(X \ A), we have Θmax(z, A) ≤ Γ̃(X \ A) for every z ∈ X \ A.
This inequality, together with the fact that Θmax(x, A) = Γ̃(X \ A), proves that
(A2) also holds and thus assumption A is satisfied.

We now present two interesting scenarios for which (4.50) holds.

Example 1 (Metastability scenario)

Suppose that

x ∈ Xm and A = X s.

In this first scenario, τx
A is the classical transition time between a metastable

state and a stable state, a widely studied object in the statistical mechanics
literature (see, e.g. [106]). Assumption A is satisfied in this case by apply-
ing Proposition 4.2.18, since condition (4.50) holds: The equality Φ(x,X s)−
H(x) = Γ̃(X \ X s) follows from the assumption x ∈ Xm, which means that
there are no cycles in X \ X s that are deeper than CX s(x).

Example 2 (Tunneling scenario)

Suppose that x ∈ X s, A = X s \ {x} and

Φ(z, A)− H(z) ≤ Φ(x, A)− H(x) ∀ z ∈ X \ {x}. (4.51)

In the second scenario, the hitting time τx
A is the tunneling time between any

pair of stable states. Assumption (4.51) says that every cycle in the energy
landscape which does not contain a stable state has depth strictly smaller
than the cycle CA(x) and we generally refer to this property as absence of deep
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cycles in the tunneling scenario. This condition immediately implies that (4.50)
holds, i.e. Γ̃(X \ A) = Φ(x, A)− H(x), and hence in this scenario assumption
A holds, thanks to Proposition 4.2.18.

We will show that the tunneling times of the hard-core model on grid
graphs and on triangular grid graphs fall precisely in this second scenario,
as we will show in Chapter 5 and Chapter 6, respectively.

4.2.6 Asymptotic exponentiality

We now present a sufficient condition for the scaled random variable τx
A/Eτx

A
to converge in distribution to an exponential unit-mean random variable as
β→ ∞. Define

Θ∗(x, A) := lim
β→∞

1
β

log Eτx
A. (4.52)

If Assumption A holds, then we know that Θ(x, A) = Θ∗(x, A), but the result
presented in this section does not require the exact knowledge of Θ∗(x, A).
We prove asymptotic exponentiality of the scaled hitting time under the fol-
lowing assumption.

Assumption B (“Worst initial state”) Given an energy landscape (X, H, c), we
assume that

Θ∗(x, A) > Γ̃(X \ (A ∪ {x})). (4.53)

This assumption guarantees that the following “recurrence” result holds: From
any state z ∈ X the Markov chain reaches the set A ∪ {x} on a time scale
strictly smaller than that at which the transition x → A occurs. Indeed, Propo-
sition 4.2.7 gives that for any ε > 0

lim
β→∞

sup
z∈X

P
(

τz
{x}∪A > eβ(Γ̃(X\(A∪{x}))+ε)

)
= 0.

We can informally say that Assumption B requires x to be the “worst initial
state” for the Markov chain when the target subset is A.

Proposition 4.2.20 gives a sufficient condition for Assumption B to hold,
which is satisfied in many models of interest, in particular the hard-core
model on grid graphs (see Chapter 5), the hard-core model on triangular grid
graphs (see Chapter 6) and the Widom-Rowlison model on grid graphs (see
Chapter 7.

Theorem 4.2.19 (Asymptotic exponentiality). If Assumption B is satisfied, then

τx
A

Eτx
A

d−→ Exp(1), as β→ ∞. (4.54)
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More precisely, there exist two functions k1(β) and k2(β) with limβ→∞ k1(β) = 0
and limβ→∞ k2(β) = 0 such that for any s > 0∣∣∣P( τx

A
Eτx

A
> s
)
− e−s

∣∣∣ ≤ k1(β)e−(1−k2(β))s.

The proof, presented in Section 4.3, readily follows from the consequences
of Assumption B discussed above and by applying [49, Theorem 2.3],

We now present a condition which guarantees that Assumption B holds and
show that it holds in two scenarios similar to those described in the previous
subsection.

Proposition 4.2.20 (CA(x) is “the unique deepest cycle”). If

Γ(x, A) > Γ̃(X \ (A ∪ {x})), (4.55)

then Assumption B is satisfied.

The proof of this proposition is immediate from (4.34) and (4.45). We remark
that if condition (4.55) holds, then the initial cycle CA(x) is the unique deepest
cycle in X \ A. Condition (4.55) is stronger than (4.53), but often easier to
check, since one does not need to compute the exact value of Θ∗(x, A), but
only the depth Γ(x, A) of the initial cycle CA(x). We now present two scenarios
of interest.

Example 3 (Unique metastable state scenario)

Suppose that

Xm = {z}, A = X s, and x ∈ CA(z).

We remark that this scenario is a special case of the metastable scenario pre-
sented in Example 1 in Subsection 4.2.5. This scenario was already mentioned
in [106], in the discussion following Theorem 4.15, but we briefly discuss here
how to prove asymptotic exponentiality within our framework. Indeed, we
have that

Γ(x,X s) = Γ(CX s(z)) = Γ̃(X \ X s),

thanks to the fact that z is the configuration in X \ X s with the maximum sta-
bility level, which means that CX s(z) is the deepest cycle in X \X s. Moreover,
the fact that z is the unique metastable state, implies that

Γ̃(X \ X s) > Γ̃(X \ (X s ∪ {z})),

since every configuration in X \ (X s ∪ {z}) has stability level strictly smaller
than Vz.
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Example 4 (Two stable states scenario)

Suppose that X s = {s1, s2}, A = {s2}, x ∈ CA(s1) and

Γ̃(X \ {s1, s2}) < Φ(s1, s2)− H(s1).

This scenario is a special case of the tunneling scenario presented in Example
2 in Subsection 4.2.5. In this case condition (4.55) is obviously satisfied. In
particular, it shows that the scaled tunneling time τs1

s2 between two stable states
in X is asymptotically exponential whenever X s = {s1, s2} and the condition
Γ̃(X \ {s1, s2}) < Φ(s1, s2)− H(s1) is satisfied.

4.2.7 An example of non-exponentiality

Assumption B is a rather strong assumption. In fact, for many models and for
most of choices of x and A, the scaled hitting time τx

A/Eτx
A does not have an

exponential distribution in the limit β → ∞. Moreover, we do not claim that
Assumption B is necessary to have asymptotically exponentiality of the scaled
hitting time τx

A/Eτx
A. However, we will now show that for the hard-core model

on complete K-partite graphs considered in Chapter 3 Assumption B does not
always hold and that the model exhibits non-exponentially distributed scaled
hitting times.

Let the conflict graph G be a complete K-partite graph as described in Sec-
tion 3.1. Recall that this means that the sites in V can be partitioned into K dis-
joint subsets V1, . . . , VK called components, such that two sites are connected
by an edge if and only if they belong to different components. An example
of complete 5-partite graph is displayed in Figure 3.1 and the structure of the
corresponding energy landscape X is illustrated by Figure 3.2a.

This choice for G results in a simple state space X , for which a detailed anal-
ysis is possible. Moreover, for the same model the asymptotic behavior of the
first hitting times in continuous time is already well understood, see Chap-
ter 3. Before stating the results, we recall some definitions from Section 3.1
and introduce some new notation. Let Lk be the size of the k-th component Vk,
for k = 1, . . . , K. Clearly the total number of sites in V is N = ∑K

k=1 Lk. Define
Lmax := maxk=1,...,K Lk. For k = 1, . . . , K define the configuration σk ∈ X as

σk(v) =

1 if v ∈ Vk,

0 otherwise.

The configurations {σ1, . . . , σK} are precisely all the local minima of the energy
function H on the state space X . Moreover σk is a stable state if and only if
Lk = Lmax. In addition, denote by 0 the configuration in X where all the
sites are empty, i.e. the configuration such that 0(v) = 0 for every v ∈ V.
Given k1, k2 ∈ {1, . . . , K}, k1 6= k2, we take σk1 and σk2 as starting and target
configurations, respectively. Define L∗ = L∗(k2) := maxk 6=k2 Lk and let K∗ =
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K∗(k2) := {k 6= k2 | Lk = L∗} be the set of indices of the components of size
L∗ different from k2.

In Subsection 3.4.5 we presented the main results for hitting times on com-
plete partite graphs in the case of homogeneous activation rates. Such results
are for the continuous-time activity process, but they can be easily translated
to discrete time as follows. Recall that given two real functions f (β) and g(β),
we write f ∼ g as β→ ∞ when limβ→∞ f (β)/g(β) = 1.

Proposition 4.2.21 (First moment convergence of the hitting time τ
σk1
σk2

). For
any k1, k2 ∈ {1, . . . , K} with k1 6= k2, the first hitting time τ

σk1
σk2

satisfies

Eτ
σk1
σk2
∼ N

(
1{k1∈K∗}

L∗
+
|K∗|
Lk2

)
eβL∗ , β→ ∞.

In particular,

lim
β→∞

1
β

log Eτ
σk1
σk2

= L∗.

Proposition 4.2.22 (Asymptotic distribution of the hitting time τ
σk1
σk2

). Take
k1, k2 ∈ {1, . . . , K} such that k1 6= k2. If k1 ∈ K∗, then

τ
σk1
σk2

Eτ
σk1
σk2

d−→ Exp(1), β→ ∞.

Instead, if k1 6∈ K∗, then

τ
σk1
σk2

Eτ
σk1
σk2

d−→ Z, β→ ∞,

where Z d
= ∑M

i=1 Yi and (Yi)i≥1 are i.i.d. exponential unit-mean random variables
and M is an independent random variable with geometric distribution P(M = n) =
(1− p)n p for n ∈N∪ {0} with success probability p = Lk2 /(|K∗|L∗ + Lk2).

As illustrated in Figure 3.2a, the energy landscape consists of K cycles, one
for each component of G, and one trivial cycle {0} which links all the others.
The depth of each of the cycles is equal to the size of the corresponding compo-
nent of G. All the paths from σk1 to σk2 must at some point exit from the cycle
corresponding to component k1, at whose bottom lies σk1 . After hitting the
configuration 0, they can go directly into the target cycle, i.e. the one at which
bottom lies σk2 , or they may fall in one of the other K− 1 cycles. Formalizing
these simple considerations, we can prove the following proposition.

Proposition 4.2.23 (Structural properties of the energy landscape). For any
k1, k2 ∈ {1, . . . , K}, k1 6= k2,

Γ(σk1 , {σk2}) = Lk1 = Ψmin(σk1 , {σk2}),
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and

Ψmax(σk1 , {σk2}) = L∗ = Γ̃(X \ {σk2}).

In particular, if k1 6∈ K∗(k2), Propositions 4.2.21 and 4.2.23 impy that

L∗ = lim
β→∞

1
β

Eτ
σk1
σk2

= Θ(σk1 , {σk2}) 6< Γ̃(X \ {σk1 , σk2}) = L∗.

Assumption B is thus not satisfied for the the pair (σk1 , {σk2}). Indeed there
exists another configuration σk′ , for some k′ ∈ K∗(k2), k′ 6= k1, for which the
recurrence probability

P
(

τ
σk′
{σk1

, σk2
} > eβ(Lk1

+ε)
)

does not vanish as β→ ∞, since component Vk′ has size L∗ > Lk1 .

In fact, as established in Proposition 4.2.22, the scaled hitting time τ
σk1
σk2

/Eτ
σk1
σk2

does not converge in distribution to an exponential random variable with unit
mean as β→ ∞.

4.2.8 Mixing time and spectral gap

In this subsection we focus on the long-run behavior of the Metropolis Markov
chain {Xβ

t }t∈N and in particular examine the rate of convergence to the sta-
tionary distribution. We measure the rate of convergence in terms of the total
variation distance and the mixing time, which describes the time required
for the distance to stationarity to become small. More precisely, for every
0 < ε < 1, we define the mixing time tmix

β (ε) by

tmix
β (ε) := min{n ≥ 0 | max

x∈X
‖Pn

β (x, ·)− µβ(·)‖TV ≤ ε}, (4.56)

where ‖ν − ν′‖TV := 1
2 ∑x∈X |ν(x) − ν′(x)| for any two probability distribu-

tions ν, ν′ on X . Another classical notion to investigate the speed of conver-
gence of Markov chains is the spectral gap, which is defined as

ρβ := 1− a(2)β , (4.57)

where 1 = a(1)β > a(2)β ≥ · · · ≥ a(|X |)β ≥ −1 are the eigenvalues of the matrix
(Pβ(x, y))x,y∈X . The spectral gap can be equivalently defined using the Dirich-
let form associated with the pair (Pβ, µβ), see [99, Lemma 13.12]. The problem
of studying the convergence rate towards stationarity for a Freidlin-Wentzell
Markov chain has already been studied in [29, 65, 109, 126]. In particular,
in [29] the authors characterize the order of magnitude of both its mixing
time and spectral gap in terms of certain “critical depths” of the energy land-
scape associated with the Freidlin-Wentzell Markov chain. We summarize the
results in the context of Metropolis Markov chains in the next proposition.
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Proposition 4.2.24 (Mixing time and spectral gap for Metropolis Markov chains).
For any 0 < ε < 1 and any s ∈ X s,

lim
β→∞

1
β

log tmix
β (ε) = Γ̃(X \ {s}) = lim

β→∞
− 1

β
log ρβ. (4.58)

Furthermore, there exist two positive constants 0 < c1 ≤ c2 < ∞ independent of β
such that for every β ≥ 0

c1e−βΓ̃(X\{s}) ≤ ρβ ≤ c2e−βΓ̃(X\{s}). (4.59)

4.3 proof of results for general metropolis markov chain

In this section we prove the results presented in Section 4.2 for a Metropolis
Markov chain {Xβ

t }t∈N with energy landscape (X , H, c) and inverse temper-
ature β. For compactness, we will suppress the implicit dependence on the
parameter β in the notation.

4.3.1 Proof of Lemma 4.2.8

If ω ∈ Ωopt
x,A, then trivially ω ∈ Ωx,A. Moreover, we claim that ω ∈ Ωopt

x,A im-
plies ω ⊆ C+

A (x). Indeed, by definition of an optimal path and inequality (4.25),
it follows that an optimal path cannot exit from C+

A (x) since

Φω = Φ(x, A) < H(F (∂C+
A (x))).

The reverse implication follows from the minimality of C+
A (x), which guaran-

tees that Φ(x, A) = maxz∈C+
A (x) H(z).

4.3.2 Proof of Proposition 4.2.10

In this proof we suppress the explicit dependence of Ψmin(x, A) and Ψmax(x, A)
from x and A for compactness, and denote the same quantities by Ψmin and
Ψmax, respectively. We first prove the lower bound (4.32) and, in the second
part of the proof, the upper bound (4.33). Consider the event {τx

A < eβ(Ψmin−ε)}
first. There are two possible scenarios: Either the process exits from the cycle
C+

A (x) before hitting A or not. Hence,

P
(

τx
A < eβ(Ψmin−ε)

)
=

= P
(

τx
A < eβ(Ψmin−ε), τx

A < τx
∂C+

A (x)

)
+ P

(
τx

∂C+
A (x) ≤ τx

A < eβ(Ψmin−ε)
)

≤ P
(

τx
A < eβ(Ψmin−ε), τx

A < τx
∂C+

A (x)

)
+ P

(
τx

∂C+
A (x) < eβ(Ψmin−ε)

)
. (4.60)

The quantity P(τx
∂C+

A (x)
< eβ(Ψmin−ε)) is exponentially small in β for β suffi-

ciently large, thanks to Theorem 4.2.2(i) and to the fact that Ψmin < Γ(C+
A (x)).
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In order to derive an upper bound for the first term in the right-hand side
of (4.60), we introduce the following set

Zopt := {z ∈ RA(x) \ A | Γ(z, A) ≥ Ψmin}.

By definition (4.28) of Ψmin, every optimal path ω ∈ Ωopt
x,A must inevitably

visit a cycle of depth not smaller than Ψmin and therefore it has to enter the
subset Zopt before hitting A. Hence, for every z ∈ Zopt, conditioning on the
event {τx

A < τx
∂C+

A (x)
, Xβ

τx
Zopt

= z}, we can write

τx
A

d
= τx

z + τz
A,

and, in particular, τx
A ≥st τz

A. Using this fact, we get that there exists some
k2 > 0 such that for β sufficiently large

P
(

τx
A < eβ(Ψmin−ε), τx

A < τx
∂C+

A (x)

)
=

= P
(

τx
A < τx

∂C+
A (x)

)
P
(

τx
A < eβ(Ψmin−ε) | τx

A < τx
∂C+

A (x)

)
≤ P

(
τx

A < τx
∂C+

A (x)

)
·

∑
z∈Zopt

P
(

τx
A < eβ(Ψmin−ε) | τx

A < τx
∂C+

A (x), Xτx
Zopt

= z
)

P
(

Xτx
Zopt

= z
)

≤ P
(

τx
A < τx

∂C+
A (x)

)
∑

z∈Zopt

P
(

τz
A < eβ(Ψmin−ε)

)
P
(

Xτx
Zopt

= z
)

≤ P
(

τx
A < τx

∂C+
A (x)

)
∑

z∈Zopt

P
(

τz
A < eβ(Γ(z,A)−ε)

)
P
(

Xτx
Zopt

= z
)

≤ P
(

τx
A < τx

∂C+
A (x)

)
∑

z∈Zopt

P
(

τz
∂CA(z)

< eβ(Γ(z,A)−ε)
)

P
(

Xτx
Zopt

= z
)

≤ P
(

τx
A < τx

∂C+
A (x)

)
∑

z∈Zopt

e−k2β ·P
(

Xτx
Zopt

= z
)

= P
(

τx
A < τx

∂C+
A (x)

)
· e−k2β

≤ e−k2β, (4.61)

where we used Theorem 4.2.2(i) and the facts that τz
A ≥ τz

∂CA(z)
and that

Γ(CA(z)) = Γ(z, A) ≥ Ψmin for every z ∈ Zopt.
For the upper bound, we can argue that

P
(

τx
A > eβ(Ψmax+ε)

)
= P

(
τx

A > eβ(Ψmax+ε), τx
A < τx

∂C+
A (x)

)
+ P

(
τx

A > eβ(Ψmax+ε), τx
∂C+

A (x) ≤ τx
A

)
≤ P

(
τx

A > eβ(Ψmax+ε), τx
A < τx

∂C+
A (x)

)
+ P

(
τx

∂C+
A (x) ≤ τx

A

)
.
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The second term is exponentially small in β thanks to Theorem 4.2.2(iii) ap-
plied to the cycle C+

A (x), to which both x and at least one state of A belong.

We now turn our attention to the first term. If the Markov chain {Xβ
t }t∈N

hits the target set A before exiting from the cycle C+
A (x), then it has been

following an optimal path and, in particular, before hitting A it can have
visited only states in the set RA(x) \ A. Consider a state z ∈ RA(x) \ A. By
definition of RA(x), z can be reached from x by means of an optimal path,
i.e. there exists a path ω∗ : z → x such that Φω∗ ≤ Φ(x, A). This fact implies
that Φ(z, A) ≤ Φ(x, A) and thus for every path in ω ∈ Ωopt

z,A, we can obtain a
path that belongs to Ωopt

x,A by concatenating ω∗ and ω. Hence,

Ψmax(z, A) ≤ Ψmax = Ψmax(x, A). (4.62)

Lemma 4.2.11 guarantees the existence of a cycle-path C1, . . . , Cn vtj-connected
to A such that z ∈ C1 and C1, . . . Cn ∈ M(X \ A). From the fact that this cycle-
path is vtj-connected and Lemma 4.2.12, it follows that H(B(Ci)) ≤ Φ(x, A).
Definition (4.29), inclusion (4.38) and inequality (4.62) imply that

Γ(Ci) ≤ Ψmax, i = 1, . . . , n.

For every i = 2, . . . , n take a state yi ∈ B(Ci−1) ∩ Ci. Furthermore, take y1 = z
and yn+1 ∈ B(Cn) ∩ A. Consider the set of paths

Eε,z,A := Eε,z,A (y1, C1, y2, C2, . . . , yn, Cn, yn+1)

consisting of the paths constructed by the concatenation of any n–tuple of
paths ω(1), ω(2), . . . , ω(n) satisfying the following conditions:

(1) The path ω(i) has length |ω(i)| ≤ eβ(Ψmax+ε/4), for any i = 1, . . . , n;

(2) The path ω(i) joins yi to yi+1, i.e. ω(i) ∈ Ωyi ,yi+1 , for any i = 1, . . . , n;

(3) All the states ω
(i)
j belong to Ci for any j = 1, . . . , |ω(i)| − 1, for any i =

1, . . . , n.

We stress that the first condition restricts the set Eε,z,A to paths that spend less
than eβ(Ψmax+ε/4) time in cycle Ci, for every i = 1, . . . n. Note that the length of
any path ω ∈ Eε,z,A satisfies the upper bound

|ω| ≤ |X |eβ(Ψmax+ε/4).

Moreover, since the state space X is finite, for β sufficiently large

|ω| ≤ |X |eβ(Ψmax+ε/4) ≤ eβ(Ψmax+ε/2) ∀ω ∈ Eε,z,A.

Therefore, for every z ∈ RA(x) \ A

P
(

τz
A ≤ eβ(Ψmax+ε/2)

)
≥ P

(
τz

A ≤ eβ(Ψmax+ε/2), (Xm)
τx

A
m=1 ∈ Eε,z,A

)
= P

(
(Xm)

τz
A

m=1 ∈ Eε,z,A

)
.
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Using the Markov property, we obtain that for any ε′ > 0 and β sufficiently
large

P
(
(Xm)

τx
A

m=1 ∈ Eε,z,A

)
=

n

∏
i=1

P
(

τ
yi
∂Ci
≤ eβ(Ψmax+ε/4), Xyi

τ
yi
∂Ci

= yi+1

)
≥ e−βε′n ≥ e−βε′ |X |,

where the second last inequality follows from Theorem 4.2.2(v). Since e−βε′ |X |

does not depend on the initial state z,

inf
z∈RA(x)\A

P
(

τz
A ≤ eβ(Ψmax+ε/2)

)
≥ e−βε′ |X |.

Applying iteratively the Markov property at the times keβ(Ψmax+ε/2), with k =
1, . . . , eβε/2, we obtain that

P
(

τx
A > eβ(Ψmax+ε), τx

A < τx
∂C+

A (x)

)
≤
(

sup
z∈RA(x)\A

P
(

τz
A > eβ(Ψmax+ε/2)

))eβε/2

≤
(

1− e−βε′ |X |
)eβε/2

≤ e−eβ(ε/2−ε′ |X |)
.

We remark that we can take the supremum over the states in RA(x) \ A, since
all the other states in C+

A (x) \ RA(x) cannot be reached by means of an op-
timal path (i.e. without exiting from C+

A (x)) before visiting the target sub-
set A. Choosing ε′ > 0 small enough and β sufficiently large, we get that

e−eβ(ε/2−ε′ |X |) ≤ e−kβ for any k > 0.

4.3.3 Proof of Lemma 4.2.12

Take a path ω ∈ Ωx,A and the corresponding cycle-path Cω = (C1, . . . , Cm(ω)).
We first show that ω 6∈ Ωvtj

x,A implies that Φ(ωi+1, A) > Φ(ωi, A) for some
1 ≤ i ≤ |ω|. If ω 6∈ Ωvtj

x,A, then the cycle-path Cω = (C1, . . . , Cm(ω)) is not vtj-
connected to A, which means that there exists an index 1 ≤ k ≤ m(ω) such
that ∂Ck ∩ Ck+1 6= ∅, but B(Ck) ∩ Ck+1 = ∅. Take the corresponding index i
in the path ω such that ωi ∈ Ck and ωi+1 ∈ ∂Ck ∩ Ck+1. From the fact that
ωi+1 6∈ B(Ck), it follows that

Φ(ωi+1, A) > Φ(ωi, A).

Indeed, if Ck is a trivial cycle, i.e. Ck = {ωi}, then ωi+1 6∈ B(Ck) implies
H(ωi+1) > H(ωi) and thus

Φ(ωi+1, A) ≥ H(ωi+1) > H(ωi) = Φ(ωi, A),
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where the last equality holds since Ck is a trivial cycle in M(X \ A). In the
case where Ck is a non-trivial cycle, then

Φ(ωi+1, A) ≥ H(ωi+1) > H(F (∂Ck)) = Φ(ωi, A),

where the last equality follows from the fact that Ck = CA(ωi).
We now focus on the converse implication. We want to prove that if ω ∈ Ωvtj

x,A
then Φ(ωi+1, A) ≤ Φ(ωi, A) for every i = 1, . . . , |ω|. Consider the index k
such that ωi ∈ Ck. If the states ωi and ωi+1 both belong to Ck, then CA(ωi) =
CA(ωi+1) = Ck and Φ(ωi+1, A) = Φ(ωi, A). If instead ωi and ωi+1 belongs
to different cycles, then ωi+1 ∈ B(Ck) ∩ Ck+1 by definition of cycle-path. If
Ck = CA(ωi) is a non-trivial cycle, then H(ωi+1) = H(F (∂Ck) and thus

Φ(ωi+1, A) ≤ max{Φ(ωi, A), H(ωi+1)} = H(F (∂Ck)) = Φ(ωi, A).

Lastly, if Ck is instead a trivial cycle, then H(ωi+1) ≤ H(ωi) ≤ Φ(ωi, A) and
thus

Φ(ωi+1, A) ≤ max{Φ(ωi, A), H(ωi+1)} = Φ(ωi, A).

4.3.4 Proof of Lemma 4.2.13

In (4.41) we have used the fact that the only way to exit from the tube TA(x)
without having hit the subset A first is to exit from the non-principal boundary
of a cycle C ∈ TA(x). Therefore

P
(

τx
∂TA(x) < τx

A

)
=

= ∑
C∈TA(x)

P
(

τx
∂TA(x) < τx

A, Xτx
∂TA(x)−1 ∈ C, Xτx

∂TA(x)
6∈ B(C)

)
= ∑

C∈TA(x)
∑
z∈C

P
(

τx
∂TA(x) < τx

A, Xτx
∂TA(x)−1 = z, Xτx

∂TA(x)
6∈ B(C)

)
≤ ∑

C∈TA(x)
|C| sup

z∈C
P
(

Xτz
∂C
6∈ B(C)

)
≤ ∑

C∈TA(x)
|C|e−kC β < e−κβ,

for some κ > 0 and β sufficiently large. The second last inequality follows
from Theorem 4.2.2(iv) when C is a non-trivial cycle and directly from defi-
nition (4.36) of B(C) and the transition probabilities (4.1) when C is a trivial
cycle. Thanks to the definition (4.39) of the typical tube, P(τx

∂TA(x) = τx
A) = 0,

since all the states of the target state A that can be hit starting from x by means
of a typical path belong to TA(x) and not to ∂TA(x).

4.3.5 Proof of Proposition 4.2.15

As mentioned in Subsection 4.2.4, this proposition is a refinement of Proposi-
tion 4.2.10, so instead of giving a full proof, we will just describe the neces-
sary modifications. In this proof we suppress from our notation the explicit



4.3 proof of results for general metropolis markov chain 133

dependence of Θmin(x, A) and Θmax(x, A) from x and A for compactness, and
denote the same quantities by Θmin and Θmax, respectively.

We first prove (4.46). Consider the event {τx
A < eβ(Θmin−ε)} first. There are

two possible scenarios: Either the process exits the tube TA(x) of typical paths
before hitting A or it stays in TA(x) until it hits A. Hence,

P
(

τx
A < eβ(Θmin−ε)

)
=

= P
(

τx
A < eβ(Θmin−ε), τx

A < τx
∂TA(x)

)
+ P

(
τx

∂TA(x) ≤ τx
A < eβ(Θmin−ε)

)
≤ P

(
τx

A < eβ(Θmin−ε), τx
A < τx

∂TA(x)

)
+ P

(
τx

∂TA(x) ≤ τx
A

)
. (4.63)

Lemma 4.2.13 implies that the second term in the right-hand side of (4.63) is
exponentially small in β. In order to derive an upper bound for the first term
in (4.63), we introduce the set

Zvtj := {z ∈ TA(x) \ A | Γ(z, A) ≥ Θmin}.

By definition (4.42) of Θmin, every typical path ω ∈ Ωvtj
x,A must inevitably visit

a cycle of depth not smaller than Θmin and therefore has to enter the subset
Zvtj before hitting A. Hence, for every z ∈ Zvtj, conditioning on the event
{τx

A < τx
∂TA(x), Xτx

Zvtj
= z}, we can write

τx
A

d
= τx

z + τz
A,

and in particular we have that τx
A >st τz

A. Using this fact and arguing like
in (4.61), we can prove that there exists κ > 0 such that β sufficiently large
such that

P
(

τx
A < eβ(Θmin−ε), τx

A < τx
∂TA(x)

)
≤ e−κβ.

We now turn our attention to the proof of the upper bound (4.47). First note
that

P
(

τx
A > eβ(Θmax+ε)

)
=

= P
(

τx
A > eβ(Θmax+ε), τx

A < τx
∂TA(x)

)
+ P

(
τx

A > eβ(Θmax+ε), τx
∂TA(x) ≤ τx

A

)
≤ P

(
τx

A > eβ(Θmax+ε), τx
A < τx

∂TA(x)

)
+ P

(
τx

∂TA(x) ≤ τx
A

)
, (4.64)

where the the latter term is exponentially small in β for β sufficiently large,
thanks to Lemma 4.2.13. For the first term in (4.64), we refine the argument
given in the second part of the proof of Proposition 4.2.10. Consider a state
z ∈ TA(x) \ A. Since TA(z) ⊆ TA(x), it follows from (4.44) that

Θmax(z, A) ≤ Θmax = Θmax(x, A). (4.65)
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Thanks to Lemma 4.2.11, there exists a cycle-path of maximal cycles C1, . . . , Cn
in X \ A that is vtj-connected to A and such that z ∈ C1. The definition of vtj-
connected cycle-path, Lemma 4.2.14 and inequality (4.65) imply that

Γ(Ci) ≤ Θmax, ∀ i = 1, . . . , n. (4.66)

For each i = 2, . . . , n, take a state yi ∈ F (∂Ci−1)∩Ci. Furthermore, take y1 = z
and yn+1 ∈ F (∂Cn) ∩ A. We consider the collection of paths

E∗ε,z,A := E∗ε,z,A (y1, C1, y2, C2, . . . , yn, Cn, yn+1) ,

which consists of all paths obtained by concatenating any n–tuple of paths
ω(1), ω(2), . . . , ω(n) satisfying the following conditions:

(1) The path ω(i) has length |ω(i)| ≤ eβ(Θmax+ε/4), for any i = 1, . . . , n;

(2) The path ω(i) joins yi to yi+1, i.e. ω(i) ∈ Ωyi ,yi+1 , for any i = 1, . . . , n;

(3) All the states ω
(i)
j belong to Ci for any j = 1, . . . , |ω(i)| − 1, for any

i = 1, . . . , n.

This collection is similar to the collection Eε,z,A described in the proof of Propo-
sition 4.2.10, but condition (1) here is stronger. Using (4.66) and arguing as in
the proof of Proposition 4.2.10, we obtain that

P
(

τz
A ≤ eβ(Θmax+ε/2)

)
≥ P

(
(Xm)

τx
A

m=1 ∈ E∗ε,z,A

)
≥ e−βε′ |X |.

Since e−βε′ |X | does not depend on the initial state z, we get for any ε′ > 0 and
β sufficiently large

inf
z∈TA(x)

P
(

τz
A ≤ eβ(Θmax+ε/2)

)
≥ e−βε′ |X |,

and thus

P
(

τx
A > eβ(Θmax+ε), τx

A < τx
∂TA(x)

)
≤
(

sup
z∈TA(x)\A

P
(

τz
A > eβ(Θmax+ε/2)

))eβε/2

≤
(

1− e−βε′ |X |
)eβε/2

≤ e−eβ(ε/2−ε′ |X |)
, (4.67)

by applying iteratively the Markov property at the times keβ(Θmax+ε/2), with
k = 1, . . . , eβε/2. Choosing ε′ > 0 small enough and β sufficiently large, we get
that the right-hand side of inequality (4.67) is super-exponentially small in β,
which completes the proof of the upper bound (4.47).
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4.3.6 Proof of Theorem 4.2.17

Since Assumption (A1) holds, we set Θ(x, A) = Θmin(x, A) = Θmax(x, A).
The starting point of the proof is the following technical lemma.

Lemma 4.3.1 (Uniform integrability). If Assumption (A2) holds, then for any
ε > 0 the variables Yx

A(β) := τx
Ae−β(Θ(x,A)+ε) are uniformly integrable, i.e. there

exists β0 > 0 such that for any δ > 0 there exists K ∈ (0, ∞) such that for any
β > β0

E
(

Yx
A(β)1{Yx

A(β)>K}
)
< δ.

Proof. The proof is similar to that of [106, Corollary 3.5]. It suffices to have
exponential control of the tail of the random variable Yx

A(β) for β sufficiently
large, i.e.

P
(

Yx
A(β) > n

)
= P

(
τx

Ae−β(Θ(x,A)+ε) > n
)
≤ an,

with a < 1. Assumption (A2) implies that Θmax(z, A) ≤ Θ(x, A) for every
z ∈ X \ A. Then, iteratively using the Markov property gives

P
(

τx
A > ne−β(Θ(x,A)+ε)

)
≤
(

sup
z 6∈A

P
(

τz
A > eβ(Θ(x,A)+ε)

))n

≤
(

sup
z 6∈A

P
(

τz
A > eβ(Θmax(z,A)+ε)

))n
,

and the conclusion follows from Proposition 4.2.15.

Proposition 4.2.15 implies that the random variable Yx
A(β) := τx

Ae−β(Θ(x,A)+ε)

converges to 0 in probability as β → ∞. Lemma 4.3.1 guarantees that the se-
quence (Yx

A(β))β≥β0 is also uniformly integrable and thus limβ→∞ E|Yx
A(β)| =

0. Therefore, for any ε > 0 we have that for β sufficiently large

Eτx
A < eβ(Θ(x,A)+ε).

As far as the lower bound is concerned, for any ε > 0 Proposition 4.2.15 and
the identity Θ(x, A) = Θmin(x, A) yield

Eτx
A > eβ(Θ(x,A)−ε/2)P

(
τx

A > eβ(Θ(x,A)−ε/2)
)

≥ eβ(Θ(x,A)−ε/2)(1− e−κβ) ≥ eβ(Θ(x,A)−ε).

Since ε is arbitrary, the conclusion follows.
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4.3.7 Proof of Theorem 4.2.19

As mentioned before, the strategy is to show that the Markov chain {Xβ
t }t∈N

satisfies the assumptions of [49, Theorem 2.3], which for completeness we
reproduce here. For R > 0 and r ∈ (0, 1), we say that the pair (x, A) with
A ⊂ X satisfies Rec(R, r) if

sup
z∈X

P
(

τz
{x,A} > R

)
≤ r.

The quantities R and r are called recurrence time and recurrence error, respec-
tively.

Theorem 4.3.2. [49, Theorem 2.3] Consider a nonempty subset A ⊂ X and x 6∈ A
such that Rec(R(β), r(β)) holds and

(i) limβ→∞ R(β)/Eτx
A(β) = 0,

(ii) limβ→∞ r(β) = 0.

Then there exist two functions k1(β) and k2(β) with limβ→∞ k1(β) = 0 and
limβ→∞ k2(β) = 0 such that for any s > 0∣∣∣P( τx

A
Eτx

A
> s
)
− e−s

∣∣∣ ≤ k1(β)e−(1−k2(β))s. (4.68)

Since Γ̃(X \ (A ∪ {x})) < Θ(x, A) by assumption, we can take ε > 0 small
enough such that Γ̃(X \ (A ∪ {x})) + ε < Θ(x, A). Proposition 4.2.7 implies
that there exists κ > 0 such that for β sufficiently large the pair (x, A) satisfies
Rec(eβΓ̃(X\(A∪{x}))+ε), e−κβ), since

sup
z∈X

P
(

τz
{x,A} > eβ(Γ̃(X\(A∪{x}))+ε)

)
≤ e−eκβ

.

Clearly r(β) = e−eκβ → 0 as β → ∞ and thus assumption (ii) holds. Assump-
tion (i) is also satisfied, since

lim
β→∞

1
β

log R(β) = Γ̃(X \ (A ∪ {x})) + ε < Θ(x, A) = lim
β→∞

1
β

log Eτx
A.

The conclusion of Theorem 4.2.19 then follows by applying Theorem 4.3.2.

4.3.8 Proof of Proposition 4.2.24

The two limits in (4.58) are an almost immediate consequence of [29, Theorem
5.1] and [109, Proposition 2.1]. Indeed, we just need to show that the critical
depths H2 and H3 (see below for their definitions) that appear in these two
results are equal to Γ̃(X \ {s}), for any s ∈ X s. The critical depth H2 is equal
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to Γ̃(X \ {s}) by definition, see [29]. Note that this quantity is well defined,
since its value is independent of the choice of s, as stated in [29, Theorem 5.1].
This critical depth is also known in the literature as maximal internal resistance
of the state space X , see [106, Remark 4.4].

The definition of the critical depth H3 is more involved and we need some
further notation. Consider the two-dimensional Markov chain {(Xt, Yt)}t≥0,
where Xt and Yt are two independent Metropolis Markov chains on the same
energy landscape (X , H, c) and indexed by the same inverse temperature β.
In other words, {(Xt, Yt)}t≥0 is the Markov chain on X × X with transition
probabilities P⊗2

β given by

P⊗2
β

(
(x, y), (w, z)

)
= Pβ(x, w)Pβ(y, z) ∀ (x, y), (w, z) ∈ X 2.

The critical depth H3 is then defined as

H3 := Γ̃(X ×X \ D),

where D := {(x, x) | x ∈ X}. Consider the null-cost graph on the set of stable
states, i.e. the directed graph (V, E) with vertex set V = X s and edge set

E =
{
(s, s′) ∈ X s ×X s

∣∣∣ lim
β→∞
− 1

β
log Pβ(s, s′) = 0

}
.

[29, Theorem 5.1] guarantees that H2 ≤ H3 and states that if the null-cost
graph has an aperiodic component, then H2 = H3. We claim that this condi-
tion is always satisfied by a Metropolis Markov chain with energy landscape
(X , H, c) with a non-constant energy function H. It is enough to show that for
any such a Markov chain there exists at least one stable state s ∈ X s such that

lim
β→∞
− 1

β
log Pβ(s, s) = 0.

The subset X \ X s is a non-empty set, since H is non-constant. Since q is ir-
reducible, there exists a state s ∈ X s and x ∈ X \ X s such that c(s, x) > 0.
Furthermore, we can choose s ∈ X s and x ∈ X \ X s such that the differ-
ence H(x)− H(s) is minimal. For this stable state s, the transition probability
towards itself reads

Pβ(s, s) = 1− ∑
y 6=s

c(s, y)e−β(H(y)−H(s))+

= 1− ∑
s′∈X s , s′ 6=s

c(s, s′)− ∑
y∈X\X s

c(s, y)e−β(H(y)−H(s))+

≥ 1− ∑
s′∈X s , s′ 6=s

c(s, s′)− e−β(H(x)−H(s))+ ∑
y∈X\X s

c(s, y)

≥ 1− ∑
s′∈X s , s′ 6=s

c(s, s′)− e−β(H(x)−H(s))+ .
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Since q is a stochastic matrix, it follows that 1− ∑s′∈X s , s′ 6=s c(s, s′) > 0 inde-
pendently of β and thus

lim
β→∞
− 1

β
log Pβ(s, s) = 0,

since for every ε > 0 there exists β0 > 0 such that for every β > β0

Pβ(s, s) ≥ 1− ∑
s′∈X s , s′ 6=s

c(s, s′)− e−β(H(x)−H(s))+ > e−βε.

Finally, the bounds (4.59) follow immediately from [65, Theorem 2.1], since the
quantity m which appears there is equal to Γ̃(X \ {s}) thanks to Lemma 4.2.6.



5H A R D - C O R E M O D E L O N G R I D G R A P H S

In this chapter we study the hard-core model on grid graphs with Metropolis
dynamics, which is the discrete-time version of the saturated CSMA dynam-
ics on grid networks described in 1.2.2. As observed in Chapter 1, these grid
networks have two dominant states corresponding to the two chessboard pat-
terns, which we denote by e and o. The goal of this chapter is to understand
the asymptotic behavior of the transition times between these two dominant
states by studying the tunneling time τe

o of the particle system with hard-core
interaction.

Using a novel powerful combinatorial method, we identify the minimum en-
ergy barrier between e and o and prove absence of deep cycles for this model,
which allows us to decouple the asymptotics for the hitting time τe

o and the
study of the critical configurations. Applying the model-independent results
developed in Chapter 4, we then obtain bounds in probability for τe

o and find
the order of magnitude of Eτe

o on a logarithmic scale, which depends both on
the grid dimensions and on the chosen boundary conditions. In addition, our
analysis of the energy landscape shows that the scaled hitting time τe

o /Eτe
o is

exponentially distributed in the low-temperature regime and yields the order
of magnitude of the mixing time of the Markov chain {Xβ

t }t∈N.
After a detailed model description in Section 5.1, we present the main re-

sults of this chapter in Section 5.2, which are then proved in Section 5.3. We
remark that from this chapter onwards we will use the classical notation and
terminology used in the statistical physics literature. In particular, we will
talk about particles rather than nodes and we will refer to dominant states as
stable states; see Section 1.3 where this correspondence is described in more
detail.

5.1 model description

The hard-core model on finite graphs has already been introduced in Sub-
section 1.3.1. Recall that the spatial structure of the volume where particles
interact is described by means of a finite undirected graph G = (V, E), where
the N vertices represent the sites where particles reside and edges connect the
pairs of sites where particles cannot reside simultaneously.

In Subsection 1.3.2 we described how the discrete-time evolution of this
model fits in the framework of Metropolis Markov chains (see Chapter 4). As-
sociating a variable σ(v) ∈ {0, 1} with each site v ∈ V, indicating the absence
(0) or the presence (1) of a particle in that site, the evolution of the particle sys-
tem is described by the Metropolis Markov chain {Xβ

t }t∈N parametrized by

139



140 hard-core model on grid graphs

the inverse temperature β corresponding to the following energy landscape
(X , H, c). The state space X ⊂ {0, 1}N is the set of admissible configurations on
Λ, i.e. the configurations σ ∈ {0, 1}N such that σ(v)σ(w) = 0 for every pair of
neighboring sites v, w in G. The energy H(σ) of an admissible configuration
σ ∈ X is proportional to the total number of particles,

H(σ) := − ∑
v∈V

σ(v). (5.1)

The connectivity function c : X × X → [0, 1] allows only for single-site up-
dates (possibly void): For any σ, σ′ ∈ X ,

c(σ, σ′) :=


1
N , if |{v ∈ V | σ(v) 6= σ′(v)}| = 1,

0, if |{v ∈ V | σ(v) 6= σ′(v)}| > 1,

1−∑η 6=σ c(σ, η), if σ = σ′.

(5.2)

The transition probabilities of the Markov chain {Xβ
t }t∈N are uniquely de-

termined by the inverse temperature β and the above energy landscape and
they are given by (4.1). As argued in Section 4.1, the Markov chain {Xβ

t }t∈N

is reversible with respect to the Gibbs measure (4.2). Thanks to the structure
of the connectivity function c, the Markov chain {Xβ

t }t∈N is aperiodic and
irreducible on X , and thus ergodic on X with stationary distribution µβ.

In this chapter we focus on the hard-core model on finite two-dimensional
square lattices, to which we will simply refer to as grid graphs. More pre-
cisely, given two integers K, L ≥ 2, we will take G to be a K × L grid graph
Λ = ΛK,L with three possible boundary conditions: Toroidal (periodic), cylin-
drical (semiperiodic) and open. We denote them by ΛT

K,L, ΛC
K,L and ΛO

K,L, re-
spectively. Figure 2.2 in Chapter 2 shows an example of the three possible
types of boundary conditions. As illustrated in Section 2.2, each of the grid
graphs described above has vertex set V = {0, . . . , L− 1}× {0, . . . , K− 1} and
thus Λ has N = KL sites in total. Every site v ∈ V is described by its coordi-
nates (v1, v2) and is called even (odd) if the sum of its two coordinates is even
(odd, respectively). We denote by Ve and Vo the collection of even sites and
that of odd sites of Λ, respectively.

The open grid ΛO
K,L is naturally a bipartite graph, since all neighbors of an

even site are odd sites and vice versa. In contrast, the cylindrical and toric
grids may not be bipartite, so that we further assume that K is an even integer
for the cylindrical grid ΛC

K,L and that both K and L are even integers for the
toric grid ΛT

K,L. Since the bipartite structure is crucial for our methodology, we
will tacitly work under these assumptions for the cylindrical and toric grids in
the rest of the chapter. As a consequence, ΛT

K,L and ΛC
K,L are balanced bipartite

graphs, i.e. |Ve| = |Vo|. The open grid ΛO
K,L has |Ve| = dKL/2e even sites and

|Vo| = bKL/2c odd sites, hence it is a balanced bipartite graph if and only if
the product KL is even.
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We denote by e (o) the configuration with a particle at each site in Ve (Vo,
respectively). More precisely,

e(v) :=

1 if v ∈ Ve,

0 if v ∈ Vo,
and o(v) :=

0 if v ∈ Ve,

1 if v ∈ Vo.

Note that e and o are admissible configurations for any of our three choices
of boundary conditions, and that, in view of (5.1), H(e) = −|Ve| = −dKL/2e
and H(o) = −|Vo| = −bKL/2c. In the special case where Λ = ΛO

K,L with
KL ≡ 1 (mod 2), H(e) < H(o) and, as we will show in Section 5.3, X s = {e}
and Xm = {o}. In all the other cases, we have H(e) = H(o) and X s = {e, o};
see Section 5.3 for details.

5.2 asymptotic behavior of tunneling times and mixing times

In this section we present our main results, which describe the asymptotic be-
havior of the hard-core model on grid graphs in the low-temperature regime.

The first main result of this chapter describes the asymptotic behavior of
the tunneling time τe

o for any grid graph Λ in the low-temperature regime
β → ∞. In particular, we prove the existence and find the value of an ex-
ponent Γ(Λ) > 0 that gives asymptotic control in probability of the hitting
time τe

o on a logarithmic scale as β → ∞ and characterizes the asymptotic
order of magnitude of the mean tunneling time Eτe

o . We further show that
the tunneling time τe

o normalized by its mean converges in distribution to an
exponential unit-mean random variable.

Theorem 5.2.1 (Asymptotic behavior of the tunneling time τe
o ). Consider the

Metropolis Markov chain {Xβ
t }t∈N corresponding to hard-core dynamics on a K× L

grid graph Λ as described in Section 5.1. There exists a constant Γ(Λ) > 0 such that

(i) For every ε > 0, lim
β→∞

P
(

eβ(Γ(Λ)−ε) < τe
o < eβ(Γ(Λ)+ε)

)
= 1;

(ii) lim
β→∞

1
β

log Eτe
o = Γ(Λ);

(iii)
τe

o
Eτe

o

d−→ Exp(1), as β→ ∞.

In the special case where Λ = ΛO
K,L with KL ≡ 1 (mod 2), statements (i), (ii), and

(iii) hold also for the transition time τo
e , but replacing Γ(Λ) by Γ(Λ)− 1.

Theorem 5.2.1 relies on the analysis of the energy landscape corresponding
to the hard-core model on grid graphs, in combination with the results for
hitting times presented in Chapter 4 in the general Metropolis Markov chains
context. More precisely, in Section 5.3 we develop a powerful combinatorial
approach that shows that Assumptions A (absence of deep cycles) and B are
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satisfied by the hard-core model on a grid graph Λ. Similar combinatorial
approaches will be used to analyze the hard-core model on triangular grid
graphs in Chapter 6 and the Widom-Rowlison model on grid graphs in Chap-
ter 7. Our analysis yields the value of the energy barrier Γ(Λ) between e and o,
which turns out to depend both on the grid size and on the chosen boundary
conditions, as established by the next theorem.

Theorem 5.2.2 (The exponent Γ(Λ) for grid graphs). Let Λ be a K × L grid
graph. Then the energy barrier Γ(Λ) between e and o appearing in Theorem 5.2.1
takes the values

Γ(Λ) =


min{K, L}+ 1 if Λ = ΛT

K,L and K + L > 4,

min{dK/2e, dL/2e}+ 1 if Λ = ΛO
K,L,

min{K/2, L}+ 1 if Λ = ΛC
K,L.

The additional condition K + L > 4 leaves out the 2× 2 toric grid graph,
which is a special case for which our proof method does not work. However,
Theorem 5.2.1 holds also in this case, since effectively ΛT

2,2 = ΛO
2,2.

The proof of Theorem 5.2.2 is presented in Section 5.3. The crucial proof idea
is that along the transition from e to o, there must be a critical configuration
where for the first time an entire row or an entire column coincides with the
target configuration o. In such a critical configuration particles reside both in
even and odd sites and, due to the hard-core constraints, an interface of empty
sites should separate particles with different parities. By quantifying the “in-
efficiency” of this critical configuration we get the minimum energy barrier
that has to be overcome for the transition from e to o to occur. The proof is
then concluded by exhibiting a path that achieves this minimum energy and
by exploiting the absence of other deep cycles in the energy landscape. By
proving that the energy landscape corresponding to the hard-core model on
grid graphs exhibits absence of deep cycles, the study of the hitting time τe

o
is decoupled from an exact control of the typical paths from e to o. For this
reason, the study of the critical configurations and of the minimal gates along
the transition from e to o is beyond the scope of this chapter and will be the
focus of future work.

Besides appearing in the asymptotic results for the tunneling times in The-
orem 5.2.1, the exponent Γ(Λ) also characterizes the asymptotic order of mag-
nitude of the mixing time tmix

β (ε, Λ) and of the spectral gap ρβ(Λ) of the
hard-core dynamics {Xβ

t }t∈N on Λ (see Subsection 4.2.8), as established by
the next theorem.

Theorem 5.2.3 (Mixing time and spectral gap). For any grid graph Λ and for any
0 < ε < 1,

lim
β→∞

1
β

log tmix
β (ε, Λ) = Γ(Λ) = lim

β→∞
− 1

β
log ρβ(Λ).
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Furthermore, there exist two positive constants 0 < c1 ≤ c2 < ∞ independent of β
such that for every β ≥ 0

c1e−βΓ(Λ) ≤ ρβ(Λ) ≤ c2e−βΓ(Λ).

5.3 energy landscape analysis

This section is devoted to the analysis of the energy landscapes correspond-
ing to the hard-core dynamics on the three different types of grid graphs
presented in Section 5.1. Starting from geometrical and combinatorial prop-
erties of the admissible configurations, we prove some structural properties
of the energy landscapes XΛT

K,L
,XΛO

K,L
and XΛC

K,L
. These results are precisely

the model-dependent characteristics that are needed to exploit the general
framework developed in Chapter 4 to obtain the main results presented in
Section 5.2. These structural properties are stated in the next three theorems
and the rest of this section is devoted to their proofs.

Theorem 5.3.1 (Structural properties of XΛT
K,L

). Consider the energy landscape

corresponding to the hard-core model on the K× L toric grid ΛT
K,L. Then,

(i) Γ̃(X \ {e, o}) ≤ min{K, L},

(ii) Γ(e, {o}) = min{K, L}+ 1 = Γ̃(X \ {o}).
Theorem 5.3.1 implies that the conditions (4.50) and (4.55) (see Section 4.2)

hold for the pair (e, {o}) in the energy landscape (XΛT
K,L

, H, c).
Hence Assumptions A and B are satisfied and the statements of Theo-

rems 5.2.1 and 5.2.2 for a toric grid ΛT
K,L follow from Corollary 4.2.16 and

Theorems 4.2.17 and 4.2.19, respectively.

Theorem 5.3.2 (Structural properties of XΛO
K,L

). Consider the energy landscape

corresponding to the hard-core model on the K × L open grid ΛO
K,L. If KL ≡ 0

(mod 2), then,

(i) Γ̃(X \ {e, o}) ≤ min{dK/2e, dL/2e},

(ii) Γ(e, {o}) = min{dK/2e, dL/2e}+ 1 = Γ̃(X \ {o}).
If instead KL ≡ 1 (mod 2), then,

(iii) Γ̃(X \ {e, o}) < min{dK/2e, dL/2e},

(iv) Γ(e, {o}) = min{dK/2e, dL/2e} + 1 = Γ̃(X \ {o}) and Γ(o, {e}) =
min{dK/2e, dL/2e} = Γ̃(X \ {e}).

We remark that in the case KL ≡ 1 (mod 2) the inequality in (iii) is strict,
while inequality in (i) is not, and this fact is crucial in order to conclude that o
is the unique metastable state of the state space XΛO

K,L
when KL ≡ 1 (mod 2).
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Using Theorem 5.3.2, we can check that the pair (e, {o}) satisfies both As-
sumptions A and B (since both conditions (4.50) and (4.55) hold) and thus
prove the asymptotic properties in Theorems 5.2.1 and 5.2.2 for the hitting
times τe

o and τo
e in the case of an open grid ΛO

K,L.

Theorem 5.3.3 (Structural properties of XΛC
K,L

). Consider the energy landscape

corresponding to the hard-core model on the K× L cylindrical grid ΛC
K,L. Then,

(i) Γ̃(X \ {e, o}) ≤ min{K/2, L},
(ii) Γ(e, {o}) = min{K/2, L}+ 1 = Γ̃(X \ {o}).
Using Theorem 5.3.3, we can check that Assumptions A and B are satis-

fied by the pair (e, {o}), and then the statements of Theorems 5.2.1 and 5.2.2
for a cylindrical grid ΛC

K,L follow from Corollary 4.2.16 and Theorems 4.2.17

and 4.2.19.
The ideas behind the proofs of these three theorems are similar, but for

clarity we present them separately in Subsections 5.3.2, 5.3.3 and 5.3.4.
Denote Γ(Λ) := Γ̃(X \ {e}), where (X , H, c) is the energy landscape corre-

sponding to the hard-core model on the grid Λ. In the case Λ = ΛO
K,L with

KL ≡ 1 (mod 2), Theorem 5.3.2 gives that Γ(Λ) = min{dK/2e, dL/2e}. In all
the other cases by symmetry we have Γ̃(X \ {e}) = Γ̃(X \ {o}) and hence,
from Theorems 5.3.1, 5.3.2 and 5.3.3 it then follows that

Γ(Λ) =



min{K, L}+ 1 if Λ = ΛT
K,L,

min{dK/2e, dL/2e}+ 1 if Λ = ΛO
K,L and KL ≡ 0 (mod 2),

min{dK/2e, dL/2e} if Λ = ΛO
K,L and KL ≡ 1 (mod 2),

min{K/2, L}+ 1 if Λ = ΛC
K,L.

Lastly, the proof of Theorem 5.2.3 readily follows from the properties of
the energy landscapes presented in Theorems 5.3.1, 5.3.2 and 5.3.3 and by
applying Proposition 4.2.24.

5.3.1 Preliminaries

We next introduce some notation and definitions for grid graphs. Recall that
Λ is a K × L grid graph with K, L ≥ 2 which has N = KL sites in total. We
define the energy wastage of a configuration σ ∈ X on the grid graph Λ as the
difference between its energy and the energy of the configuration e, i.e.

U(σ) := H(σ)− H(e). (5.3)

Since H(e) = −dN/2e, we have that

U(σ) = H(σ) + dN/2e = dN/2e − ∑
v∈V

σ(v).



5.3 energy landscape analysis 145

Moreover, since e is a stable state, U(σ) ≥ 0. The function U : X → R+ ∪
{0} is usually called virtual energy in the literature [29, 38] and satisfies the
following identity

U(σ) = − lim
β→∞

1
β

log µβ(σ),

where µβ is the Gibbs measure (4.2) of the Markov chain {{X(t)}t≥0}t∈N.
We denote by cj, j = 0, . . . , L− 1, the j-th column of Λ, i.e. the collection of

sites whose horizontal coordinate is equal to j, and by ri, i = 0, . . . , K− 1, the
i-th row of Λ, i.e. the collection of sites whose vertical coordinate is equal to
i, see Figure 5.1. In particular, a vertex is identified by the coordinates (j, i) if
it lies at the intersection of row ri and column cj. In addition, define the i-th
horizontal stripe, with i = 1, . . . , bK/2c, as

Si := r2i−2 ∪ r2i−1,

and the j-th vertical stripe, with j = 1, . . . , bL/2c as

Cj := c2j−2 ∪ c2j−1,

as illustrated in Figure 5.1.

C1 C2

S1

S2

c0 c1 c2 . . . cL−1

r0

r1

r2

...

rK−1

Figure 5.1: Illustration of row, column and stripe notation

An important feature of the energy wastage U for grid graphs, is that it can
be seen as the sum of the energy wastages on each row (or on each horizontal
stripe). More precisely, let Uj(σ) be the energy wastage of a configuration
σ ∈ X in the i-th row, i.e.

Ui(σ) := dL/2e − ∑
v∈ri

σ(v). (5.4)
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Similarly, let US
i (σ) be the energy wastage of a configuration σ ∈ X on the

i-th horizontal stripe, i.e.

US
i (σ) := L− ∑

v∈Si

σ(v) = U2i−2(σ) + U2i−1(σ). (5.5)

Then, we can rewrite the energy wastage of a configuration σ ∈ X as

U(σ) =
K

∑
i=1

Ui(σ) =
dK/2e
∑
i=1

US
i (σ). (5.6)

Given two configurations σ, σ′ ∈ X and a subset of sites W ⊂ V, we write

σ|W = σ′|W ⇐⇒ σ(v) = σ′(v) ∀ v ∈W.

We say that a configuration σ ∈ X has a vertical odd (even) bridge if there exists
a column in which configuration σ perfectly agrees with o (respectively e),
i.e. if there exists an index 0 ≤ j ≤ L− 1 such that

σ|cj
= o|cj

(respectively σ|cj
= e|cj

).

We define horizontal odd and even bridges in an analogous way and we say
that a configuration σ ∈ X has an odd (even) cross if it has both vertical and
horizontal odd (even) bridges.

We remark that the structure of the grid graph Λ and the hard-core con-
straints prohibit the existence of two perpendicular bridges of different parity,
e.g. a vertical odd bridge and a horizontal even bridge. Bridges and crosses
are the geometric feature of the configurations which will be crucial in the
following subsections to prove Theorems 5.3.1, 5.3.2 and 5.3.3.

5.3.2 Proofs for toric grids

This subsection is devoted to the proof of Theorem 5.3.1 valid for the toric
grid ΛT

K,L. Without loss of generality, we assume henceforth that K ≤ L, and
that K + L > 4, in view of the remark after Theorem 5.2.2. Recall that by con-
struction of the toric grid Λ, both K and L are even integers. In the remainder
of the section we will write X instead of XΛT

K,L
to keep the notation light.

We first introduce a reduction algorithm, which is used to construct a specific
path in X from any given state in X \ {e, o} to the subset {e, o} and to show
that

Γ̃(X \ {e, o}) ≤ K, (5.7)

which proves Theorem 5.3.1(i). Afterwards, we show in Proposition 5.3.5 that

Φ(e, o)− H(e) ≥ K + 1,
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(a) Horizontal odd bridge (b) Two vertical odd bridges

(c) Odd cross

Figure 5.2: Examples of configurations on the 8× 8 toric grid displaying odd bridges
or crosses

by giving lower bounds on the energy wastage along every path e → o. The
reduction algorithm is then used again in Proposition 5.3.6 to build a reference
path ω∗ : e→ o which shows that the lower bound is sharp and hence

Φ(e, o)− H(e) = K + 1,

which, together with (5.7), proves Theorem 5.3.1(ii).
The starting point of the energy landscape analysis is a very simple obser-

vation: A configuration in X has zero energy wastage in a given row (column)
if and only if it has an odd or even horizontal (vertical) bridge. The following
lemma formalizes this property. We give the statement and the proof only for
rows, since those for columns are analogous.

Lemma 5.3.4 (Equivalent characterization of bridges). For any σ ∈ X and any
i = 0, . . . , K− 1,

Ui(σ) = 0 ⇐⇒ σ|ri
= e|ri

or σ|ri
= o|ri

.
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Proof. The i-th row of the toric grid graph Λ is a cycle graph with L/2 even
sites and L/2 odd sites. If σ|ri

= e|ri
or σ|ri

= o|ri
, then trivially there are L/2

occupied sites and hence Ui(σ) = 0. Noticing that the configurations e|ri
and

o|ri
in row i correspond to the only two maximum independent sets of the

cycle graph ri proves the converse implication.

Reduction algorithm for toric grids

We now describe an iterative procedure that builds a path ω in X from a
suitable initial configuration σ (with specific properties, see below) to state
o. We call it a reduction algorithm, because along the path it creates the even
clusters are gradually reduced and they eventually disappear, since the final
configuration is o.

The algorithm requires that the initial configuration σ is such that there are
no particles in the even sites of the first vertical stripe C1, i.e.

∑
v∈C1∩Ve

σ(v) = 0. (5.8)

This technical assumption is required because the algorithm needs “some
room” to start working, as will become clear later. The path ω is the con-
catenation of L paths ω(1), . . . , ω(L). For every j along path ω(j) the even sites
of the j + 1-th column are emptied, while the j-th column of σ is progres-
sively changed to agree with o. We will show that all configurations visited
by ω are admissible and that the maximum energy achieved along the path
ω is H(σ) + 1. More specifically, path ω(j) goes from σj to σj+1, where we set
σ1 = σ and recursively define for j = 1, . . . , L

σj+1(v) :=



σj(v) if v ∈ V \ (cj ∪ cj+1),

o(v) if v ∈ cj,

σj(v) if v ∈ cj+1 ∩Vo,

0 if v ∈ cj+1 ∩Ve.

Clearly, due to the periodic boundary conditions, the column index should be
taken modulo L. It can be checked that indeed σL+1 = o. We now describe in
detail how to construct each of the paths ω(j) for j = 1, . . . , L. We build a path
ω(j) = (ω

(j)
0 , ω

(j)
1 , . . . , ω

(j)
K ) of length K + 1 (but possibly with void moves),

with ω
(j)
0 = σj and ω

(j)
K = σj+1. We start from configuration ω

(j)
0 = σj and we

repeat iteratively the following procedure for all i = 0, . . . , K− 1:

• If i ≡ 0 (mod 2), consider the even site v = (j + 1, i + (j + 1 (mod 2))).

- If ω
(j)
i (v) = 0, we set ω

(j)
i+1 = ω

(j)
i and thus H(ω

(j)
i+1) = H(ω

(j)
i ).

- If ω
(j)
i (v) = 1, then we remove from configuration ω

(j)
i the particle

in v increasing the energy by 1 and obtaining in this way configu-
ration ω

(j)
i+1, which is such that H(ω

(j)
i+1) = H(ω

(j)
i ) + 1.
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• If i ≡ 1 (mod 2), consider the odd site v = (j, i− 1 + (j + 1 (mod 2))).

- If ω
(j)
i (v) = 1, we set ω

(j)
i+1 = ω

(j)
i and thus H(ω

(j)
i+1) = H(ω

(j)
i ).

- If ω
(j)
i (v) = 0, then we add a particle in site v obtaining in this

way a new configuration ω
(j)
i+1 with energy H(ω

(j)
i+1) = H(ω

(j)
i )− 1.

This new configuration is admissible because all neighboring sites
of v are unoccupied by construction: In particular, the particle at its
right (i.e. that at the site v + (1, 0)) may have been removed exactly
at the previous step.

Note that for the last path ω(L) all the moves corresponding to even values
of i are void (there are no particles in the even sites of c0). The way the paths
ω(1), . . . , ω(L) are constructed shows that for every j = 1, . . . , L,

H(σj+1) ≤ H(σj),

since the number of particles added in (the odd sites of) column cj is greater
than or equal to the number of particles removed in (the even sites of) column
cj+1. Moreover,

Φω(j) ≤ H(σj) + 1,

since along the path ω(j) every particle removal (if any) is always followed
by a particle addition. These two properties imply that the path ω : σ → o
created by concatenating ω(1), . . . , ω(L) satisfies

Φω ≤ H(σ) + 1.

Proof of Theorem 5.3.1(i). It is enough to show that for every σ ∈ X \ {e, o}
Φ(σ, o)− H(σ) ≤ K,

since inequality (5.7) then follows the equivalent characterization of Γ̃ given
in Lemma 4.2.6. To prove such an inequality, we have to exhibit for every σ ∈
X \ {e, o} a path ω : σ → o in X such that Φω = maxη∈ω H(η) ≤ H(σ) + K.
We construct such a path ω as the concatenation of two shorter paths, ω(1)

and ω(2), where ω(1) : σ→ σ′, ω(2) : σ′ → o and σ′ is a suitable configuration
which depends on σ (see definition below).

Since σ 6= e by assumption, the configuration σ must have a vertical stripe
with strictly less than K even occupied sites. Without loss of generality (mod-
ulo a cyclic rotation of column labels) we can assume that this vertical stripe
is the first one, C1, and we define

b := ∑
v∈C1∩Ve

σ(v) ≤ K− 1. (5.9)

Define σ′ as the configuration that differs from σ only in the even sites of the
first vertical stripe, i.e.

σ′(v) :=

σ(v) if v ∈ V \ (C1 ∩Ve),

0 if v ∈ C1 ∩Ve.
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The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
b+1), with ω

(1)
1 = σ and ω

(1)
b+1 = σ′ can be con-

structed as follows. For i = 1, . . . , b, in step i we remove from configuration
ω
(1)
i the first particle in C1 ∩ Ve in lexicographic order obtaining in this way

configuration ω
(1)
i+1, increasing the energy by 1. Therefore, the configuration σ′

is such that H(σ′)− H(σ) = b and

Φω(1) = max
η∈ω(1)

H(η) ≤ H(σ) + b.

The path ω(2) : σ′ → o is then constructed by means of the reduction algo-
rithm described earlier, choosing σ′ as initial configuration and o as target
configuration. The reduction algorithm guarantees that

Φω(2) = max
η∈ω(2)

H(η) ≤ H(σ′) + 1.

The concatenation of the two paths ω(1) and ω(2) gives a path ω : σ → o
which satisfies the inequality Φω ≤ H(σ) + b + 1, which, using (5.9), implies
that

Φ(σ, o)− H(σ) ≤ b + 1 ≤ K.

Proposition 5.3.5 (Lower bound for Φ(e, o)). Consider the K× L toric grid ΛT
K,L

with K ≤ L. The communication height between e and o in the corresponding energy
landscape satisfies

Φ(e, o)− H(e) ≥ K + 1.

Proof. We need to show that in every path ω : e → o, there is at least one
configuration with energy wastage greater than or equal to K + 1. Take a path
ω = (ω1, . . . , ωn) from e to o. Without loss of generality, we may assume
that there are no void moves in ω, i.e. at every step either a particle is added
or a particle is removed, so that H(ωi+1) = H(ωi) ± 1 for every 1 ≤ i ≤
n− 1. Since e has no odd bridge and o does, at some point along the path ω
there must be a configuration ωm∗ which is the first to display an odd bridge,
horizontal or vertical, or both simultaneously. In symbols

m∗ := min{m ≤ n | ∃ i : (ωm)|ri
= o|ri

or ∃ j : (ωm)|cj
= o|cj

}.

Clearly m∗ > 2. We claim that U(ωm∗−1) ≥ K + 1 or U(ωm∗−2) ≥ L + 1. We
distinguish the following three cases:

(a) ωm∗ displays an odd vertical bridge only;

(b) ωm∗ displays an odd horizontal bridge only;

(c) ωm∗ displays an odd cross.
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These three cases cover all the possibilities, since the addition of a single par-
ticle cannot create more than one bridge in each direction.

For case (a), we claim that the energy wastage of configuration ωm∗ on every
row is greater than or equal to one. Suppose by contradiction that there exists
a row r such that Ur(σ) = 0. Then, by Lemma 5.3.4, there should be a bridge
in row r; however, it cannot be an odd bridge, since otherwise we would be in
case (c), and it cannot be an even bridge either, because it cannot coexist with
the odd vertical bridge that configuration ωm∗ has. Therefore,

U(ωm∗) =
K−1

∑
i=0

Uri (ωm∗) ≥ K.

The previous configuration ωm∗−1 along the path ω differs from ωm∗ in a
unique site v∗. By definition of m∗, v∗ is an odd site and such that ωm∗−1(v∗) =
0 and ωm∗(v∗) = 1. Thus,

U(ωm∗−1) = U(ωm∗−1) + 1 ≥ K + 1.

For case (b) we can argue as in case (a), but interchanging the role of rows
and columns, and obtain that

U(ωm∗−1) ≥ L + 1 ≥ K + 1.

For case (c), the vertical and horizontal odd bridges that ωm∗ has, must
necessarily meet in the odd site v∗. Having an odd cross, ωm∗ cannot have any
horizontal or vertical even bridge. Consider the previous configuration ωm∗−1
along the path ω, which can be obtained from ωm∗ by removing the particle
in v∗. From these considerations and from the definition of m∗ it follows that
ωm∗−1 has no vertical bridge (neither odd or even) and thus, by Lemma 5.3.4,
it has energy wastage at least one in every column, which amounts to

U(ωm∗−1) ≥ L.

If there is at least one column in which ωm∗−1 has energy wastage strictly
greater than one, we get

U(ωm∗−1) ≥ L + 1,

and the claim is proved. Consider now the other scenario, in which the config-
uration ωm∗−1 has energy wastage exactly one in every column, which means
U(ωm∗−1) = L. Consider its predecessor in the path ω, namely the configura-
tion ωm∗−2. We claim that

U(ωm∗−2) = L + 1.

By construction, configuration ωm∗−2 must differ in exactly one site from
ωm∗−1 and therefore

U(ωm∗−2) = U(ωm∗−1)± 1.
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Consider the case where U(ωm∗−2) = U(ωm∗−1) − 1 = L − 1. In this case
the configuration ωm∗−2 must have a zero-energy-wastage column and by
Lemma 5.3.4 it would be a vertical bridge. If it was an odd vertical bridge, the
definition of m∗ would be violated. If it was an even vertical bridge, it would
be impossible to obtain the odd horizontal bridge (which ωm∗ has) in just two
single-site updates, since three is the minimum number of single-site updates
needed. Therefore

U(ωm∗−2) = U(ωm∗−1) + 1 = L + 1.

The next proposition shows that the lower bound in Proposition 5.3.5 is
sharp and concludes the proof of Theorem 5.3.1(ii), in view of (5.7).

Proposition 5.3.6 (Reference path). There exists a path ω∗ : e → o in X such
that

Φω∗ − H(e) = K + 1.

Proof. We construct such a path ω∗ as the concatenation of two shorter paths,
ω(1) and ω(2), where ω(1) : e → σ∗ and ω(2) : σ∗ → o, and prove that
Φω(1) = H(σ∗) = H(σ) + K and that Φω(2) = H(σ∗) + 1 are satisfied, so
that Φω∗ = maxη∈ω∗ H(η) = H(e) + K + 1 as desired. The reason why ω is
best described as the concatenation of two shorter paths is the following: The
reduction algorithm cannot in general be started directly from e and the path
ω(1) indeed leads from e to σ∗, which is a suitable configuration to initialize
the reduction algorithm. The configuration σ∗ differs from e only in the even
sites of the first vertical stripe:

σ∗(v) :=

e(v) if v ∈ V \ C1,

0 if v ∈ C1.

The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
K+1), with ω

(1)
1 = e and ω

(1)
K+1 = σ∗ can be con-

structed as follows. For i = 1, . . . , K, at step i we remove from configuration
ω
(1)
i the first particle in C1 ∩ Ve in lexicographic order, increasing the energy

by 1 and obtaining in this way configuration ω
(1)
i+1. Therefore the configuration

σ′ is such that H(σ∗) − H(e) = K and Φω(1) = H(e) + K. The second path
ω(2) : σ∗ → o is then constructed by means of the reduction algorithm, which
can be used since the configuration σ∗ satisfies condition (5.8) and hence is a
suitable initial configuration for the algorithm. The algorithm guarantees that
Φω(2) = H(σ∗) + 1 and thus the conclusion follows.

5.3.3 Proofs for open grids

We now prove Theorem 5.3.2 for the open grid ΛO
K,L. Also in this case, we

assume without loss of generality that K ≤ L. Recall that K and L are positive
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integers, not necessarily even as in the previous subsection. In the remainder
of the section we will write X instead of XΛO

K,L
.

We first introduce a modification of the previous reduction algorithm tai-
lored for open grids. The scope of this reduction algorithm is twofold. It is
used first to build a specific path in X from any given state in X \ {e, o} to
the subset {e, o} and to prove that if KL ≡ 0 (mod 2), then

Γ̃(X \ {e, o}) ≤ dK/2e, (5.10)

which is Theorem 5.3.2(i). The same argument also shows that if KL ≡ 1
(mod 2), then

Γ̃(X \ {e, o}) < dK/2e, (5.11)

and also Theorem 5.3.2(iii) is proved. By giving a lower bound on the energy
wastage along every path e→ o, we show in Proposition 5.3.8 that

Φ(e, o)− H(e) ≥ dK/2e+ 1.

Then, using again the reduction algorithm for open grids, we construct a ref-
erence path ω∗ : e→ o which proves that the lower bound above is sharp and
hence

Φ(e, o)− H(e) = dK/2e+ 1. (5.12)

In the special case KL ≡ 1 (mod 2), since Φ(o, e) = Φ(e, o) and H(o) =
H(e) + 1, we can easily derive from the last equality that

Φ(o, e)− H(o) = dK/2e. (5.13)

Lastly, we combine inequality (5.10) and equation (5.12) to obtain

Γ̃(X \ {o}) = dK/2e+ 1,

which concludes the proof of Theorem 5.3.2(ii). In the special case KL ≡ 1
(mod 2), inequality (5.11) and equation (5.13) prove Theorem 5.3.2(iv), since
they yield that

Γ̃(X \ {e}) = dK/2e.

We need one additional definition: Say that a configuration in X displays an
odd (even) vertical double bridge if there exists at least one vertical stripe Si in
which configuration σ perfectly agrees with o (respectively e), i.e. if there
exists an index 1 ≤ j ≤ bL/2c such that

σ|Cj
= o|Cj

(respectively σ|Cj
= e|Cj

).

An odd (even) horizontal double bridge is defined analogously. The two types of
double bridges are illustrated in Figure 5.3.
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Observe that an admissible configuration on the open grid has zero energy
wastage in a horizontal (vertical) stripe if and only if it has an odd or even hori-
zontal (vertical) bridge in that stripe. The next lemma formalizes this property.
We give the statement and the proof only for horizontal stripes, since those
for vertical stripes are analogous. In the special case of an open grid where
KL ≡ 1 (mod 2), the topmost row and the leftmost column need special treat-
ment, since they do not belong to any stripe. The second part of the following
lemma shows that an admissible configuration has zero energy wastage in
that row/column if and only if they agree perfectly with e therein. Again we
will state and prove the result for the topmost row, the result for the leftmost
column is analogous.

(a) Odd horizontal double bridge (b) Odd vertical double bridges

Figure 5.3: Examples of configurations on the 8× 8 open grid displaying an odd dou-
ble bridge

Lemma 5.3.7 (Equivalent characterization of double bridges). Consider a con-
figuration σ ∈ X .

(i) For any i = 0, . . . , bK/2c − 1, the energy wastage US
i (σ) in horizontal stripe

Si satisfies

US
i (σ) = 0 ⇐⇒ σ|Si

= e|Si
or σ|Si

= o|Si
.

(ii) If additionally KL ≡ 1 (mod 2), then the energy wastage in the topmost row
UK−1(σ) satisfies

UK−1(σ) = 0 ⇐⇒ σ|rK−1
= e|rK−1

.

Proof. We prove statement (i) first. Consider the 2× L grid graph induced by
the horizontal stripe Si: It has L even sites and L odd sites. If σ|Si

= e|Si
or

σ|Si
= o|Si

, trivially US
i (σ) = 0. Let us prove the converse implication. Denote

by et (eb) the number of particles present in even sites in the top (bottom) row
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of stripe Si. Analogously, define ot (ob) as the number of particles present in
odd sites in the top (bottom) row of stripe Si. We will show that:

(1) US
i (σ) = 0 and et + eb = 0⇐⇒ ot + ob = L;

(2) US
i (σ) = 0 and et + eb > 0⇐⇒ ot + ob = L.

The proofs of statement (1) and of the implication (2⇐) are immediate. Thus
we focus on the implication (2⇒).

Note that if et + eb ∈ [1, L− 1] particles are present in even sites, then they
block at least et + eb + 1 odd sites, which must then be unoccupied. Indeed
in the top row each of the et particles blocks the odd node at its right and in
the bottom row each of the eb particles blocks the odd node at its left. In one
of the two rows, say the top one, there is at least one even unoccupied site
and consider the even site at its right where a particle resides. This particle
blocks also the odd site at its left. Hence ot + ob ≤ L − (et + eb + 1), which
gives US

i (σ) = L− (et + eb + ot + ob) > 0.

We now turn to the proof of statement (ii). The topmost row has L+1
2 even

sites and L−1
2 odd sites. Denote by e (respectively o) the number of parti-

cles present in even (respectively odd) sites in row rK−1. The energy wastage
of σ on this row can be computed as UK−1(σ) = L+1

2 − e − o. Trivially, if
σ|rK−1

= e|rK−1
, then e = L+1

2 and thus UK−1(σ) = 0. Let us prove the op-
posite implication. Assume that σ|rK−1

6= e|rK−1
, i.e. e < L+1

2 . If e = 0, then
UK−1(σ) ≥ 1, since o ≤ L−1

2 . If instead e ∈ [1, L+1
2 − 1], then each particle

residing in an even site blocks the odd site at its left, therefore o ≤ L−1
2 − e,

which implies

UK−1(σ) =
L + 1

2
− e− o ≥ L + 1

2
− e−

(
L− 1

2
− e
)
≥ 1.

Reduction algorithm for open grids

We now describe the reduction algorithm for open grids, which is a modification
of the reduction algorithm for toric grids that builds a path ω in X from
a given initial configuration σ to either o or e. The reduction algorithm for
open grids takes two inputs instead of one: The initial configuration σ and
the target state which is either o or e. This is the first crucial difference with
the corresponding algorithm for toric grids, where the target configuration
was always o. In the following, we first assume that the target state is o and
illustrate the procedure in this case. The necessary modifications when the
target state is e are presented later.

The initial configuration σ for the reduction algorithm must be such that
there are no particles in the even sites of the first column c0, i.e.

∑
v∈c0∩Ve

σ(v) = 0. (5.14)
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This condition ensures that the algorithm has enough “room” to work prop-
erly. Note that condition (5.14) is different from condition (5.8) for the reduc-
tion algorithm for toric grids, which requires instead that the even sites of both
the first two columns c0 and c1 should be empty.

The path ω is the concatenation of L paths ω(1), . . . , ω(L). Path ω(j) goes
from σj to σj+1, where we set σ1 = σ and recursively define for j = 1, . . . , L

σj+1(v) =



σj(v) if v ∈ V \ (cj ∪ cj+1),

o(v) if v ∈ cj,

σj(v) if v ∈ cj+1 ∩Vo,

0 if v ∈ cj+1 ∩Ve.

This procedure guarantees that σL+1 = o. The path ω(j) for j = 1, . . . , L is
constructed exactly as the path ω(j) for the reduction algorithm for toric grids.
Since their construction is identical, every path ω(j) enjoys the same properties
as those of the original reduction algorithm, namely

H(σj+1) ≤ H(σj) and Φω(j) ≤ H(σj) + 1.

This means that the path ω : σ→ o created by their concatenation satisfies

Φω ≤ H(σ) + 1.

In the scenario where the target state is e, three modifications are needed.
First the initial state σ must be such that there are no particles in the odd sites
of the first column c0, i.e.

∑
v∈c0∩Ve

σ(v) = 0.

Secondly, the sequence of intermediate configurations σ1, . . . , σL+1 must be
modified as follows: We set σ1 = σ and recursively define for j = 1, . . . , L

σj+1(v) =



σj(v) if v ∈ V \ (cj ∪ cj+1),

e(v) if v ∈ cj,

σj(v) if v ∈ cj+1 ∩Ve,

0 if v ∈ cj+1 ∩Vo.

Lastly, for step i of path ω(j), we need a different offset to select the site v,
namely v = (j, i + (j (mod 2))) when i ≡ 0 (mod 2) and v = (j, i − 1 + (j
(mod 2))) when i ≡ 1 (mod 2). One can check that the resulting path ω :
σ→ e satisfies the inequality

Φω ≤ H(σ) + 1.
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Proof of Theorem 5.3.2(i). It is enough to prove that for every σ ∈ X \ {e, o}
Φ(σ, {e, o})− H(σ) ≤ bK/2c.

Indeed, this claim, together with the equivalent characterization of Γ̃ given in
Lemma 4.2.6, proves simultaneously inequality (5.10) when KL ≡ 0 (mod 2)
and the strict inequality (5.11) when KL ≡ 1 (mod 2), since in this case
bK/2c < dK/2e. To prove such an inequality, we have to exhibit for every
σ ∈ X \ {e, o} a path ω : σ → {e, o} in X such that Φω = maxη∈ω H(η) ≤
H(σ) + bK/2c.

Let b be the number of particles present in configuration σ in the odd sites
of the leftmost column of Λ, i.e.

b := ∑
v∈c0∩Vo

σ(v).

Every column in Λ has bK/2c odd sites, and hence 0 ≤ b ≤ bK/2c. Differently
from the proof of Theorem 5.3.1(i), here the value of b determines how the
path ω will be constructed. We distinguish two cases: (a) b = bK/2c and (b)
b < bK/2c.

Consider case (a) first and assume that b = bK/2c. In this case, we construct
a path ω : σ→ o by means of the reduction algorithm for open grids, choosing
as initial configuration σ and as target configuration o. The way this path is
built guarantees that Φω ≤ H(σ) + 1, which implies that

Φ(σ, o)− H(σ) = 1 ≤ bK/2c.
Let us now focus on case (b) and assume that b < bK/2c. In this case we cre-

ate a path ω : σ → e as the concatenation of two shorter paths, ω(1) and ω(2),
where ω(1) : σ → σ′, ω(2) : σ′ → e and σ′ is a suitable configuration which
depends on σ (see definition below). The reason why ω is best described as
concatenation of two shorter paths is the following: Since b < bK/2c, the re-
duction algorithm can not be started directly from σ and the path ω(1) indeed
leads from σ to σ′, which is a suitable configuration to initialize the reduction
algorithm for open grids. The configuration σ′ differs from σ only in the odd
sites of the first column, that is

σ′(v) :=

σ(v) if v ∈ V \ (c0 ∩Vo),

0 if v ∈ c0 ∩Vo.

The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
b+1), with ω

(1)
1 = σ and ω

(1)
b+1 = σ′, can be

constructed as follows. For i = 1, . . . , b, at step i we remove from configuration
ω
(1)
i the topmost particle in c0 ∩ Vo increasing the energy by 1 and obtaining

in this way configuration ω
(1)
i+1. Therefore the configuration σ′ is such that

H(σ′)− H(σ) = b and

Φω(1) = max
η∈ω(1)

H(η) ≤ H(σ) + b.
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The path ω(2) : σ′ → e is then constructed by means of the reduction algo-
rithm for open grids described earlier, using σ′ as initial configuration and e
as target configuration. The reduction algorithm guarantees that

Φω(2) = max
η∈ω(2)

H(η) ≤ H(σ′) + 1.

The concatenation of the two paths ω(1) and ω(2) gives a path ω : σ → e
which satisfies the inequality Φω ≤ H(σ) + b + 1 and therefore

Φ(σ, e)− H(σ) = b + 1 ≤ bK/2c.

Proposition 5.3.8 (Lower bound for Φ(e, o)). Consider the K× L open grid ΛO
K,L

with K ≤ L. The communication height between e and o in the corresponding energy
landscape satisfies

Φ(e, o)− H(e) ≥ dK/2e+ 1.

Proof. It is enough to show that in every path ω : e → o there is at least one
configuration with energy wastage greater than or equal to dK/2e+ 1. Take a
path ω = (ω1, . . . , ωn) from e to o. Without loss of generality, we may assume
that there are no void moves in ω, i.e. at every step either a particle is added
or a particle is removed, so that H(ωi+1) = H(ωi)± 1 for every 1 ≤ i ≤ n− 1.
Since e does not have an odd bridge while o does, at some point along the
path ω there must be a configuration ωm∗ which is the first to display an odd
bridge, horizontal or vertical, or both simultaneously. In symbols

m∗ := min{m ≤ n | ∃ i : (ωm)|ri
= o|ri

or ∃ j : (ωm)|cj
= o|cj

}.

Clearly m∗ > 2. We claim that U(ωm∗−1) ≥ dK/2e+ 1 or U(ωm∗−2) ≥ dL/2e+
1. We distinguish the following three cases:

(a) ωm∗ displays an odd vertical bridge only;

(b) ωm∗ displays an odd horizontal bridge only;

(c) ωm∗ displays an odd cross.

These three cases cover all possibilities, since the addition of a single particle
cannot create more than one bridge in each direction. Let v∗ ∈ V be the unique
site where configuration ωm∗−1 and ωm∗ differ.

For case (a), assume first that v∗ belong to the i∗-th horizontal stripe, i.e. v∗ ∈
Si∗ for some 0 ≤ i∗ ≤ bK/2c − 1. By construction, v∗ must be an odd site and
ωm∗−1(v∗) = 0 and ωm∗(v∗) = 1 and thus US

i∗(ωm∗−1) ≥ 1. We claim that in
fact

US
i∗(ωm∗−1) ≥ 2.

It is enough to show that US
i∗(ωm∗−1) 6= 1. Suppose by contradiction that

US
i∗(ωm∗−1) = 1, then it must be the case that US

i∗(ωm∗) = 0, due the addition
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of a particle in v∗, and by Lemma 5.3.7 the horizontal stripe Si∗ must agree
fully with o (ωm∗ 6= e, since it has a particle residing in v∗ which is an odd
site). This fact would imply that ωm∗ has an odd horizontal bridge, which
contradicts our assumption for case (a).

Assume instead that K is odd and that v∗ does not belong to any horizontal
stripe and belongs instead to the topmost row, i.e. v∗ ∈ rK−1. By construc-
tion, v∗ must be an odd site and ωm∗−1(v∗) = 0 and ωm∗(v∗) = 1 and thus
UK−1(ωm∗−1) ≥ 1. We claim that in fact

UK−1(ωm∗−1) ≥ 2.

It is enough to show that UK−1(ωm∗−1) 6= 1. Suppose by contradiction that
UK−1(ωm∗−1) = 1, then it must be UK−1(ωm∗) = 0, due to the addition of a
particle in v∗. By Lemma 5.3.7 ωm∗ must agree fully with e on this topmost
row, but this cannot be the case since ωm∗ has a particle residing in v∗ which
is an odd site.

Moreover, we claim that the energy wastage in every horizontal stripe that
does not contain site v∗ (and in the topmost row if KL ≡ 1 (mod 2) and v∗ 6∈
rK−1) is also greater than or equal to 1. Indeed, configuration ωm∗−1 cannot
display any horizontal odd bridge (by definition of i∗) and neither a horizontal
even bridge, since ωm∗−1(v∗+ (1, 0)) = 0 and ωm∗−1(v∗+ (−1, 0)) = 0. There-
fore for every i = 1, . . . , bK/2c such that v∗ 6∈ Sj we have (ωm∗)|Si

6= o|Si
, e|Si

and hence, by Lemma 5.3.7

US
i (ωm∗) ≥ 1.

If K is odd, then the topmost row rK−1 cannot be a horizontal odd bridge
(our assumption would be violated) and neither a horizontal even bridge (it
would be impossible to obtain the horizontal odd bridge which ωm∗ has in
a single step, the minimum number of steps needed is two). Therefore, by
Lemma 5.3.7,

UK−1(ωm∗−1) ≥ 1.

There are three possible scenarios:

• K even: There are K/2− 1 horizontal stripes with positive energy wastage
and US

i∗(ωm∗−1) ≥ 2;

• K odd and v∗ 6∈ rK−1: There are bK/2c − 2 horizontal stripes with posi-
tive energy wastage, UK−1(ωm∗−1) ≥ 1 and US

i∗(ωm∗−1) ≥ 2;

• K odd and v∗ ∈ rK−1: There are bK/2c − 1 horizontal stripes with posi-
tive energy wastage and UK−1(ωm∗−1) ≥ 2.

In all three scenarios, by summing the energy wastage of the horizontal stripes
(and possibly that of the topmost row) we obtain

U(ωm∗−1) ≥ dK/2e+ 1.
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For case (b) we can argue in a similar way, but interchanging the roles of
rows and columns, and obtain that

U(ωm∗−1) ≥ dL/2e+ 1 ≥ dK/2e+ 1.

For case (c), the vertical and horizontal odd bridges that ωm∗ has, must nec-
essarily meet in the odd site v∗. Having an odd cross, ωm∗ cannot display any
horizontal or vertical even bridge. Consider the previous configuration ωm∗−1
along the path ω, which can be obtained from ωm∗ by removing the particle
in v∗. From these considerations and from the definition of m∗ it follows that
ωm∗−1 has no vertical bridge (neither odd or even) and thus, by Lemma 5.3.7,
it has energy wastage at least one in each of the bL/2c vertical stripes and
possibly in the leftmost column, if L is odd. In both cases, we have

U(ωm∗−1) ≥ dL/2e.
If there is at least one column in which ωm∗−1 has energy wastage strictly
greater than one, then the proof is concluded, since

U(ωm∗−1) ≥ dL/2e+ 1 ≥ dK/2e+ 1.

Consider now the other scenario, in which the configuration ωm∗−1 has energy
wastage exactly one in every vertical stripe (and possibly in the leftmost col-
umn, if L is odd), which means U(ωm∗−1) = dL/2e. Consider its predecessor
in the path ω, namely the configuration ωm∗−2. We claim that

U(ωm∗−2) = dL/2e+ 1.

Indeed, by construction, configuration ωm∗−2 must differ in exactly one site
from ωm∗−1 and therefore

U(ωm∗−2) = U(ωm∗−1)± 1.

Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = dL/2e − 1. In this case
the configuration ωm∗−2 must have a zero-energy-wastage vertical stripe and
by Lemma 5.3.7 it would be a vertical double bridge. If it was a vertical odd
double bridge, the definition of m∗ would be violated. If it was an even vertical
double bridge, it would be impossible to obtain the horizontal odd bridge
(which ωm∗ has) in just two single-site updates, since three is the minimum
number of single-site updates needed. Therefore

U(ωm∗−2) = U(ωm∗−1) + 1 = dL/2e+ 1.

The lower bound for the communication height Φ(e, o) we just proved is
sharp, as established by the next proposition in which a reference path from
e to o is constructed.

Proposition 5.3.9 (Reference path). There exists a path ω∗ : e → o in X such
that

Φω∗ − H(e) = dK/2e+ 1.
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Proof. We describe just briefly how the reference path ω∗ is constructed, since
it is very similar to the one given in the proof of Proposition 5.3.6. Also in
this case, the path ω∗ is the concatenation of two shorter paths, ω(1) and ω(2),
where ω(1) : e → σ∗ and ω(2) : σ∗ → o, where σ∗ is the configuration that
differs from e only in the even sites of the leftmost column:

σ∗(v) :=

e(v) if v ∈ V \ c0,

0 if v ∈ c0.

The path ω(1) consists of dK/2e steps, at each of which we remove the first
particle in c0 ∩Ve in lexicographic order from the previous configuration. The
last configuration is precisely σ∗, which has energy H(σ∗) = H(e) + dK/2e,
and, trivially, Φω(1) = H(e) + dK/2e. The second path ω(2) : σ∗ → o is
then constructed by means of the reduction algorithm, which can be used
since configuration σ∗ is a suitable initial configuration for it, satisfying con-
dition (5.14). The algorithm guarantees that Φω(2) = H(σ∗) + 1 and thus
the concatenation of the two paths ω(1) and ω(2) yields a path ω∗ with
Φω∗ = maxη∈ω H(η) = H(e) + dK/2e+ 1 as desired.

The statements (ii) and (iv) of Theorem 5.3.2 can then be easily obtained
from Propositions 5.3.8 and 5.3.9, as illustrated at the beginning of Subsec-
tion 5.3.3.

5.3.4 Proofs for cylindrical grids

In this subsection we briefly describe how to proceed to prove Theorem 5.3.3.
The cylindrical grid ΛC

K,L is a hybrid between the toric grid and the open
grid, since the columns of ΛC

K,L have the same structure as the columns of the
toric grid ΛT

K,L, while the horizontal stripes of ΛC
K,L enjoy the same structural

properties of those of the open grid ΛO
K,L. Along the lines of Lemmas 5.3.4

and 5.3.7 we can prove that the only columns with zero energy wastage are
vertical bridges and the only horizontal stripes with zero energy wastage are
horizontal double bridges.

In order to prove that

Φ(e, o)− H(e) ≥ min{K/2, L}+ 1,

one can argue in a similar way as was done for the other two types of grids.
Also for the cylindrical grid, in any path ω : e→ o there must be a configura-
tion ωm∗ which is the first to display a horizontal odd bridge or a vertical odd
bridge or both simultaneously, i.e.

m∗ := min{m ≤ n | ∃ i : (ωm)|ri
= o|ri

or ∃ j : (ωm)|cj
= o|cj

}.

One can prove that

max{U(ωm∗−1), U(ωm∗−2)} ≥ min{K/2, L}+ 1.
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We distinguish two cases, depending on whether K/2 ≥ L or K/2 < L. In
these two cases, the proof can be obtained by studying the energy wastage
either in the columns or in the horizontal stripes, in the same spirit as for
the toric and open grids in Subsections 5.3.2 and 5.3.3, respectively. Moreover,
depending on whether K/2 ≥ L or K/2 < L, we can take the reference path
ω∗ to be the same as in Subsections 5.3.2 and 5.3.3, respectively. Lastly, one
can show that

Γ̃(X \ {e, o}) ≤ min{K/2, L},

by exploiting the approach in Subsection 5.3.2, if K/2 ≥ L, and the strategy
adopted in Subsection 5.3.3, otherwise.



6H A R D - C O R E M O D E L O N T R I A N G U L A R G R I D G R A P H S

The goal of this chapter is to understand the evolution of the activity process
described in Subsection 1.2.2 on finite triangular grid networks. This class of
conflict graphs has been introduced in Section 2.2 as an example of symmet-
ric partite graphs with three dominant states. Adopting the approach used
in Chapter 5, we study the hard-core model on triangular grid graphs with
Metropolis transition probabilities. The main results of this chapter describe
the asymptotic behavior of the tunneling times between any pair of the three
stables states in the low-temperature regime and characterize the order of
magnitude of the mixing time in the same regime. The proof method relies
on the analysis of the energy landscape using geometrical and combinato-
rial properties of the admissible configurations, in combination with model-
independent results from Chapter 4.

This chapter is structured as follows. Section 6.1 gives a model description
of the hard-core model on triangular grid graphs. The main results of this
chapter for tunneling times and mixing times are presented in Section 6.2 and
proved later in Section 6.3.

6.1 model description

We consider the hard-core model on finite rectangular regions of a triangular
lattice with periodic boundary conditions. More precisely, given two integers
K ≥ 2 and L ≥ 1, we consider as conflict graph the 2K × 3L triangular grid
TK,L which consists of 2K rows and 6L columns. The graph TK,L = (V, E) is
the subgraph of the triangular lattice consisting of N = |V| = 6KL sites placed
on 2K rows of 3L sites each (or equivalently on 6L columns with K sites each),
see Figure 6.1a. We impose periodic (wrap-around) boundary conditions on
TK,L to preserve symmetry.

The graph TK,L has a natural tri-partition V = Va ∪ Vb ∪ Vc, which we il-
lustrate in Figure 6.1b by coloring the three components in gray, black, and
white, respectively. Thanks to the chosen dimensions of the triangular grid
TK,L, these three components have the same number of sites

|Va| = |Vb| = |Vc| =
|V|
3

= 2KL. (6.1)

We associate a variable σ(v) ∈ {0, 1} with each site v ∈ V, indicating the
absence (0) or the presence (1) of a particle in that site. In view of the hard-
core constraints, a configuration of particles on TK,L = (V, E) is admissible if
σ(v)σ(w) = 0 for every pair of neighboring sites v, w of TK,L. We denote by
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2K

3L

(a) The triangular grid TK,L

2K

3L

(b) The three components of TK,L highlighted using different colors

Figure 6.1: The triangular grid TK,L corresponding to K = 3 and L = 3 and its three
components

X ⊂ {0, 1}N the set of all admissible configurations on TK,L, which is in one-
to-one correspondence with the collection of independent sets of the graph
TK,L.

We are interested in studying the Metropolis dynamics for the hard-core
model on triangular grid graphs, that is the family of Markov chains {Xβ

t }t∈N

on X parametrized by β > 0 with transition probabilities

Pβ(σ, σ′) :=

c(σ, σ′)e−β[H(σ′)−H(σ)]+ , if σ 6= σ′,

1−∑η 6=σ Pβ(σ, η), if σ = σ′,

where the energy function H : X → R and the connectivity function c :
X × X → [0, 1] are the same as those defined in Chapter 5 for grid graphs,
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see definitions (5.1) and (5.2), respectively. More precisely, the energy H(σ) of
a configuration σ ∈ X is proportional to the total number of particles in σ,

H(σ) := − ∑
v∈V

σ(v), (6.2)

while the connectivity function is given by

c(σ, σ′) :=


1
N , if |{v ∈ V | σ(v) 6= σ′(v)}| = 1,

0, if |{v ∈ V | σ(v) 6= σ′(v)}| > 1,

1−∑η 6=σ c(σ, η), if σ = σ′.

Recall that the parameter β is a positive number that represents the inverse
temperature of the interacting particle system. We refer to Section 4.1 for more
details and properties of Metropolis Markov chains.

Let a, b and c be the admissible configurations on TK,L defined as

a(v) := 1{v∈Va}(v), b(v) := 1{v∈Vb}(v), and c(v) := 1{v∈Vc}(v).

In view of (6.1) each of these three configurations has 2KL particles and hence

H(a) = H(b) = H(c) = −2KL. (6.3)

Later we will show that all other admissible configurations on TK,L have fewer
particles, proving that a, b and c are the only three stable states of the energy
landscape (X , H, c).

In the rest of the chapter, we adopt the following coloring conventions for
displaying a configuration σ ∈ X : We put a node in site v ∈ V if it is occu-
pied, i.e. σ(v) = 1, and we color it gray, black or white depending on whether
the site v belongs to Va, Vb, Vc respectively; if instead a site v ∈ V is vacant,
i.e. σ(v) = 0, we do not display any node there. Figure 6.2a displays an ad-
missible configuration using this color convention.

There is an equivalent way to represent admissible configurations. First no-
tice that each triangle can have at most one occupied particle in its three
vertices, being a clique. We adopt the following coloring convention for trian-
gles: If a triangle has a particle in one of its three vertices, we color it gray,
black or with a dashed pattern, depending on whether such particle belongs
to Va, Vb or Vc, respectively. Instead, we leave a triangle blank if none of
its three vertices is occupied by a particle. Figure 6.2b displays the coloring
corresponding to the admissible configuration of Figure 6.2a. Hence, placing
particles with hard-core constraints on a triangular grid graph corresponds to
placing hexagons on the same lattice, with the rule that hexagons of different
colors cannot share an edge. This is the reason why the hard-core model on
the triangular lattice is often called hard-hexagon model in the statistical physics
literature.
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(a) The occupied particles of σ colored according to the com-
ponents to which they belong

(b) Colored areas visualize the blocked sites

Figure 6.2: An example of an admissible configuration σ on the triangular grid T3,3

In [61] the authors studied instead other local dynamics (Glauber dynamics)
on triangular grid graphs, showing that the mixing time is slow for large
values of the fugacity λ (which is equivalent to the low-temperature regime in
view of the relation λ = eβ), since it scales exponentially with the triangular
grid graph dimensions. Furthermore, in the statistical physics literature the
hard-hexagon model has been studied on the infinite triangular lattice in [5,
9, 64], investigating mainly its phase transitions.

6.2 asymptotic behavior of tunneling times and mixing times

In this section we present our main results, which describe the asymptotic be-
havior of the hard-core model on triangular grid graphs in the low-temperature
regime.

The first main result describes the asymptotic behavior of the tunneling
times τa

b and τa
{b,c} for the triangular grid graph TK,L in the low-temperature

regime β → ∞. More specifically, we prove the existence and find the value
of an exponent Γ(TK,L) > 0 that appears in the asymptotic upper and lower
bounds in probability for these hitting times and characterizes the asymptotic
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order-of-magnitude of their expected values as β→ ∞. Furthermore, we show
that the tunneling times τa

b and τa
{b,c} normalized by their respective means

converge in distribution to an exponential unit-mean random variable.

Theorem 6.2.1 (Asymptotic behavior of tunneling times for TK,L). Consider the
Metropolis Markov chain {Xβ

t }t∈N corresponding to the hard-core dynamics on the
triangular lattice TK,L and define

Γ(TK,L) := min{K, 2L}+ 1. (6.4)

Then,

(i) lim
β→∞

Pβ

(
eβ(Γ(TK,L)−ε) ≤ τa

b ≤ τa
{b,c} ≤ eβ(Γ(TK,L)+ε)

)
= 1;

(ii) lim
β→∞

1
β

log Eτa
b = Γ(TK,L) = lim

β→∞

1
β

log Eτa
{b,c};

(iii)
τa
{b,c}

Eτa
{b,c}

d−→ Exp(1), as β→ ∞;

(iv)
τa

b
Eτa

b

d−→ Exp(1), as β→ ∞.

The proof of this theorem leverages the model-independent results pre-
sented in Chapter 4 in combination with the analysis of the energy landscape
corresponding to the hard-core model on the triangular grid TK,L, to which
Section 6.3 is devoted.

The same analysis also yields the following result for the mixing time,
which turns out to be asymptotically of the same order of magnitude as
the tunneling time between stable states, as established by the next theo-
rem, which is our second main result. Recall that tmix

β denotes the mixing
time of the Markov chain {Xβ

t }t∈N and ρβ denotes its spectral gap, see defini-
tions (4.56) and (4.57).

Theorem 6.2.2 (Mixing time and spectral gap). Consider the Metropolis Markov
chain {Xβ

t }t∈N corresponding to the hard-core dynamics on the triangular lattice
TK,L and define Γ(TK,L) as in (6.4). Then, for any 0 < ε < 1,

lim
β→∞

1
β

log tmix
β (ε) = Γ(TK,L) = lim

β→∞
− 1

β
log ρβ. (6.5)

Furthermore, there exist two positive constants 0 < c1 ≤ c2 < ∞ independent of β
such that

c1e−βΓ(TK,L) ≤ ρβ ≤ c2e−βΓ(TK,L) ∀ β ≥ 0. (6.6)

The proofs of both theorems are presented in Subsection 6.3.3.
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6.3 energy landscape analysis

This section is devoted to the analysis of the energy landscape associated
with the hard-core dynamics on the triangular grid graph TK,L. This analysis,
combined with the model-independent results presented in Chapter 4, yields
Theorems 6.2.1 and 6.2.2, as proved in Subsection 6.3.3.

Using an approach similar to the one used in Chapter 5 for grid graphs, we
study geometrical features of the admissible configurations on triangular grid
graphs and leverage them to prove crucial properties of the energy landscape,
as stated in Theorem 6.3.1. More specifically, we will prove that a, b and
c are the only three stable states and find the value of the communication
height between them, as a function of the dimensions K and L. Furthermore,
we will show by means of two reduction algorithms that the energy landscape
corresponding the hard-core dynamics on TK,L exhibits absence of deep cycles
(see condition (4.50) in Chapter 4).

In the rest of this chapter, we use the some notions and notation introduced
in Chapter 4. In particular, recall that the communication height between a
pair of configurations σ, σ′ ∈ X has been defined as

Φ(σ, σ′) := min
ω:σ→σ′

Φω = min
ω:σ→σ′

max
i=1,...,|ω|

H(ωi), (6.7)

while the communication height between any pair of disjoint subsets A, B ⊂
X is

Φ(A, B) := min
σ∈A, σ′∈B

Φ(σ, σ′). (6.8)

Theorem 6.3.1 (Structural properties of the energy landscape). Let (X , H, q) be
the energy landscape corresponding to the hard-core dynamics on the triangular grid
graph TK,L. Then

(i) X s = {a, b, c}.

(ii) Φ(a, b)− H(a) = Φ(a, c)− H(a) = Φ(b, c)− H(b) = min{K, 2L}+ 1.

(iii) Φ(σ, {a, b, c})− H(σ) ≤ min{K, 2L} ∀ σ ∈ X \ {a, b, c}.

This latter theorem motivates the definition (6.4) of Γ(TK,L) in Theorem 6.2.1.
The rest of this section is devoted to the proof of Theorem 6.3.1 and we now

briefly outline the proof strategy. In Subsection 6.3.1, after some preliminary
definitions, we study the combinatorial properties of admissible configura-
tions on horizontal and vertical stripes of the triangular grid TK,L, i.e. pairs
of adjacent rows (triplets of adjacent columns, respectively). In particular, we
find the maximum number of particles that an admissible configuration can
have in a horizontal stripe and characterize in Lemma 6.3.3 how particles
are arranged on such stripes. Theorem 6.3.1(i) is an almost immediate conse-
quence of these combinatorial results. Afterwards, using geometrical proper-
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ties of the admissible configurations, we prove Proposition 6.3.5, which gives
the following lower bound for the communication height between a and b:

Φ(a, b)− H(a) ≥ min{K, 2L}+ 1. (6.9)

We then introduce two reduction algorithms in Subsection 6.3.2, which are used
in Proposition 6.3.6 to build a reference path ω∗ : a → b. Such a path shows
that the lower bound (6.9) is sharp, so that

Φ(a, b)− H(a) = min{K, 2L}+ 1,

concluding the proof of Theorem 6.3.1(ii). The reduction algorithm is then
used again to construct a path from every configuration σ 6= a, b, c to one of
the three states {a, b, c}, proving in this way Theorem 6.3.1(iii).

6.3.1 Geometrical properties of admissible configurations

In this subsection we first introduce some useful definitions and then prove
some geometrical and combinatorial properties of admissible configurations.

We denote by cj, j = 0, . . . , 6L− 1, the j-th column of TK,L, and by ri, i =
0, . . . , 2K− 1, the i-th row of TK,L, see Figure 6.3.

C0 C3 . . .

S0

S1

...

c0 c1 c2 c3 . . . c6L−1

r0

r1

r2

...

r2K−1

Figure 6.3: Illustration of row, column and stripe notation for the triangular grid

Note that every row has an equal number of sites from each component,
since

|ri ∩Va| = |ri ∩Vb| = |ri ∩Vc| = L ∀ i = 0, . . . , 2K− 1, (6.10)

while each column consists of sites from a single component, since

Va =
L−1⋃
j=0

c3j, Vb =
L−1⋃
j=0

c3j+1, and Vc =
L−1⋃
j=0

c3j+2. (6.11)
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Each site v of TK,L lies at the intersection of a row with a column and we
associate to v the coordinates (i, j) if v = ri ∩ cj. We call the collection of sites
belonging to two adjacent rows a horizontal stripe. In particular, we denote by
Si, with i = 0, . . . , K− 1, the horizontal stripe consisting of rows r2i and r2i+1,
i.e. Si := r2i ∪ r2i+1, see Figure 6.3. When the index of a stripe is not relevant,
we will simply denote it by S. We define a vertical stripe to be the collection of
sites belonging to three adjacent columns, which we denote by C in general. In
particular, for j = 0, . . . , 3L− 1 we denote by Cj the vertical stripe consisting
of columns cj, cj+1 and cj+2 (note that the indices should be taken modulo
3L), see Figure 6.3. For every horizontal stripe S note that |S| = 6L and (6.10)
implies that

|S ∩Va| = |S ∩Vb| = |S ∩Vc| = 2L,

see also Figure 6.4a where we highlight the tripartition of a horizontal stripe.
Similarly, for every vertical stripe C, we have |C| = 3K and, in view of (6.11),
we have

|C ∩Va| = |C ∩Vb| = |C ∩Vc| = K.

A special role will be played by the vertical stripes whose middle column
belongs to Vb, which are those of the form C3j for some j = 0, . . . , 2L − 1,
whose structure is displayed in Figures 6.4b and 6.4c.

(a) A horizontal stripe Si of TK,3

(b) A vertical stripe C3j of
T4,L for j even

(c) A vertical stripe C3j of
T4,L for j odd

Figure 6.4: Illustration of horizontal and vertical stripes



6.3 energy landscape analysis 171

Given a feasible configuration σ ∈ X , we define its energy wastage U(σ) as
the energy difference between σ and configuration a, i.e.

U(σ) := H(σ)− H(a). (6.12)

In view of the definition (6.2) of the energy function H(·) and identity (6.3),
the energy wastage of configuration σ can be rewritten as

U(σ) = 2KL− ∑
v∈V

σ(v).

Furthermore, we define the energy wastage of a configuration σ ∈ X on the
horizontal stripe S by

US(σ) := 2L− ∑
v∈S

σ(v), (6.13)

and the energy wastage of a configuration σ ∈ X on the vertical stripe C by

UC(σ) := K− ∑
v∈C

σ(v).

The energy wastage (6.12) of a configuration σ can be written as the sum of the
energy wastages of horizontal stripes (or of non-overlapping vertical stripes),
i.e.

U(σ) =
K−1

∑
i=0

USi (σ) =
2L−1

∑
j=0

UC3j(σ) =
2L−1

∑
j=0

UC3j+1(σ) =
2L−1

∑
j=0

UC3j+2(σ). (6.14)

Given two configurations σ, σ′ ∈ X and a subset of sites W ⊆ V, we write

σ|W = σ′|W ⇐⇒ σ(v) = σ′(v) ∀ v ∈W.

We say that a configuration σ ∈ X has a gray (black, white) horizontal bridge in
stripe S if σ perfectly agrees there with a (respectively b, c), i.e.

σ|S = a|S (respectively σ|S = b|S or σ|S = c|S).

Similarly, we say that a configuration σ ∈ X has a gray (black, white) vertical
bridge in stripe C if σ perfectly agrees there with a (respectively b, c), i.e.

σ|C = a|C (respectively σ|C = b|C or σ|C = c|C).

Two examples of bridges are shown in Figures 6.5a and 6.5b.

Lemma 6.3.2 (Geometric features of admissible configurations). An admissible
configuration σ ∈ X cannot display simultaneously a vertical bridge and a horizontal
bridge of different colors.

Proof. We may assume that the vertical bridge is black, without loss of gener-
ality. Such a vertical bridge blocks two sites on every row, one belonging to Va
and one to Vc and thus no horizontal stripe can fully agree with a or c.
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It is possible, however, that a vertical and a horizontal bridge coexist when
they are of the same color and this fact motivates the next definition. We say
that a configuration σ ∈ X has a gray (black, white) cross if it has simultane-
ously two gray (black, white) bridges, one vertical and one horizontal; see
Figure 6.5c for an example of a black cross.

(a) Black vertical bridge in C9

(b) Gray horizontal bridge in S1

(c) Black cross on S1 and C9

Figure 6.5: Examples of admissible configurations on T3,3 displaying bridges or crosses
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Lemma 6.3.3 (Efficient horizontal stripes structure). Consider an admissible con-
figuration σ ∈ X on the triangular grid graph TK,L. For every horizontal stripe S,
the energy wastage is non-negative, i.e. US(σ) ≥ 0, and furthermore

US(σ) = 0 ⇐⇒ σ has a horizontal bridge in stripe S. (6.15)

Proof. We first prove that the energy wastage US(σ) ≥ 0 and later prove (6.15).
Suppose by contradiction that there exists an admissible configuration σ

and a horizontal stripe S = r∪ r′ such that US(σ) < 0. Let p and p′ the number
of particles that σ has in rows r and r′, respectively. By definition (6.13), this
implies that σ has at least 2L + 1 particles in stripe S, which means that one
of the two rows of S, say r, must have at least L + 1 particles, i.e. p ≥ L + 1.
Due to the structure of a horizontal stripe, each particle on r blocks two sites
in row r′ and no site in row r′ is blocked simultaneously by two particles
in row r, since to do so such particles should reside in adjacent sites. Hence,
there are at least 2p blocked sites, so that in row r′ there can be at most
3L− 2p particles. In view of the assumption p ≥ L + 1, this means that there
are at most p + (3L− 2p) = 3L− p ≤ 2L− 1 particles in stripe S, and thus
US(σ) > 0, which is a contradiction.

Let us turn to the characterization (6.15) of the stripes with energy wastage
equal to zero. If σ displays a bridge in a horizontal stripe S, then by definition
σ|S = a|S or σ|S = b|S or σ|S = c|S. In all three cases, we have ∑v∈S σ(v) = 2L
and thus US(σ) = 2L−∑v∈S σ(v) = 0.

Figure 6.6: Equivalent representation of an admissible configuration in a horizontal
stripe of Tm,4

For the converse implication, we leverage the equivalent representation of
an admissible configuration as hard hexagon introduced at the end of Sec-
tion 6.1. Note that in a horizontal stripe, we see only half of any hexagon:
This means that any particle blocks exactly 3 triangles on that stripe. We
distinguish between blocked and free triangles and color the blocked trian-
gles according to which particle blocks them. Denote by b(S) the number
of blocked triangles in stripe S and by f (S) the number of free triangles on
the same stripe. Since the total number of triangles of stripe S is 6L, we have
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b(S)+ f (S) = 6L. Furthermore, as argued before, every particle blocks exactly
3 triangles on that stripe, i.e. b(S) = 3 ∑v∈S σ(v). Therefore,

f (S) = 6L− b(S) = 3

(
2L− ∑

v∈S
σ(v)

)
= 3 ·US(σ). (6.16)

Suppose now by contradiction that σ does not have a horizontal bridge in
stripe S. If σ has only particles of the same color on S, then the number of
particles must be strictly less than 2L and thus US(σ) > 0. If instead σ has
at least a pair of particles belonging to different components, then there exist
blocked triangles of different colors. The hard-hexagon representation implies
that two blocked triangles of different color cannot be adjacent, so there must
be at least one free triangle separating them, i.e. f (S) > 0, which implies that
US(σ) > 0 in view of (6.16).

Proof of Theorem 6.3.1(i). Lemma 6.3.3 guarantees that US(σ) ≥ 0 on every hor-
izontal stripe S. By definition (6.13), this means that on every horizontal stripe
there can be at most 2L particles. Hence

max
σ∈X ∑

v∈V
σ(v) ≤ 2KL.

Configurations a, b and c have precisely 2KL particles each, in view of (6.1).
Suppose by contradiction that there exists another configuration σ ∈ X \
{a, b, c} that has 2KL particles. By definitions (6.12) and (6.13) such con-
figuration should be such that USi (σ) = 0 on every horizontal stripe Si,
i = 0, . . . , K− 1. By Lemma 6.3.3 configuration σ then has a horizontal bridge
in each of these K stripes. Since two horizontal bridges of different colors can-
not reside in adjacent stripes, it follows that all K bridges should be monochro-
matic and thus σ ∈ {a, b, c}, which is a contradiction.

In order to prove Theorem 6.3.1(ii), we need the following lemma for ver-
tical stripes, which is a complementary result of Lemma 6.3.3 characterizing
the structure of vertical stripes with zero energy wastage.

Lemma 6.3.4 (Efficient vertical stripes structure). Consider an admissible config-
uration σ ∈ X on the triangular grid graph TK,L. For every vertical stripe C of the
form C = C3j, the energy wastage is non-negative, i.e. UC(σ) ≥ 0. Furthermore, if
σ has at least one black particle on C, then

UC(σ) = 0 ⇐⇒ σ has a black vertical bridge in stripe C. (6.17)

Proof. Consider a vertical stripe C of the form C3j, whose middle column is
a subset of Vb. We first prove that the energy wastage UC(σ) ≥ 0 and later
prove (6.17). Observe that, due to the structure of the vertical stripe C, an
admissible configuration cannot have more than one particle in every row in
C and, moreover, it cannot have particles residing in adjacent rows in C. From
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these two observations, it follows that there are no admissible configurations
with K + 1 or more particles on the vertical stripe C and thus UC(σ) ≥ 0.

If σ displays a vertical black bridge in vertical stripe C, then by definition
σ|C = b|C and thus trivially UC(σ) = 2L− ∑v∈C σ(v) = 0. Similarly to what
we have done in the proof of Lemma 6.3.3, we prove the converse implication
using the equivalent representation of an admissible configuration as hard
hexagons mentioned in Section 6.1. Note that in a vertical stripe, we see only
part of these hexagons; in particular, any particle blocks exactly 2 triangles
on that stripe, as illustrated in Figure 6.7. We distinguish between blocked
and free triangles and color the blocked triangles according to which particle
blocks them. A key observation is that in such a vertical stripe, dashed and
gray triangles can be adjacent to each other, as shown in Figure 6.7, but a
black triangle cannot be adjacent to a triangle of different color. Denote by
b(C) the number of blocked triangles in stripe C and by f (C) the number
of free triangles on the same stripe. Since the total number of triangles in
stripe C is 2K, we have b(C) + f (C) = 2K. Furthermore, since every particle
blocks exactly 2 triangles on that vertical stripe, we have b(C) = 2 ∑v∈C σ(v).
Therefore,

f (C) = 2K− b(C) = 2

(
K− ∑

v∈C
σ(v)

)
= 2 ·UC(σ). (6.18)

Suppose by contradiction that σ does not have a vertical black bridge in stripe
C. If σ has only black particles on C, then the number of black particles must

Figure 6.7: Equivalent representation of an admissible configuration in a vertical stripe
of T5,L
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be strictly less than 2K and thus UC(σ) > 0. Instead, if σ has also at least one
non-black particle in stripe C, then such particle blocks two triangles, which
will then be non-black. Such triangles cannot be adjacent to the two black ones
which exist by assumption, so there exists at least one free triangle separating
them, i.e. f (C) > 0, which implies that UC(σ) > 0 in view of (6.18).

We are now ready to state and prove the lower bound on the communication
height between any pair of stable states.

Proposition 6.3.5 (Lower bound on the communication height between a and
b). Consider the triangular grid graph TK,L. The communication height between a
and b in the corresponding energy landscape satisfies

Φ(a, b)− H(a) ≥ min{K, 2L}+ 1. (6.19)

Proof. We will show that in every path ω : a → b there exists at least one
configuration with energy wastage greater than or equal to min{K, 2L} + 1.
Consider a path ω = (ω1, . . . , ωn) from a to b. Without loss of generality,
we may assume that there are no void moves in ω, i.e. at every step either a
particle is added or a particle is removed, so that H(ωi+1) = H(ωi)± 1 for
every 1 ≤ i ≤ n− 1. Since configuration a has no black bridges, while b does,
at some point along the path ω there must be a configuration which is the first
to display a black bridge, that is a column or a row occupied only by black
particles. Denote by m∗ the index corresponding to such configuration, i.e.

m∗ := {m ≤ n | ∃ i : (ωm)|ri
= b|ri

or ∃ j : (ωm)|cj
= b|cj

}.

Since a black bridge cannot be created in only two steps starting from a, we
must have m∗ > 2. We claim that

max{U(ωm∗−1), U(ωm∗−2)} ≥ min{K, 2L}+ 1.

Since the addition of a single black particle cannot create more than one bridge
in each direction, it is enough to consider the following three cases:

(a) ωm∗ displays a black vertical bridge only;

(b) ωm∗ displays a black horizontal bridge only;

(c) ωm∗ displays a black cross.

For case (a), note that configuration ωm∗ does not have any horizontal
bridge. Indeed, it cannot have a black horizontal bridge due to the defini-
tion of m∗ and any gray or white horizontal bridge cannot coexist with the
black vertical bridge, in view of Lemma 6.3.2. Hence, the energy wastage of
every horizontal stripe is strictly positive, thanks to Lemma 6.3.3 and thus

U(ωm∗) =
K−1

∑
i=0

USi (ωm∗) ≥ K.
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Furthermore, configurations ωm∗−1 and ωm∗ differ in a unique site v∗ ∈ Vb,
which is such that ωm∗−1(v∗) = 0 and ωm∗(v∗) = 1. Hence, U(ωm∗−1) =
U(ωm∗) + 1 and thus

U(ωm∗−1) ≥ K + 1.

The argument for case (b) is similar to that of case (a). Firstly, configura-
tion ωm∗ does not display any vertical bridge. Lemma 6.3.2 implies that there
cannot be any gray or white vertical bridge due to the presence of a black
horizontal bridge and a black vertical bridge cannot exist, since it would con-
tradict the definition of m∗. Every vertical stripe has at least one black particle,
due to the presence of a black horizontal bridge. Hence, UCj(ωm∗) ≥ 1 for
every j = 0, . . . , 2L− 1 in view of Lemma 6.3.4. Therefore,

U(ωm∗) =
2L−1

∑
j=0

UCj(ωm∗) ≥ 2L.

From this inequality it follows that U(ωm∗−1) ≥ 2L + 1, because, as for case
(a), the definition of m∗ implies U(ωm∗−1) = U(ωm∗) + 1.

Consider now case (c), in which ωm∗ displays a black cross. The presence
of both a vertical and a horizontal black bridge means that ωm∗ has a black
particle in every vertical and horizontal stripe. This property is inherited by
the configuration ωm∗−1, since it differs from ωm∗ only by the removal of the
black particle lying at the intersection of the vertical and horizontal bridge
constituting the cross. Furthermore, by definition of m∗, configuration ωm∗−1
cannot have any black bridge, neither vertical nor horizontal. These two facts,
in combination with Lemmas 6.3.3 and 6.3.4, imply that

U(ωm∗−1) ≥ min{K, 2L}.

If U(ωm∗−1) ≥ min{K, 2L}+ 1, then the proof is completed. Otherwise, the
energy wastage of configuration ωm∗−1 is U(ωm∗−1) = min{K, 2L}. The con-
figuration preceding ωm∗−1 in the path ω satisfies

U(ωm∗−2) = min{K, 2L} ± 1, (6.20)

since it differs from ωm∗−1 by a single site update. Suppose first that

U(ωm∗−2) = min{K, 2L} − 1. (6.21)

This means that ωm∗−2 differs from ωm∗−1 by the addition of a particle. There-
fore, also configuration ωm∗−2 has at least one black particle in every horizon-
tal stripe, i.e.

∑
v∈Si∩Vb

ωm∗−2(v) ≥ 1 ∀ i = 0, . . . , K, (6.22)
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and at least one black particle in every vertical stripe, i.e.

∑
v∈Cj∩Vb

ωm∗−2(v) ≥ 1 ∀ j = 0, . . . , 2L− 1. (6.23)

If K ≤ 2L, (6.21) and the pigeonhole principle imply that there must be a hor-
izontal stripe S such that US(ωm∗−2) = 0. In view of (6.22) and Lemma 6.3.3,
ωm∗−2 must have a horizontal black bridge in S, which contradicts the def-
inition of m∗. When instead K > 2L, it follows from (6.21) that there must
be a vertical stripe C such that UC(ωm∗−2) = 0. Also in this case, (6.23)
and Lemma 6.3.4 imply that ωm∗−2 displays a vertical black bridge in C, in
contradiction with the definition of m∗. We have in this way proved that as-
sumption (6.21) always leads to a contradiction, so in view of (6.20) we have
U(ωm∗−2) = min{K, 2L}+ 1 and the proof is concluded also for case (c).

6.3.2 Reference path and absence of deep cycles

In this subsection we describe two iterative procedures that build a path from
a suitable initial configuration σ to a target stable state. The first one modifies
the original configuration row by row and we will refer to it as reduction
algorithm by rows. The second one proceeds instead by modifying σ column by
column and, for this reason, we will call it reduction algorithm by columns. These
two procedures are similar in spirit, but need to be described separately, since
for the triangular grid the structure of horizontal stripes is fundamentally
different from that of vertical stripes. Such reduction algorithms will be used
in Proposition 6.3.6 to build the reference path from a to b and in the proof of
Theorem 6.3.1(iii).

Reduction algorithm by rows

We now describe in detail the reduction algorithm by rows with b as target
state. In order for σ ∈ X to be a suitable initial configuration for the reduction
algorithm by rows, we require that σ has no gray or white particles in the first
horizontal stripe S0, i.e.

∑
v∈S0∩(Va∪Vc)

σ(v) = 0. (6.24)

Figure 6.8 shows an admissible configuration that satisfies this initial condi-
tion.
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S0
r0

r1

Figure 6.8: Example of an admissible configuration on T3,3 that satisfies (6.24)

The path ω is the concatenation of 2K paths ω(1), . . . , ω(2K). For every i =
1, . . . , 2K, path ω(i) goes from σi to σi+1, where we set σ1 = σ and recursively
define for i = 1, . . . , 2K

σi+1(v) :=



σi(v) if v ∈ V \ (ri ∪ ri+1),

b(v) if v ∈ ri,

σi(v) if v ∈ ri+1 ∩Vb,

0 if v ∈ ri+1 ∩ (Va ∪Vc).

Clearly, due to the periodic boundary conditions, the row index should be
taken modulo 2K. It can be checked that indeed σ2K+1 = b. We now de-
scribe in detail how to construct each of the paths ω(i) for i = 1, . . . , 2K.
We build a path ω(i) = (ω

(i)
0 , ω

(i)
1 , . . . , ω

(i)
2L+1) of length 2L + 1 (but possibly

comprising void moves), with ω
(i)
0 = σi and ω

(i)
2L+1 = σi+1. We start from con-

figuration ω
(i)
0 = σi and we repeat iteratively the following procedure for all

j = 0, . . . , 2L− 1:

• If j ≡ 0 (mod 2), consider the sites v ∈ Va and v′ ∈ Vc defined byv = (i + 1, 3j), v′ = (i + 1, 3j + 2) if i ≡ 0 (mod 2),

v = (i + 1, 3j + 1), v′ = (i + 1, 3j + 3) if i ≡ 1 (mod 2).

Note that the two sites v and v′ are always neighbors, so that only one
of the two can be occupied.

- If ω
(i)
j (v) = 0 = ω

(i)
j (v′), we set ω

(i)
j+1 = ω

(i)
j , so H(ω

(i)
j+1) = H(ω

(i)
j ).

- If ω
(i)
j (v) = 1 or ω

(i)
j (v′) = 1, then we remove from configuration

ω
(i)
j the particle in the unique occupied site between v and v′, in-

creasing the energy by 1 and obtaining in this way configuration
ω
(i)
j+1, which is such that H(ω

(i)
j+1) = H(ω

(i)
j ) + 1.
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• If j ≡ 1 (mod 2), consider the site v ∈ Vb defined as

v =

(i, 3j− 1) if i ≡ 0 (mod 2),

(i, 3j− 2) if i ≡ 1 (mod 2).

- If ω
(i)
j (v) = 1, we set ω

(i)
j+1 = ω

(i)
j and thus H(ω

(i)
j+1) = H(ω

(i)
j ).

- If ω
(i)
j (v) = 0, then we add to configuration ω

(i)
j a particle in site

v decreasing the energy by 1. We obtain in this way a configura-
tion ω

(i)
j+1, which is admissible because by construction all the first

neighboring sites of v are unoccupied. In particular, the two par-
ticles residing in the two sites above v may have been removed
exactly at the previous step. The new configuration has energy
H(ω

(i)
j+1) = H(ω

(i)
j )− 1.

The way the path ω(i) is constructed shows that for every i = 1, . . . , 2K,

H(σi+1) ≤ H(σi),

since the number of particles added in row ri is greater than or equal to the
number of particles removed in row ri+1. Moreover,

Φω(i) ≤ H(σi) + 1

since along the path ω(i) every particle removal (if any) is always followed
by a particle addition. These two properties imply that the path ω : σ → b
created by concatenating ω(1), . . . , ω(2K) satisfies

Φω ≤ H(σ) + 1.

Note that the reduction algorithm by rows can be tweaked in order to have
a or c as target state. In particular, the condition (6.24) for the initial config-
uration σ should be adjusted accordingly, requiring that σ has no black and
white (black and gray, respectively) particles in the first horizontal stripe S0,
depending on whether the target state is a or c, respectively.

Reduction algorithm by columns

We now illustrate how the reduction algorithm by columns works choosing
b as target state. Note that the procedure we are about to describe can be
tweaked to yield a path with target state a or c, but we omit the details. If
the target state is b, we require that the initial configuration σ ∈ X for the
reduction algorithm by columns satisfies the following condition:

∑
v∈c2∪c3

σ(v) = 0. (6.25)

Since c2 = C0 ∩Vc and c3 = C1 ∩Va, condition (6.25) requires that in the two
first vertical stripes C0 and C1 of configuration σ there are no white particles in
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c2 c3

Figure 6.9: Example of admissible configuration on T3,3 that satisfies (6.25)

C0 and no gray particles in C1. Figure 6.9 shows an admissible configuration
that satisfies this initial condition.

The output of this algorithm is a path ω from σ to b, which we construct as
concatenation of L paths ω(1), . . . , ω(L). For every j = 1, . . . , L, path ω(j) goes
from σj to σj+1, where we set σ1 = σ and recursively define for j = 1, . . . , L

σj+1(v) :=


σj(v) if v ∈ V \ (c3j−2 ∪ c3j−1 ∪ c3j),

b(v) if v ∈ c3j−2,

0 if v ∈ c3j−1 ∪ c3j.

The column index should of course be taken modulo 3L, in view of the pe-
riodic boundary conditions. It can be easily checked that σL+1 = b. We now
describe in detail how to construct each of the paths ω(j) for j = 1, . . . , L. We
remark that in the procedures we will now describe, also the row index has
to be taken modulo 2K.

We distinguish two cases, depending on whether (a) σj has a vertical bridge
in column c3j−1 or (b) not.

Consider case (a) first. First notice that the presence of a vertical (white)
bridge in column c3j−1 implies that all sites of the adjacent column c3j must
be empty in configuration σj.

We build a path ω(j) = (ω
(j)
1 , . . . , ω

(j)
2K+1) of length 2K + 1 (but possibly

comprising void moves), with ω
(j)
1 = σj and ω

(j)
2K+1 = σj+1. Denote by o(j) ∈

{0, 1} the integer number such that o(j) ≡ j − 1 (mod 2). We first remove
the two white particles in column c3j−1 that lie in row ro(j) and ro(j)+2 in two
successive steps, obtaining in this way configuration ω

(j)
3 , which is such that

H(ω
(j)
3 ) = H(ω

(j)
1 ) + 2. We then repeat iteratively the following procedure to

obtain the configuration ω
(j)
i+1 from ω

(j)
i for all i = 3, . . . , 2K− 1:

• If i ≡ 1 (mod 2), consider the site v ∈ c3j−2 ⊂ Vb with coordinates
(3j − 2, o(j) + i − 2) and add a (black) particle there, obtaining in this
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way configuration ω
(j)
i+1. Such a particle can be added since all its six

neighboring sites are empty. More specifically, the three left ones have
been (possibly) emptied along the path ω(j−1), while the one in c3j is
empty by assumption and the other two sites on its right have been
emptied in the previous steps of ω(j). Since we added one particle,
H(ω

(j)
i+1) = H(ω

(j)
i )− 1.

• If i ≡ 0 (mod 2), consider the site v ∈ c3j−1 ⊂ Vc with coordinates (3j−
1, o(j) + i− 2) and remove the (white) particle lying there, obtaining in
this way configuration ω

(j)
i+1, which is such that H(ω

(j)
i+1) = H(ω

(j)
i ) + 1.

This procedure outputs configuration ω
(j)
2K which has no white particles in

column c3j−1 and an empty site in column c3j−2, the one with coordinates
(3j− 2, 2K− 1− o(j)). All the neighboring sites of this site are empty by con-
struction and, adding a black particle in this site, we obtain configuration
ω
(j)
2K+1 = ωj+1, which is such that H(ωj) = H(ω

(j)
2K)− 1. The way the path ω(j)

is constructed shows that

H(σj+1) = H(σj),

since we added K (black) particles in column c3j−2 and removed K (white)
particles in columns c3j−1. Moreover,

Φω(j) = max
η∈ω(j)

H(η) = H(σj) + 2 (6.26)

since along the path ω(j) every particle removal is followed by a particle ad-
dition, except at the beginning where we removed two particles consecutively.

Consider now case (b). We claim that, since there is no vertical (white)
bridge in column c3j−1, there exists a site v∗ in column c3j−2 with at most
one neighboring occupied site. First of all, all sites in column 33j−3 and c3j−4
have been emptied along the path ω(j−1), so all sites in c3j−2 have no left
neighboring sites occupied. Let us look now at the right neighboring sites.
Since there is no vertical white bridge in column c3j−1, there exists an empty
site in it, say w. Modulo relabeling the rows, we may assume that w has coor-
dinates (3j− 1, o(j)), where o(j) is the integer in {0, 1} such that o(j) ≡ j− 1
(mod 2). The site v∗ = (3j− 2, o(j) + 1) has then the desired property, since at
most one of its two remaining right neighboring sites (those with coordinates
(3j − 1, o(j) + 2) and (3j, o(j) + 1), respectively) can be occupied, since they
are also neighbors of each other.

We build a path ω(j) = (ω
(j)
1 , . . . , ω

(j)
2K+1) of length 2K + 1 (but possibly

comprising void moves), with ω
(j)
1 = σj and ω

(j)
2K+1 = σj+1. We then repeat

iteratively the following procedure to obtain configuration ω
(j)
i+1 from ω

(j)
i for

all i = 1, . . . , 2K:

• If i ≡ 1 (mod 2), consider the two sites (3j− 1, o(j) + i + 1) ∈ Vc and
(3j, o(j) + i) ∈ Va. Since they are neighboring sites, at most one of them
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is occupied. If they are both empty, we set ω
(j)
i+1 = ω

(j)
i . If instead there

is a particle in either of the two, we remove it, obtaining in this way
configuration ω

(j)
i+1, which is such that H(ω

(j)
i+1) = H(ω

(j)
i ) + 1.

• If i ≡ 0 (mod 2), consider the site v ∈ c3j−2 ⊂ Vb with coordinates
(3j − 2, o(j) + i − 1) and add a (black) particle there, obtaining in this
way configuration ω

(j)
i+1. Such a particle can be added since all its six

neighboring sites are empty. More specifically, the three left ones have
been (possibly) emptied along the path ω(j−1), while the other two sites
on its right have been emptied in the previous step of ω(j). Since we
added one particle, H(ω

(j)
i+1) = H(ω

(j)
i )− 1.

The way the path ω(j) is constructed shows that

H(σj+1) ≤ H(σj),

since the number of (black) particles added in column c3j−2 is greater than
or equal to the number of (white or gray) particles removed in columns c3j−1
and c3j. Moreover, along the path ω(j) every particle removal (if any) is always
followed by a particle addition, and hence

Φω(j) = max
η∈ω(j)

H(η) ≤ H(σj) + 1. (6.27)

Consider now the path ω : σ → b created by concatenating ω(1), . . . , ω(L),
which are constructed either using the procedure in case (a) or that in case (b).
First notice that, regardless of which procedure has been used at step j, the
following inequality always holds for every j = 1, . . . , L:

H(σj+1) ≤ H(σj).

Using this fact in combination with (6.26) and (6.27) shows that the path ω
always satisfies

Φω ≤ H(σ) + 2.

Furthermore, in the special case in which σ has no vertical white bridges, our
procedure considers case (b) for every j = 1, . . . , L and thus, by virtue of (6.27),
the path ω satisfies

Φω − H(σ) ≤ 1.

We remark that the stable state a (or c) can also be the target state of the
reduction algorithm by columns. In this scenario, one should adjust the condi-
tion (6.25) on the initial condition accordingly, requiring that σ has no particles
in columns c1 and c2 (columns c0 and c1, respectively). The offset of rows and
columns in the procedures described above should of course be tweaked ap-
propriately.
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We now use the reduction algorithms we just introduced to show that the
lower bound for the communication height between a and b given in Propo-
sition 6.3.5 is sharp, by explicitly giving a path that attains that value.

Proposition 6.3.6 (Reference path). There exists a path ω∗ : a → b in X such
that

Φω∗ − H(a) = min{K, 2L}+ 1. (6.28)

Proof. We distinguish two cases, depending on whether (a) K ≤ 2L and (b)
K > 2L.

For case (a), we construct such a path ω∗ as the concatenation of two shorter
paths, ω(1) and ω(2), where ω(1) : a → σ∗ and ω(2) : σ∗ → b for a suitable
configuration σ∗ ∈ X , and prove that Φω(1) = H(σ∗) = H(σ) + K and that
Φω(2) = H(σ∗) + 1 are satisfied, so that Φω∗ = H(a) + K + 1 as desired. The
reason why ω is best described as the concatenation of two shorter paths
is the following: The reduction algorithm by columns cannot in general be
started directly from a and the path ω(1) indeed leads from a to σ∗, which is
a suitable configuration to initialize the reduction algorithm by columns. The
configuration σ∗ differs from a only in the sites of column c3:

σ∗(v) :=

a(v) if v ∈ V \ c3,

0 if v ∈ c3.

The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
K+1), with ω

(1)
1 = a and ω

(1)
K+1 = σ∗ can be con-

structed as follows. For i = 1, . . . , K, at step i we remove from configuration
ω
(1)
i the particle in site (3, 2i − 1), increasing the energy by 1 and obtaining

in this way configuration ω
(1)
i+1. Therefore the configuration σ∗ is such that

H(σ∗) − H(a) = K and Φω(1) = H(a) + K. The second path ω(2) : σ∗ → b
is then constructed by means of the reduction algorithm by columns, which
can be used since the configuration σ∗ satisfies condition (6.24) and hence is
a suitable initial configuration for the algorithm. The algorithm guarantees
that Φω(2) = H(σ∗) + 1, since configuration σ∗ has no vertical white bridges
(see case (b) for the reduction algorithm by columns), and thus the conclusion
follows. Figure 6.10 illustrates the reference path for the triangular grid T3,3.
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a σ∗ = ω
(2)
1

ω
(2)
2 ω

(2)
3

ω
(2)
4 ω

(2)
5

ω
(2)
6 ω

(2)
7

ω
(2)
13

b

Figure 6.10: Illustration of the reference path ω∗ : a→ b in the case K ≤ 2L
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a σ∗ = ω
(2)
1 ω

(2)
2

ω
(2)
3 ω

(2)
4 ω

(2)
5

ω
(2)
9

b

Figure 6.11: Illustration of the reference path ω∗ : a→ b in the case K > 2L
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For case (b), we construct such a path ω∗ as the concatenation of two shorter
paths, ω(1) and ω(2), where ω(1) : a → σ∗ and ω(2) : σ∗ → b, and prove that
Φω(1) = H(σ∗) = H(σ) + 2L and that Φω(2) = H(σ∗) + 1 are satisfied, so that
Φω∗ = H(a)+ 2L+ 1 as desired. Some snapshots from the reference path from
a to b on the triangular grid T5,2 are shown in Figure 6.11. Also in this case we
construct ω as concatenation of two shorter paths because a is not a suitable
initial configuration for a reduction algorithm. Consider the configuration σ∗

that differs from a only in the sites of the first horizontal stripe S0, namely

σ∗(v) :=

a(v) if v ∈ V \ S0,

0 if v ∈ S0.

The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
2L+1), with ω

(1)
1 = a and ω

(1)
2L+1 = σ∗ can be con-

structed as follows. For i = 1, . . . , 2L, at step i we remove from configuration
ω
(1)
i the first particle in lexicographic order in S0, increasing the energy by

1 and obtaining in this way configuration ω
(1)
i+1. Therefore the configuration

σ∗ is such that H(σ∗)− H(a) = 2L and Φω(1) = H(a) + 2L. The second path
ω(2) : σ∗ → b is then constructed by means of the reduction algorithm by
rows, which can be used since the configuration σ∗ satisfies condition (6.24)
and hence is a suitable initial configuration for the algorithm. The reduction
algorithm by rows guarantees that Φω(2) = H(σ∗) + 1 and thus the conclusion
follows.

Proof of Theorem 6.3.1(ii). The proof of the identity involving Φ(a, b) − H(a)
readily follows by combining the lower bound in Proposition 6.3.5 and the
statement of Proposition 6.3.6. The remaining identities can be derived invok-
ing the symmetry of the triangular grid (or using the same arguments as in
the proof of Propositions 6.3.5 and 6.3.6).

Proof of Theorem 6.3.1(iii). We will show that for every admissible configura-
tion σ on a triangular grid graph TK,L with σ 6= a, b, c, there exists a path ω
from σ to one of the three stable states such that

Φω − H(ω) ≤ min{K, 2L}.

The idea is to construct such a path using the geometric features of the con-
figuration σ and exploiting the reduction algorithms described earlier in this
section. We start by distinguishing two cases: (a) K ≤ 2L and (b) K > 2L.

Consider case (a) first, where K ≤ 2L. We distinguish two sub-cases, de-
pending on whether σ has at least one vertical bridge or not.

If σ has a vertical bridge in a vertical stripe C, then σ is a suitable starting
configuration for the reduction algorithm, which yields a path ω that goes
from σ to the stable configuration in {a, b, c} on which σ agrees in stripe C.
The path ω constructed in this way is such that

Φω − H(σ) ≤ 2
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and thus Φ(σ, {a, b, c})− H(σ) ≤ 2 ≤ K ≤ min{K, 2L}, since by assumption
K is an integer greater than 1.

Suppose now that there are no vertical bridges in σ. Since σ 6∈ {a, b, c},
which is the set of stable states in view of Theorem 6.3.1(i), configuration σ has
a positive energy wastage U(σ) > 0. In view of (6.14), this means that there
exists a vertical stripe C∗ such that UC∗(σ) > 0. Without loss of generality,
we may assume (modulo relabeling) that C∗ is the vertical stripe C1, which
consists of columns c1, c2 and c3. By definition of energy wastage in a stripe,
it follows that σ has at most K− 1 particles. Removing all the gray and white
particles one by one, we construct a path ω(1) from σ to a new configuration
σ∗ that satisfies

H(σ∗)− H(σ) ≤ K− 1. (6.29)

Since we remove all the gray particles from c3 and all the white particles
from c2, σ∗ is a suitable starting configuration for the reduction algorithm by
columns with target state b, in view of (6.25). We obtain in this way a second
path ω(2) : σ∗ → b, which is such that

Φω(2) − H(σ∗) ≤ 1, (6.30)

thanks to the absence of vertical bridges in σ (and thus in σ∗). The path ω :
σ→ b obtained by concatenating ω(1) and ω(2) is such that

Φω − H(σ) ≤ K,

since Φω(1) − H(σ) ≤ K− 1 and in view of (6.29) and (6.30), and thus

Φ(σ, {a, b, c})− H(σ) ≤ K.

We remark that there is nothing special about b as target configuration of the
path ω we just constructed. Indeed, by choosing the vertical stripe C∗ with a
different offset, we could have obtained a configuration σ∗ which would have
been a suitable initial configuration for the reduction algorithm by columns
with target configuration a or c.

We now turn to case (b), in which K > 2L. Thanks to Lemma 6.3.3, there
must be a horizontal stripe S on which σ does not have a horizontal bridge,
otherwise σ ∈ {a, b, c}. In particular, σ has at most 2L − 1 particles on S,
which without loss of generality we may assume to be S0. We build a path
ω(1) from σ to a new configuration σ∗ by removing all these particles one by
one, so that Φω(1) − H(σ) ≤ 2L− 1 and H(σ∗)− H(σ) ≤ 2L− 1. Starting with
configuration σ∗ we can then use the reduction algorithm by rows to obtain
a second path ω(2) from σ∗ to any of the three stable configurations. Since
Φω(2) − H(σ∗) ≤ 1, the path ω constructed by the concatenation of ω(1) and
ω(2) satisfies

Φω − H(σ) ≤ 2L

and thus Φ(σ, {a, b, c})− H(σ) ≤ 2L.



6.3 energy landscape analysis 189

6.3.3 Proofs of Theorems 6.2.1 and 6.2.2

In this subsection, we prove the two main theorems of the chapter exploit-
ing the properties of the energy landscape proved earlier in this section. In
these proofs we use some notation introduced in Chapter 4 to characterize the
depths of the wells in the energy landscape, please refer to Subsection 4.2.2
and, in particular, to definitions (4.17) and (4.20).

Proof of Theorem 6.2.1. Exploiting the equivalent characterization of maximum
depth given in Lemma 4.2.6, it immediately follows from Theorem 6.3.1(iii)
that

Γ̃(X \ {a, b, c}) ≤ min{K, 2L}. (6.31)

Furthermore, we claim that the following identity holds:

Γ̃(X \ {b, c}) = min{K, 2L}+ 1. (6.32)

First notice that since a ∈ X \ {b, c}, we have

Γ̃(X \ {b, c}) ≥ Φ(a, {b, c})− H(a) = min{K, 2L}+ 1.

In order to prove that this lower bound is sharp, we need to show that
Φ(σ, {b, c}) − H(σ) ≤ min{K, 2L} + 1 for every configuration σ 6= a, b, c,
but we will actually prove a stronger inequality, namely

Φ(σ, b)− H(σ) ≤ min{K, 2L}+ 1, ∀ σ ∈ X \ {a, b, c}. (6.33)

Inspecting the proof of Theorem 6.3.1(iii), we notice that every configuration
σ 6= a, b, c can be reduced either directly to b, or otherwise to a or c, de-
pending on its geometrical features. If σ can be reduced directly to b, then we
proved therein that Φ(σ, b)− H(σ) ≤ min{K, 2L}. Consider now the scenario
where the configuration σ cannot be reduced to b directly, that is the case
where K ≤ 2L and σ displays a vertical gray bridge or a vertical white bridge.
In the proof of Theorem 6.3.1(iii) we built a path ω from σ to either a or a
such that Φω ≤ H(σ) + 2, which, concatenated with the reference path from
a to b given in Proposition 6.3.6 (or the analogous path from c to b), shows
that

Φ(σ, b) ≤ max{H(σ) + 2, Φ(a, b)}.
Thus,

Φ(σ, b)− H(σ) ≤ max{2, Φ(a, b)− H(σ)} ≤ max{2, Φ(a, b)− H(a)}
= max{2, min{K, 2L}+ 1} ≤ min{K, 2L}+ 1,

which implies that inequality (6.33) holds and proves in this way identity (6.32).
The pair (a, {b, c}) then satisfies condition (4.50) (the so-called “absence of
deep cycles”), since, thanks to identity (6.32),

Φ(a, {b, c})− H(a) = min{K, 2L}+ 1 = Γ̃(X \ {b, c}).
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Proposition 4.2.18 then implies that Assumption A holds for the pair (a, {b, c})
and Corollary 4.2.16 and Theorem 4.2.17 yields statements (i) and (ii) of The-
orem 6.2.1. Furthermore, combining Proposition 6.3.6 and inequality (6.31)
gives

Γ(a, {b, c}) = Φ(a, {b, c})− H(a) = min{K, 2L}+ 1

> min{K, 2L} = Γ̃(X \ {a, b, c}),

which implies that the initial cycle C{b,c}(a) (see definition (4.16)) is the unique
deepest cycle of the subset X \ {b, c} and proves that condition (4.55) holds.
Proposition 4.2.20 and Theorem 4.2.19 then yield the asymptotic exponential-
ity of the scaled tunneling time τa

{b,c}/Eτa
{b,c}, i.e.

τa
{b,c}

Eτa
{b,c}

d−→ Exp(1), as β→ ∞, (6.34)

proving Theorem 6.2.1(iii).
Consider now the other tunneling time, namely τa

b . From inequality (6.33)
and the definition (4.20) of maximum depth it immediately follows that

Γ̃(X \ {b}) ≤ min{K, 2L}+ 1,

which, in view of Proposition 6.3.6, implies that

Φ(a, b)− H(a) = min{K, 2L}+ 1 = Γ̃(X \ {b}).

Hence the pair (a, {b}) satisfies condition (4.50) and statements (i) and (ii) of
Theorem 6.2.1 hold for the tunneling time τa

b using Proposition 4.2.18, Corol-
lary 4.2.16 and Theorem 4.2.17.

The pair (a, {b}) does not satisfy condition (4.55) and neither Assumption
B (4.53), due to the presence of a deep cycle (the one where the stable state
c lies) different from the initial one (where a lies). Indeed, Φ(a, b)− H(a) 6<
Φ(c, b)− H(c), as shown in Theorem 6.3.1(ii). Hence, Theorem 6.2.1(iv) does
not follow immediately from Theorem 4.2.19. The asymptotic exponentiality
of the scaled hitting time τa

b/Eτa
b in the limit β → ∞ is proved differently,

leveraging the symmetric structure of the energy landscape. Indeed the trian-
gular grid TK,L is a symmetric 3-partite graph, as shown in Section 2.2.

In Section 2.3 we derive (in the continuous-time setting) in Corollary 2.3.2
the asymptotic distribution of the scaled transition time between any two
dominant states in the limit σ → ∞. We will now argue that we can obtain a
similar result in the current discrete-time setting.

Firstly, the low-temperature limit β→ ∞ in which we are interested is equiv-
alent to the limit σ → ∞ considered in Chapter 2, as illustrated in Section 1.3.
Secondly, the set D of dominant states of the activity process correspond to
the set of stable states of the hard-core model. Furthermore, Corollary 2.3.2
relies on three crucial properties proved in Proposition 2.3.1. The proofs of
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these two results do not use in an essential way the fact that the activity pro-
cess is a continuous-time process. In fact, it can be easily checked that the
same statements can be proved for the uniformized Markov chain {Xβ

t }t∈N

which we study in this chapter. In the notation of this chapter, the stochastic
representation (2.11) for the the hitting time τa

b reads as

τa
b

d
=

ND
∑
i=1

T(i),

where (T(i))i∈N is a sequence of i.i.d. random variables with T(i) d
= τa
{b,c} and

ND is an independent geometric random variable with success probability
equal to 1

2 , i.e.

P(ND = m) =

(
1
2

)m−1 1
2

, m ≥ 1.

The random variable ND counts the number of non-consecutive visits to stable
states until the stable state b is hit. Non-consecutive visits to stable states here
means that we count as actual visit to a stable state only the first one after
the last visit to a different stable state. The random time between these non-
consecutive visits does not depend on the last visited stable state, since

τa
{b,c}

d
= τc
{a,b}.

Exploiting the symmetry of the energy landscape and arguing like in Sec-
tion 2.3, we can show that if the Markov chain {Xβ

t }t∈N starts in state a, the
probability that b is the next visited stable state that is different from a is equal
to 1

2 (and similarly if the starting state is c). This fact motivates the value of the
success probability of the geometric random variable ND . Using the fact that
ND does not depend on β and arguing as in the proof of Corollary 2.3.2(iii),
we can show that

τa
b

Eτa
b

d−→ 1
2

Geo(1/2)

∑
i=1

Y(i), as β→ ∞,

where {Y(i)}i∈N are i.i.d. exponential random variables, thanks to (6.34) and
the fact that τa

D\{a} = τa
{b,c}. Theorem 6.2.1(iv) then follows by noticing that

a geometric sum of i.i.d. exponential random variables scaled by its mean is
also exponentially distributed with unit mean.

Proof of Theorem 6.2.2. The proof immediately follows from (6.33) in combina-
tion with Proposition 4.2.24.





7W I D O M - R O W L I S O N M O D E L O N G R I D G R A P H S

This chapter is devoted to the analysis of the Widom-Rowlison model on fi-
nite graphs with Metropolis dyanamics, which describes the evolution of a
particle system where different types of particles interact subject to certain
hard-core constraints. We focus in particular on the scenario in which there
are exactly two types of particles and the spatial structure is modeled by
grid graphs. We study the asymptotic behavior of this interacting particle
system in the low-temperature regime, analyzing the tunneling time between
its two stable states, which we denote by a and b, and the mixing time of the
Markov chain. This chapter is organized as follows. In Section 7.1 we give a
detailed description of the Widom-Rowlison model with two types of parti-
cles and show the connection between this model on a bipartite graph and
the multi-channel CSMA network presented in Section 1.5 on the same graph
with C = 2 available channels. In Section 7.2 we present our main results for
the Widom-Rowlison model on grid graphs, concerning the asymptotic prop-
erties of tunneling time τa

b and the order of magnitude of the mixing time
in the low-temperature regime. The rest of the chapter is then dedicated to
the proofs of the main results. In Section 7.3 we introduce some notation and
prove some preliminary results. Using a combinatorial method similar to that
developed in Chapter 5, we analyze the energy landscapes corresponding to
the Widom-Rowlison model on toric and open grid graphs in Sections 7.4
and 7.5, respectively.

7.1 model description

Consider a finite undirected graph G = (V, E), which models the spatial struc-
ture of the finite volume where two types of particles dynamically interact sub-
ject to certain hard-core constraints. The N vertices of the graph G represent
all possible sites where particles can reside. Particles can be of two types, A or
B, and there is nearest-neighbor hard-core exclusion between unlike particles.
These hard-core constraints are modeled by the set E of edges connecting the
pairs of sites that cannot be occupied simultaneously by particles of different
types. We associate a variable σ(v) ∈ {−1, 0, 1} to each site v ∈ V, indicating
the absence (0) or the presence of a particle of type A (1) or type B (−1) in that
site. We say that a particle configuration σ ∈ {−1, 0, 1}N is admissible if it does
not violate the hard-core constraints between unlike particles in neighboring
sites and denote by X the collection of admissible configurations, namely

X := {σ ∈ {−1, 0, 1}N : σ(v)σ(w) 6= −1 ∀(v, w) ∈ E}. (7.1)

193
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The evolution of this interacting particle system is described by the Metropolis
dynamics introduced in Chapter 4. More specifically, we consider the single-
site update Markov chain {Xβ

t }t∈N parametrized by a positive parameter β,
representing the inverse temperature, with Metropolis transition probabilities

Pβ(σ, σ′) :=

c(σ, σ′)e−β[H(σ′)−H(σ)]+ , if σ 6= σ′,

1−∑η 6=σ Pβ(σ, η), if σ = σ′,
(7.2)

corresponding to the energy landscape (X , H, c) where the state space X is
given in (7.1) and the energy and connectivity function are chosen as follows.
The energy function H : X → R counts the number of particles, regardless of
their type:

H(σ) := − ∑
v∈V

1{σ(v) 6=0} = − ∑
v∈V
|σ(v)|, x ∈ X . (7.3)

The connectivity function c : X ×X → [0, 1] is given by

c(σ, σ′) :=


1

2N , if d(σ, σ′) = 1,

0, if d(σ, σ′) > 1,

1−∑η 6=σ c(σ, η), if σ = σ′,

(7.4)

where d : X ×X →N is a distance function defined as

d(σ, σ′) := ∑
v∈V

(
1{σ(v) 6=σ′(v)} + 1{σ(v)σ′(v) 6=0}

)
. (7.5)

In other words, the connectivity function allows only single-site updates and
prescribes that a particle occupying a certain site cannot be replaced by a
particle of the other type in a single step. The dynamics induced by this energy
landscape can be described in words as follows. At every step a site v ∈ V
and a type (A or B) are selected uniformly at random; if the selected site
is occupied, the particle therein is removed with probability e−β; if instead
the selected site v is empty, then a particle of the chosen type is created at v
with probability 1 if and only if none of the neighboring sites is occupied by
particles of the opposite type.

The Widom-Rowlinson model was originally introduced in the chemistry
literature by [139] as a continuum model of particles living in Rd to study
the vapor-liquid phase transition. The discrete-space variant we are interested
in was first studied in [94], where the authors model a lattice gas where two
types of particles interact. The Widom-Rowlinson model has in fact two equiv-
alent standard formulations - one as a binary gas and the other as a single-
species model of a dense (liquid) phase in contact with a rarefied (gas) phase.
In the binary gas formulation, the only interaction is a hard-core exclusion
between the two species of particles - call them A and B. If the B particles are
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invisible, the resulting system of A particles yields a model for vapor-liquid
phase transitions, which has been introduced and discussed by Widom and
Rowlinson. The Widom-Rowlinson model has been proven to exhibit a phase
transition both on Zd [94] and on the continuum [95, 125]. On general graphs,
however, its behavior is not always monotonic, as proved in [24]. Many vari-
ants of the Widom-Rowlison model have been studied in the literature: In [96]
the authors study the Widom-Rowlison model with M > 2 types of particles,
while the case where there is only strong repulsion (and no hard-core interac-
tion) between unlike particles has been investigated in [94]. Further properties
of the continuum Widom-Rowlison model have been studied in [33].

7.1.1 Connection with multi-channel CSMA networks

In this subsection we illustrate how the multi-channel CSMA dynamics on
a conflict graph G described in Section 1.5 can be mapped into the Widom-
Rowlison model on the same graph G when G is bipartite and there are C = 2
available channels.

Consider a bipartite connected conflict graph G = (V, E) on N nodes, with
partition V = Ve ∪ Vo. Furthermore, we assume that the interference con-
straints on the two available channels are both described by the graph G.
As a consequence, there is a one-to-one correspondence between 2-colorings
of G and admissible activity states. In particular, there are then exactly two
proper colorings of the graph G, which correspond to the only two possi-
ble ways of assigning two colors to the two components Ve and Vo. We will
now introduce an equivalent representation of admissible activity states on
the conflict graph G with C = 2 channels available. The main idea is that
for each active node instead of keeping track of the channel on which it is
active, it is enough to keep track which one of the two possible (global) col-
orings it agrees with. This intuition can be made rigorous by considering the
function W : {0, 1, 2}N → {−1, 0, 1}N that maps an admissible activity state
x ∈ {0, 1, 2}N into the vector W(x) ∈ {−1, 0, 1}N whose i-th component is
defined as

W(x)i =



1 if xi = 1 and i ∈ Ve,

1 if xi = 2 and i ∈ Vo,

−1 if xi = 2 and i ∈ Ve,

−1 if xi = 1 and i ∈ Vo,

0 if xi = 0.

The function W is illustrated in the case of the 8× 9 open grid by Figure 7.1,
where Ve and Vo are the collections of even and odd nodes, respectively. Since
x ∈ {0, 1, 2}N is an admissible activity state on a graph G if xixj = 0 or
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(a) x ∈ X ⊂ {0, 1, 2}N , where the inactive
nodes are white, nodes active on chan-
nel 1 are red and nodes active on chan-
nel 2 are green

(b)W(x) ∈ {−1, 0, 1}N , where particles of
type A (W(x) = 1) are gray and parti-
cles of type B (W(x) = −1) are black

Figure 7.1: An activity state x ∈ X using two channels on the 8× 9 grid graph and the
corresponding Widom-Rowlison particle configurationW(x)

xi 6= xj for every pair of neighboring nodes (i, j) ∈ E, the corresponding state
W(x) ∈ {−1, 0, 1}N satisfies

W(x)iW(x)j = 0 or W(x)i =W(x)j ∀ (i, j) ∈ E. (7.6)

Note that in this derivation, we used the key fact that, since G is bipartite,
if i, j are neighbors in G, then they belong to different components. The con-
straints (7.6) imply that the imageW(X ) of the state space X under the map-
pingW is the collection of all states σ ∈ {−1, 0, 1}N such that

σiσj = 0 or σi = σj ∀ (i, j) ∈ E,

or, more compactly, σiσj 6= −1 for every pair of neighboring sites i and
j, which we recognize to be the admissible configurations of the Widom-
Rowlison model on the graph G, see (7.1).

7.2 asymptotic behavior of tunneling times and mixing time

In the rest of the chapter we focus on the study of the Widom-Rowlison model
on grid graphs and, in particular, we want to understand the asymptotic be-
havior of this interacting particle system in terms of tunneling and mixing
times in the low-temperature regime.

Given two integers K, L ≥ 2, we take G to be the K× L grid graph Λ = ΛK,L
described in Section 2.2 either with toroidal (periodic) boundary conditions,
denoted by ΛT

K,L, or with open (free) boundary conditions, denoted by ΛO
K,L.

Recall that the grid graph ΛK,L = (V, E) has vertex set V = {0, . . . , L− 1} ×
{0, . . . , K− 1} and N = KL sites in total.
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The equivalence between the Widom-Rowlison model and the multi-channel
CSMA dynamics holds only when the underlying graph G is bipartite, as il-
lustrated in Subsection 7.1.1. However, this assumption on G is not necessary
for our results for the Widom-Rowlison model and for this reason we do not
impose further conditions on the integers K and L, as we did instead in Chap-
ters 2 and 5.

Let a and b be the two admissible configurations of the Widom-Rowlison
model on the grid graph ΛK,L that correspond to the situation where all sites
are occupied by particles of types A and B, respectively. Using the notation
introduced in the previous subsection, we define

a(v) := 1 ∀ v ∈ V, and b(v) := −1 ∀ v ∈ V.

Clearly H(a) = −N = H(b). Furthermore, in Section 7.3 we will prove that
a and b are the only two stable states of the energy landscape of the Widom-
Rowlison model on any grid graph, regardless of the imposed boundary con-
ditions.

We adopt the following coloring conventions for displaying a configuration
σ ∈ X : A site v ∈ V is displayed as white if it is unoccupied (i.e. σ(v) =
0), while we color it in gray (black) if it is occupied by a particle of type A
(by a particle of type B, respectively). In view of this coloring scheme, in
the rest of the chapter we will refer to a particle of type A (B) as a gray
particle (black particle, respectively). As a result, an admissible configuration
consists of black and/or gray clusters separated by empty sites, since black
and gray particles cannot reside in neighboring sites. Figure 7.2 illustrates
three admissible configurations.

In order to capture how long the particle system takes to “switch” between
the two stable states a and b, we study the asymptotic behavior of the tunnel-
ing time τa

b of the Metropolis Markov chain {Xβ
t }t∈N in the low-temperature

regime β → ∞. The first main result proves the existence of an exponent
Γ(Λ) > 0 for any grid graph Λ that gives an asymptotic control in probability
of τa

b on a logarithmic scale as β→ ∞ and characterizes the asymptotic order
of magnitude of the mean tunneling time Eτa

b . We further show that the tun-
neling time τa

b scaled by its mean converges in distribution to an exponential
unit-mean random variable.

Theorem 7.2.1 (Asymptotic behavior of the tunneling time τa
b). Consider the

Metropolis Markov chain {Xβ
t }t∈N corresponding to the Widom-Rowlison model on

a K× L grid graph Λ. There exists a constant Γ(Λ) > 0 such that:

(i) For every ε > 0, lim
β→∞

P
(

eβ(Γ(Λ)−ε) < τa
b < eβ(Γ(Λ)+ε)

)
= 1;

(ii) lim
β→∞

1
β

log Eτa
b = Γ(Λ);

(iii)
τa

b
Eτa

b

d−→ Exp(1), as β→ ∞.
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(a) Configuration a (b) Configuration b

(c) An admissible configuration with parti-
cles of both types

Figure 7.2: Examples of admissible configurations on the 8× 9 toric grid ΛT
8,9

The proof of Theorem 7.2.1 relies on the general results for tunneling times
for Metropolis Markov chains obtained in Chapter 4 and on the study of
structural properties of the energy landscape (X , H, q) corresponding to the
Widom-Rowlison model on Λ, which are presented in the next section.

The combinatorial approach developed in Sections 7.4 and 7.5 shows how
the quantity Γ(Λ) depends both on the grid size and on the chosen boundary
conditions, as established by the next theorem.

Theorem 7.2.2 (The exponent Γ(Λ) for grid graphs). Let Λ be a K × L grid
graph. Then the energy barrier Γ(Λ) between a and b appearing in Theorem 7.2.1
takes the values

Γ(Λ) =

min{2K + 1, 2L} if Λ = ΛT
K,L with K ≤ L and K + L ≥ 6,

min{K, L}+ 1 if Λ = ΛO
K,L.
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The additional assumption that K + L ≥ 6 in the case of toric grids is nec-
essary to leave out the two special cases (K, L) = (2, 2) and (K, L) = (2, 3),
where the constant Γ(Λ) takes the values 3 and 4, respectively.

Note that Theorem 7.2.2 states that Γ(Λ) = 2K = 2L for a square toric
grid (that is ΛT

K,L with equal dimensions K = L), while Γ(Λ) = 2K + 1 for a
rectangular toric grid (namely ΛT

K,L with K < L).
We remark that from our analysis we could also immediately prove asymp-

totic results for the tunneling time τa
b analogous to those of Theorem 7.2.1 in

the case of a cylindrical grid, that is the grid graph ΛK,L with semi-periodic
boundary conditions (see Section 2.2 or 5.1). Indeed, arguing along simi-
lar lines as in Subsection 5.3.4, we can derive that for this class of grids
Γ(Λ) = min{K, 2L}+ 1.

The value of the exponent Γ(Λ) for the Widom-Rowlison model on a grid
graph Λ is roughly twice as large as the exponent for the hard-core model
on the same grid graph, see Theorem 5.2.2. This difference can be intuitively
understood by noticing that the Widom-Rowlison model on a grid graph Λ
is equivalent to the hard-core model on a 3-dimensional grid, which is the
Cartesian product of Λ and the complete graph on two nodes, as illustrated
in Figure 7.3. All the ingredients needed to make this equivalence rigorous
have been introduced in Section 1.5 in the context of multi-channel CSMA
networks.

Besides appearing in the tunneling time asymptotics in Theorem 7.2.1, the
exponent Γ(Λ) also characterizes the asymptotic order of magnitude of the
mixing time tmix

β (ε, Λ) and of the spectral gap ρβ(Λ) of the Metropolis Widom-
Rowlison dynamics on Λ (see definitions in Subsection 4.2.8).

Theorem 7.2.3 (Mixing time of the Widom-Rowlison model on grid graphs).
Let Λ be a K × L grid graph. For any 0 < ε < 1, the mixing time tmix

β (ε, Λ) of the

Markov chain {Xβ
t }t∈N satisfies

lim
β→∞

1
β

log tmix
β (ε, Λ) = Γ(Λ) = lim

β→∞
− 1

β
log ρβ(Λ).

Furthermore, there exist two positive constants 0 < c1 ≤ c2 < ∞ independent of β
such that

c1e−βΓ(Λ) ≤ ρβ(Λ) ≤ c2e−βΓ(Λ).
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(a) Every site of the original grid graph Λ is doubled, so
that we obtain two layers of sites. The occupied sites
on the first layers are particle of type A, while those on
the second layer are particles of type B

(b) The displayed conflict graph takes in account both the
hard-core constraints between unlike particles in neigh-
boring sites and the impossibility of having more than
one particle in the each site

(c) The conflict graph in Figure 7.3b is isomorphic to a
three-dimensional grid graph

Figure 7.3: The equivalence between the Widom-Rowlison model on an open grid and
the hard-core model on a three-dimensional open grid



7.3 energy landscape analysis 201

7.3 energy landscape analysis

In this section we present the structural properties of the energy landscapes of
the Widom-Rowlison model on grid graphs and show show how they can be
used to prove the main results presented in Section 7.2. In particular, we find
the value of the energy barrier between the stable states a and b and show that
this is the highest energy barrier of the whole energy landscape, proving the
so-called “absence of deep cycles” property for the Widom-Rowlison model
on grid graphs. The proof method is similar to that used in Chapter 5 for the
hard-core model on grid graphs, and exploits combinatorial and geometrical
features of admissible configurations. Our findings are summarized in the
next theorem.

In the rest of the chapter we will repeatedly use the notions of path ω and
its height Φω, as well as that of communication height Φ(·, ·) between two
states or subset of states, which are all defined in Subsection 4.2.1.

Theorem 7.3.1 (Energy landscape properties for the Widom-Rowlison model
on grid graphs). Let (X , H, q) be the energy landscape corresponding to the Metropo-
lis dynamics of the Widom-Rowlison model on a K × L toric grid graph ΛT

K,L with
K ≤ L and K + L ≥ 6. Then,

(i) Φ(a, b)− H(a) = min{2K + 1, 2L};

(ii) Φ(σ, {a, b})− H(σ) < min{2K + 1, 2L} ∀ σ ∈ X \ {a, b}.
If instead (X , H, q) is the energy landscape corresponding to the Metropolis dynamics
of the Widom-Rowlison model on a K× L open grid graph ΛO

K,L, then,

(iii) Φ(a, b)− H(a) = min{K, L}+ 1;

(iv) Φ(σ, {a, b})− H(σ) ≤ min{K, L} ∀ σ ∈ X \ {a, b}.
Statements (i) and (ii) of Theorem 7.3.1 are proved in Section 7.4, while the

proofs of statements (iii) and (iv) are presented in Section 7.5.
We remark that the two toric grid graphs ΛT

2,2 and ΛT
2,3 are not covered by

the previous theorem, since the are special cases for which our proof method
does not work. Nonetheless, it is easy to find the communication height be-
tween a and b and show that the corresponding energy landscapes exhibit
absence of deep cycles as well, so that Theorem 7.2.1 holds also in these cases.

The rest of this section is organized as follows. In Subsection 7.3.1 we
show how the three main results presented in Section 7.2 follows from Theo-
rem 7.3.1. In Subsection 7.3.2 we introduce some useful notation and defini-
tions and prove some results concerning geometrical and combinatorial prop-
erties of admissible Widom-Rowlison configurations on the grid graph ΛK,L.
These properties are then immediately used to show that a and b are the only
two stable states of the Widom-Rowlison model on grid graphs, see Proposi-
tion 7.3.5. Several of these geometrical properties of admissible configurations
will be heavily used in Sections 7.4 and 7.5.
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7.3.1 Proofs of Theorems 7.2.1, 7.2.2 and 7.2.3

In this subsection we briefly illustrate how the three main theorems presented
in Section 7.2 are proved. The proof method combines the model-independent
results derived in Chapter 4 with the structural properties of the energy land-
scape corresponding to the Widom-Rowlison model on grid graphs.

We first show how the tunneling time τa
b falls precisely in the scenario de-

scribed in Example 2 in Subsection 4.2.5 for both types of boundary conditions.
We illustrate how to argue only in the case of the toric grid ΛT

K,L, since in the
case of an open grid the reasoning is almost identical. Theorem 7.3.1(ii) shows
that for every configuration σ 6= a, b there is a path from σ either directly to b
and such that Φ(σ, b)− H(σ) < min{2K + 1, 2L} or a path from σ to a such
that Φ(σ, a)−H(σ) = 0. Using statement (i) of Theorem 7.3.1, we deduce that
also in this latter case the inequality Φ(σ, b)− H(σ) ≤ min{2K + 1, 2L} holds
and thus Φ(σ, b) − H(σ) ≤ Φ(a, b) − H(a) for every configuration σ 6= a,
proving that

Γ̃(X \ {b}) = Φ(a, b)− H(a). (7.7)

In other words, we have shown that the Widom-Rowlison model on grid
graphs exhibits absence of deep cycles. Therefore, Assumption A holds for
the pair (a, b) in view of Proposition 4.2.18, and statements (i) and (ii) of The-
orem 7.2.1 then follow from Corollary 4.2.16 and Theorem 4.2.17, respectively.

The value of the exponent Γ(Λ) appearing in Theorem 7.2.1 for the two
different types of grid graphs is immediately derived from the identities pre-
sented in Theorem 7.3.1(i) and (iii), since Γ(Λ) = Φ(a, b) − H(a) = Γ̃(X \
{b}). This concludes the proof of Theorem 7.2.2.

Furthermore, Theorem 7.3.1 directly implies that the following inequality
holds for the energy landscape of the Widom-Rowlison model on a grid graph
Λ, regardless of the boundary conditions:

Γ̃(X \ {a, b}) < Φ(a, b)− H(a).

In view of this latter inequality and of the fact that X s = {a, b}, we are pre-
cisely in the scenario illustrated in Example 4 in Subsection 4.2.6. In particular,
Assumption B holds and, by applying Theorem 4.2.19, we obtain the conclu-
sion of Theorem 7.2.1(iii).

Lastly, Proposition 4.2.24, in combination with (7.7), proves Theorem 7.2.3.

7.3.2 Geometrical features of admissible configurations

In this subsection we present some useful notation and results that are valid
for every grid graph, regardless of the imposed boundary conditions.

Consider a K × L grid graph Λ as described in Section 7.2. We denote by
cj, j = 0, . . . , L − 1, the j-th column of Λ, i.e. the collection of sites whose
horizontal coordinate is equal to j, and by ri, i = 0, . . . , K− 1, the i-th row of Λ,
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i.e. the collection of sites whose vertical coordinate is equal to i, see Figure 7.4.
When we do not need to specify a precise row or column, we will denote a
generic column by c and a generic row by r. We assign the coordinates (j, i) to
the vertex v that lies at the intersection of column cj and row ri. In addition,
define the i-th horizontal stripe, with i = 1, . . . , bK/2c, as

Si := r2i−2 ∪ r2i−1,

and the j-th vertical stripe, with j = 1, . . . , bL/2c as

Cj := c2j−2 ∪ c2j−1,

see Figure 7.4 for an illustration. Given an admissible configuration σ ∈ X ,

C1 C2

S1

S2

c0 c1 c2 . . . cL−1

r0

r1

r2

...

rK−1

Figure 7.4: Illustration of row, column and stripe notation on a toric grid

we define its energy wastage U(σ) the number of the empty sites that σ has as
the difference between the energy of σ and that of a, i.e.

U(σ) := N − ∑
v∈V

1{σ(v) 6=0}. (7.8)

Note that U(σ) can equivalently be seen as the energy difference between
configuration σ and either a or b, since U(σ) = H(σ)− H(a). Furthermore,
we define the energy wastage of a configuration σ ∈ X in row r by

Ur(σ) := L−∑
v∈r

1{σ(v) 6=0} = L−∑
v∈r
|σ(v)|, (7.9)

and the energy wastage of a configuration σ ∈ X in column c by

Uc(σ) := K−∑
v∈c

1{σ(v) 6=0} = K−∑
v∈c
|σ(v)|. (7.10)
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Clearly the energy wastage (7.8) of a configuration σ can be written as the
sum of the energy wastages in every row (or in every column). Given two
configurations σ, σ′ ∈ X and a subset of sites W ⊂ Λ, we write

σ|W = σ′|W ⇐⇒ σ(v) = σ′(v) ∀ v ∈W.

We say that a configuration σ ∈ X displays:

• A vertical bridge in column c if all sites of column c are occupied by
particles of the same type, namely

σ|c = a|c or σ|c = b|c;

• A horizontal bridge in row r if all sites of row r are occupied by particles
of the same type, namely

σ|r = a|r or σ|r = b|r;

• A vertical quasi-bridge in column c if all sites but one of column c are
occupied by particles of the same type, i.e. if there exists v ∈ c such that
σ(v) = 0 and

σ|c\{v} = a|c\{v} or σ|c\{v} = b|c\{v};

• A horizontal quasi-bridge in row r if all sites but one of row r are occupied
by particles of the same type, i.e. if there exists v ∈ r such that σ(v) = 0
and

σ|r\{v} = a|r\{v} or σ|r\{v} = b|r\{v};

• A cross if it has both a vertical bridge and a horizontal bridge;

• A quasi-cross if it has both a vertical quasi-bridge and an horizontal quasi-
bridge.

We will talk of gray bridges when they consist of particles of type A (i.e. they
agree with a), and of black bridges when they consist of particles of type B
(i.e. they agree with b). Analogously, we distinguish between black and gray
quasi-bridges and crosses. Some examples are given in Figures 7.5 and 7.6.

Lemma 7.3.2 (Geometric features of admissible configurations). In an admissi-
ble configuration σ ∈ X the following properties hold:

(i) Two bridges of different colors cannot be perpendicular to each other;

(ii) A bridge and quasi-bridge of different colors cannot be perpendicular to each
other;

(iii) Two quasi-bridges of different colors and perpendicular to each other must meet
in their empty site;

(iv) A (quasi-)bridge can have another (quasi-)bridge in adjacent row/column only
if they are of the same color.
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(a) A black horizontal bridge (b) Two vertical black bridges

(c) A black cross (d) A vertical gray quasi-bridge

(e) Two horizontal gray quasi-bridges (f) A gray quasi-cross

Figure 7.5: Examples of configurations on the 8× 8 toric grid displaying bridges and
quasi-bridges
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The proof of Lemma 7.3.2 is immediate by looking at the hard-core con-
straints between unlike particles arising at the site in which the two bridges or
quasi-bridges meet for statements (i)-(iii) and at the neighboring sites belong-
ing to adjacent rows/columns for statement (iv), see for instance Figure 7.5.

We call a quasi-cross monochromatic if the two quasi-bridges it consists of
are of the same color, and bichromatic otherwise. Lemma 7.3.2(iii) implies
that the two quasi-bridges of a bichromatic quasi-cross must intersect in their
unique empty site. Furthermore, in view of Lemma 7.3.2(i), a cross can only
be monochromatic and thus this distinction is not relevant for crosses.

(a) A monochromatic (black) quasi-
cross

(b) A monochromatic (gray) quasi-
cross

(c) A bichromatic quasi-cross

Figure 7.6: Examples of configurations on the 8× 8 toric grid displaying quasi-crosses

The next two lemmas show that bridges are the unique particle displace-
ments with zero energy wastage in a given row/column, regardless of the cho-
sen boundary conditions. In addition, only in the case of toric grid graphs, we
give an equivalent characterization of quasi-bridges. Lemmas 7.3.3 and 7.3.4
are stated and proved for rows and horizontal (quasi-)bridges, since those for
columns and vertical (quasi-)bridges are analogous.



7.3 energy landscape analysis 207

Lemma 7.3.3 (Bridges and quasi-bridges characterization on toric grid graphs).
Let σ be an admissible Widom-Rowlison configuration on a toric grid graph ΛT

K,L.
Then,

(i) Ur(σ) = 0 ⇐⇒ σ has a horizontal bridge in row r;

(ii) Ur(σ) = 1 ⇐⇒ σ has a horizontal quasi-bridge in row r.

In particular, if σ has no bridges nor quasi-bridges in row r, then Ur(σ) ≥ 2.

Proof. The implications (i)⇐ and (ii)⇐ are immediate by definition of (quasi-
)bridge and (7.9). For the converse implications, is enough to observe that,
in order to have particles of different types in the same row r, there are at
least two empty sites separating each gray cluster from the black particles,
due to the toric boundary conditions, and, hence, one would have Ur(σ) ≥ 2.
Thus, all particles residing in row r are of the same type and their number is
automatically determined by the value of the energy wastage Ur(σ).

Lemma 7.3.4 (Characterization of bridges in open grid graphs). Let σ be an
admissible Widom-Rowlison configuration on an open grid graph ΛO

K,L. Then,

Ur(σ) = 0 ⇐⇒ σ has a horizontal bridge in row r.

Proof. The implication ⇐ is immediate in view of (7.9) and the definition of
a bridge. Assume by contradiction that σ does not have a horizontal bridge
in row r. If σ has only particles of one color in row r and does not display a
bridge there, then the number of particle in row r must be strictly less than
L, so by definition of energy wastage Ur(σ) > 0, contradiction. If instead σ
has particles of both types in row r, there has to be at least one empty site
separating the gray cluster(s) from the black cluster(s), and thus Ur(σ) ≥ 1,
which is again a contradiction.

The fact that a and b are the only two stable states of the Widom-Rowlison
model on grid graphs is an immediate consequence of the previous two lem-
mas and is formalized in the next proposition.

Proposition 7.3.5 (Stable states of the Widom-Rowlison model on grid graphs).
For any K× L grid graph Λ, regardless of the boundary conditions,

min
σ∈X

H(σ) = −KL and X s = {a, b}.

Proof. At most one particle can reside in each site, so there cannot be more
than N particles on Λ and trivially minσ∈X H(σ) ≥ −N. Moreover, by defi-
nition of a and b it follows that H(a) = −N = H(b). To conclude the proof,
we then only need to show that H(σ) > −N for every σ ∈ X \ {a, b}. Since
σ 6= a, b, there exists a row r such that σ|r 6= a|r and σ|r 6= b|r. In view of
Lemma 7.3.3 (if Λ is a toric grid) and Lemma 7.3.4 (if Λ is an open grid), the
energy wastage in row r is strictly positive and thus H(σ) = U(σ) − N >
−N.
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7.4 proofs for toric grids

This section is devoted to the analysis of the energy landscape of the Widom-
Rowlison model on the toric grid graph ΛT

K,L, which leads to the proof of
Theorem 7.3.1(i) and (ii).

The section is organized as follows. First, we present a lower bound for
the communication height between the two stable states a and b, see Propo-
sition 7.4.1. We then introduce a reduction algorithm, which is then used in
Proposition 7.4.2 to build a reference path ω∗ : a → b, which shows that
the lower bound given in Proposition 7.4.1 is sharp, concluding the proof of
Theorem 7.3.1(i). Lastly, we use again the reduction algorithm to construct a
specific path from every admissible configuration σ 6= a, b to one of the two
stable states and prove in this way Theorem 7.3.1(ii).

Proposition 7.4.1 (Lower bound for Φ(a, b)). Consider the Widom-Rowlison
model on the K × L toric grid ΛT

K,L with K ≤ L and (K, L) 6= (2, 2), (2, 3). The
communication height between a and b in the corresponding energy landscape satis-
fies

Φ(a, b)− H(a) ≥

2K if K = L,

2K + 1 if K < L.
(7.11)

Proof. We need to show that in every path ω : a → b there is at least one
configuration with energy wastage greater than or equal to min{2K + 1, 2L}.
Take a path ω = (ω1, . . . , ωn) from a to b. Without loss of generality, we may
assume that there are no void moves in ω, i.e. at every step either a particle
is added or a particle is removed, so that H(ωi+1) = H(ωi) ± 1 for every
1 ≤ i ≤ n− 1. By virtue of definition (7.5), if two admissible configurations
σ, σ′ ∈ X with d(σ, σ′) = 1 are such that σ does not display a black bridge in a
certain row/column and σ′ instead does, then σ must have a quasi-bridge in
that row/column. Moreover in this case H(σ′) = H(σ) + 1, since the bridge is
created by adding a particle of type B in the only empty site of that row/col-
umn. Since a has no black bridges, while b does, at some point along the path
ω there must be an index m∗ such that configuration ωm∗ that is the first to
display a black bridge (horizontal or vertical) or a black quasi-cross. Clearly
m∗ > 2. We claim that

max{U(ωm∗−1), U(ωm∗−2)} ≥ min{2K + 1, 2L}.

We distinguish the following three cases:

(a) ωm∗ displays a black vertical bridge only;

(b) ωm∗ displays a black horizontal bridge only;

(c) ωm∗ displays a black quasi-cross.
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Note that in case (c) we do not exclude the possibility that a black quasi-cross
is created simultaneously with a black bridge.

For case (a), let c∗ be the column where ωm∗ displays the black vertical
bridge. The previous configuration ωm∗−1 along the path ω differs from ωm∗

in exactly one site, say v′ ∈ c∗. By construction, ωm∗−1(v′) = 0 and ωm∗−1
has a black vertical quasi-bridge in column c∗. In any row the configuration
ωm∗−1 cannot display

• a black bridge, by definition of m∗;

• a black quasi-bridge, since otherwise ωm∗−1 would have a black quasi-
cross together with the quasi-bridge in column c∗, violating the defini-
tion of m∗;

• a gray bridge, which cannot coexist with the black vertical quasi-bridge,
in view of Lemma 7.3.2(ii);

• a gray quasi-bridge, since the black bridge in column c∗ could not be
created with a single-site update, as illustrated in Figure 7.7.

v′

c∗

Figure 7.7: Three single-site updates are needed to create a black bridge in column c∗,
since all the three sites in the dashed box must be updated

Therefore, by Lemma 7.3.3 Uri (ωm∗−1) ≥ 2 for every i = 0, . . . , K − 1 and
hence

U(ωm∗−1) ≥
K−1

∑
i=0

Uri (ωm∗−1) ≥ 2K. (7.12)

If U(ωm∗−1) ≥ 2K + 1, then the proof is complete. Suppose instead that
U(ωm∗−1) = 2K and consider the configuration ωm∗−2 preceding ωm∗−1 in
the path ω. By construction, ωm∗−2 differs from ωm∗−1 by a single-site update,
and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.13)
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Suppose first that U(ωm∗−2) = U(ωm∗−1) − 1 = 2K − 1, which means that
configuration ωm∗−2 has exactly one more particle than configuration ωm∗−1.
The site where such a particle is added cannot be v′, otherwise the definition
of m∗ would be violated. All the other sites in column c∗ are already occupied,
hence ωm∗−2 is identical to ωm∗−1 in column c∗. In particular, ωm∗−2 has a
black quasi-bridge in column c∗ as well. The configuration ωm∗−2 cannot have
any horizontal bridge, since the existence of a black bridge would contradict
the definition of m∗ and that of a gray bridge is impossible by Lemma 7.3.2(ii).
Since U(ωm∗−2) = 2K − 1, by the pigeonhole principle there exists then at
least one row, say r′, with Ur′(ωm∗−2) = 1, which means that ωm∗−2 has a
horizontal quasi-bridge in row r′. Such a horizontal quasi-bridge cannot be
black, otherwise ωm∗−2 would have a quasi-cross, violating the definition of
m∗. By Lemma 7.3.2(iii) and the presence of a black quasi-bridge in column
c∗, a gray quasi-bridge could exist only in the row containing site v′. However,
in this case it would then be impossible to obtain a black vertical bridge in
only two single-site updates, since the minimum number of steps required is
three, as illustrated in Figure 7.7. Therefore, it is not possible that U(ωm∗−2) =
2K− 1 and, combining (7.12) and (7.13), we deduce that

U(ωm∗−2) = U(ωm∗−1) + 1 = 2K + 1,

which concludes the proof of case (a).

For case (b) we can argue as in case (a), but interchanging the role of rows
and columns, and obtain that

max{U(ωm∗−1), U(ωm∗−2)} ≥ 2L + 1.

For case (c), let r∗ and c∗ be respectively the row and the column where
the black quasi-cross lies in configuration ωm∗ and let v∗ the site where they
intersect. We distinguish two scenarios: (c1) the quasi-cross has exactly one
empty site, which has to be v∗, and (c2) the quasi-cross has exactly two empty
sites both different from v∗. Figure 7.8 illustrates these two possible scenarios.

Consider scenario (c1) first. The previous configuration ωm∗−1 along the
path ω differs from ωm∗ in exactly one site, say v′. By definition of m∗, config-
uration ωm∗−1 does not display a quasi-cross, so such a site v′ has to lie either
in row r∗, to which we refer as case (c1.i) (see Figure 7.9a), or in column c∗,
to which we refer as case (c1.ii) (see Figure 7.9b). Furthermore, note that the
quasi-cross present in ωm∗ could only have been created by the addition of a
black particle, hence ωm∗−1(v′) = 0 and ωm∗(v′) = b(v′).

In case (c1.i) ωm∗−1 is such that v′ lies in row r∗, as in Figure 7.9a. Then
Ur∗(ωm∗−1) = 2, since row r∗ has exactly two empty sites, and Ur(ωm∗−1) ≥ 2
for all rows r 6= r∗, since none of them can display a black bridge or quasi-
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r∗

c∗

v∗

(a) ωm∗ in case (c1)

r∗

c∗

v∗

(b) ωm∗ in case (c2)

Figure 7.8: Schematic representation of the two possible scenarios when the configura-
tion ωm∗ displays a black quasi-cross

r∗

c∗

v∗ v′

(a) ωm∗−1 in scenario (c1.i)

r∗

c∗

v∗

v′

(b) ωm∗−1 in scenario (c1.ii)

Figure 7.9: Schematic representation of configuration ωm∗−1 in case (c1)

bridge (by definition of m∗) and neither a gray bridge or quasi bridge (by
Lemma 7.3.2). Hence,

U(ωm∗−1) =
K−1

∑
i=0

Uri (ωm∗−1) ≥ 2K.

If U(ωm∗−1) ≥ 2K + 1, then the proof of case (c1.a) is complete. Suppose
instead that U(ωm∗−1) = 2K and consider the configuration ωm∗−2 preceding
ωm∗−1 in the path ω. By construction, the configuration ωm∗−2 differs from
ωm∗−1 by a single-site update and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.14)
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Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = 2K − 1, which means
that configuration ωm∗−2 has exactly one more particle than configuration
ωm∗−1. By virtue of the pigeonhole principle, the configuration ωm∗−2 must
have at least one row, say r′, such that Ur′(ωm∗−2) ≤ 1. In view of Lemma 7.3.3,
ωm∗−2 then has to display a bridge or a quasi-bridge in row r′, which leads to
a contradiction, since on this row ωm∗−2 cannot have

• a black horizontal bridge, by definition of m∗;

• a black horizontal quasi-bridge, since otherwise ωm∗−2 would have a
quasi-cross in row r′ and column c∗, violating the definition of m∗;

• a gray horizontal bridge or quasi-bridge, due to the presence of the black
vertical quasi-bridge in column c∗ in view of Lemma 7.3.2.

Hence, since U(ωm∗−1) = 2K, we deduce from (7.14) that

U(ωm∗−2) = 2K + 1,

which concludes the proof of case (c1.i).
In case (c1.ii) we can argue similarly to case (c1.i), by interchanging the role

of rows and columns, and obtain that

max{U(ωm∗−1), U(ωm∗−2)} ≥ 2L + 1 ≥ 2K + 1.

Consider now case (c2). We distinguish three scenarios, illustrated in Fig-
ure 7.10, depending where the last particle (that created the quasi-cross in
configuration ωm∗ ) has been added: (c2.i) in a site v′ 6= v∗ in row r∗ or (c2.ii)
in a site v′ 6= v∗ in column c∗ or (c2.iii) in the site v′ = v∗.

In case (c2.i), let c′ be the column where site v′ lies. We first notice that
configuration ωm∗−1 cannot have a vertical gray bridge or quasi-bridge in
column c′, since otherwise it would not be possible to add a black particle in
site v′, see Figure 7.10a.

Moreover ωm∗−1 has no horizontal black quasi-bridges, since any of them
would create, together with column c∗, a quasi-cross, violating the definition
of m∗.

Suppose first that configuration ωm∗−1 has a vertical black quasi-bridge in
column c′, as in Figure 7.11, which means that

Uc′(ωm∗−1) = 1. (7.15)

By virtue of Lemma 7.3.2, there cannot be any horizontal gray bridges or quasi-
bridges. Furthermore, ωm∗−1 has no horizontal black quasi-bridges, which
would create a quasi-cross together with column c′, violating again the def-
inition of m∗. In view of Lemma 7.3.3, Ur(ωm∗−1) ≥ 2 for every row r and
thus

U(ωm∗−1) ≥ 2K.
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r∗

c∗

v∗ v′

(a) ωm∗−1 in scenario (c2.i)

r∗

c∗

v∗

v′

(b) ωm∗−1 in scenario (c2.ii)

r∗

c∗

v∗ = v′

(c) ωm∗−1 in scenario (c2.iii)

Figure 7.10: Schematic representation of the three possible scenarios in case (c2)

r∗

c∗ c′

v∗ v′

Figure 7.11: Schematic representation of configuration ωm∗−1 in scenario (c2.i) with a
quasi-bridge in column c′
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If U(ωm∗−1) ≥ 2K + 1, then the proof is complete. Suppose instead that
U(ωm∗−1) = 2K and consider the configuration ωm∗−2 preceding ωm∗−1 in
the path ω. By construction, ωm∗−2 differs from ωm∗−1 by a single-site update
and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.16)

Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = 2K − 1, which means
that configuration ωm∗−2 has exactly one more particle than configuration
ωm∗−1. By virtue of the the pigeonhole principle, the configuration ωm∗−2

must have at least one row, say r′, such that Ur′(ωm∗−2) ≤ 1. In view of
Lemma 7.3.3, ωm∗−2 has then to display a bridge or a quasi-bridge in row
r′. If r′ = r∗, then ωm∗−2 would have a black quasi-cross or a black bridge,
violating the definition of m∗. If r′ 6= r∗, then we also obtain a contradiction,
since in row r′ ωm∗−2 cannot have

• a black bridge, by definition of m∗;

• a black quasi-bridge, since otherwise ωm∗−2 would have a quasi-cross in
row r′ and column c∗, violating the definition of m∗;

• a gray bridge or quasi-bridge, due to the presence of a black quasi-
bridge in column c∗ and Lemma 7.3.2.

Hence, U(ωm∗−2) 6= 2K− 1, and from (7.16) it follows that

U(ωm∗−2) = 2K + 1.

Suppose now that configuration ωm∗−1 does not have a vertical black quasi-
bridge in column c′. By virtue of Lemma 7.3.3, Uc′(ωm∗−1) ≥ 2. We first
consider the case where

Uc′(ωm∗−1) = 2, (7.17)

so that Uc′(ωm∗) = 1, which means that ωm∗ has an additional quasi-cross,
namely the one lying in row r∗ and column c′, see Figure 7.12. In this case, we
can conclude the proof by looking at this other quasi-cross and arguing as in
sub-case (3) of scenario (c2.iii), which will be presented later.

Therefore, in view of (7.15) and (7.17), we can assume

Uc′(ωm∗−1) ≥ 3. (7.18)

We then distinguish three sub-cases, depending on whether ωm∗−1 has (1) no
vertical quasi-bridges (see Figure 7.13a) or (2) at least one gray vertical quasi-
bridge and no black vertical quasi-bridges (see Figure 7.13b) or (3) at least one
black vertical quasi-bridge (see Figure 7.14).
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r∗

c∗ c′

v∗ v′
r∗

c∗ c′

v∗ v′

Figure 7.12: Schematic representation of configuration ωm∗ with two quasi-crosses

c′c′′

r∗

c∗

v∗ v′

(a) ωm∗−1 in sub-case (1)

c′c′′

r∗

c∗

v∗ v′

(b) ωm∗−1 in sub-case (2)

Figure 7.13: Schematic representation of the sub-cases (1) and (2) of scenario (c2.i)
when condition (7.18) is satisfied

In sub-case (1), ωm∗−1 has no vertical quasi-bridges except the one in col-
umn c∗, so by Lemma 7.3.3 Uc(om∗−1) ≥ 2 for every c 6= c∗. This fact and (7.18)
yield

U(ωm∗−1) =
L−1

∑
j=0

Ucj(ωm∗−1) ≥ 2L,

and the proof of sub-case (1) is completed.

In sub-case (2), ωm∗−1 can have only one vertical gray quasi-bridge and it
must lie in column c′′ by Lemma 7.3.2, see Figure 7.13b. Lemma 7.3.3 gives
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Uc′′(ωm∗−1) = 1. All the columns c 6= c∗, c′′, c′′′ do not display a vertical quasi-
bridge, so Uc(ωm∗−1) ≥ 2 by Lemma 7.3.3. These facts and (7.18) yield

U(ωm∗−1) =
L−1

∑
j=0

Ucj(ωm∗−1) ≥ 2L− 1.

If U(ωm∗−1) ≥ 2L, the proof is complete. Suppose instead that U(ωm∗−1) =
2L− 1 and consider the configuration ωm∗−2 preceding ωm∗−1 in the path ω.
By construction, ωm∗−2 differs from ωm∗−1 by a single-site update and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.19)

Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = 2L− 2, which means
that configuration ωm∗−2 has exactly one more particle than configuration
ωm∗−1. Such a particle cannot lie in site v′, otherwise ωm∗−2 would have a
quasi-cross, violating the definition of m∗. Furthermore, by virtue of the the
pigeonhole principle, the configuration ωm∗−2 must have at least two horizon-
tal quasi-bridges or one horizontal bridge, which cannot exists neither black
or gray by Lemma 7.3.2 due to the presence of the black quasi-bridge in col-
umn c∗ and the gray quasi-bridge in column c′′. Hence, U(ωm∗−2) 6= 2L− 2,
and from (7.19) it follows that

U(ωm∗−2) = 2L,

which completes the proof of sub-case (2).
Consider now sub-case (3), which is illustrated in Figure 7.14.
Since none of the rows can display a bridge or a quasi-bridge without

contradicting Lemma 7.3.2 or violating the definition of m∗, it follows from
Lemma 7.3.3 that

U(ωm∗−1) ≥ 2K.

If U(ωm∗−1) ≥ 2K+ 1, the proof of the sub-case is complete. Consider now the
remaining case, namely U(ωm∗−1) = 2K. Consider the configuration ωm∗−2
preceding ωm∗−1 in the path ω. By construction, the configuration ωm∗−2 dif-
fers from ωm∗−1 by a single-site update and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.20)

Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = 2K− 1, so that config-
uration ωm∗−2 has exactly one more particle than configuration ωm∗−1 (in a
site which cannot be v′). Thanks to the pigeonhole principle, the configuration
ωm∗−2 must have at least one row with energy wastage strictly less than 2. On
such a row ωm∗−2 then has to display a bridge or a quasi-bridge, thanks to
Lemma 7.3.3.
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c′c′′

r∗

c∗

v∗ v′

Vertical black quasi-bridge in a column differ-
ent from c′′ with empty site aligned with that
of c∗

c′c′′

r∗

c∗

v∗ v′

Vertical black quasi-bridge in a column differ-
ent from c′′ with empty site not aligned with
that of c∗

c′c′′

r∗

c∗

v∗ v′

Vertical black quasi-bridge in column c′′

Figure 7.14: Schematic representation of ωm∗−1 in sub-case (3) of scenario (c2.i) when
condition (7.18) is satisfied

Since ωm∗−2 has all the vertical black quasi-bridges that ωm∗−1 has, it is
impossible for ωm∗−2 to display

• a black horizontal bridge, by definition of m∗;

• a black horizontal quasi-bridge, since otherwise it would create a quasi-
cross together with the vertical quasi-bridge in column c∗, violating the
definition of m∗;

• a gray horizontal bridge by Lemma 7.3.2, due to the presence of the
vertical black quasi-bridge in column c∗, see Figure 7.14;

• a gray horizontal quasi-bridge, since every row has either a black particle
or two empty sites, see Figure 7.14.
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Hence, U(ωm∗−2) 6= 2K− 1, and from (7.20) it follows that

U(ωm∗−2) = 2K + 1,

which completes the proof of sub-case (3).
In scenario (c2.ii), the configuration ωm∗−1 preceding ωm∗ along the path

ω cannot have any vertical quasi-bridge, since it would create a quasi-cross
together with row r∗. We distinguish two sub-cases, depending on whether
ωm∗−1 has (1) no gray vertical quasi-bridges, see Figure 7.15a, or (2) at least
one gray vertical quasi-bridge, see Figure 7.15b.

r∗

c∗ c′

v∗

v′

(a) ωm∗−1 in sub-case (1)

r∗

c∗ c′

v∗

v′

(b) ωm∗−1 in sub-case (2)

Figure 7.15: Schematic representation of the two sub-cases in scenario (c2.ii)

In sub-case (1), by Lemma 7.3.3 Uc(ωm∗−1) ≥ 2 in every column c and hence

U(ωm∗−1) ≥ 2L.

In sub-case (2), it is clear that there can be only one gray vertical quasi-bridge,
which intersects row r∗ in the empty site different from v∗. By looking at the
energy wastage in columns and arguing similarly to the final part of sub-case
(2) of scenario (c2.i), we can conclude that

max{U(ωm∗−1), U(ωm∗−2)} ≥ 2L.

Consider now scenario (c2.iii). By definition of m∗, ωm∗−1 does not have any
black bridge and by Lemma 7.3.3 it cannot have any gray bridge either. We
distinguish three sub-cases, depending on whether ωm∗−1 has (1) no vertical
quasi-bridges, see Figure 7.16a, (2) gray vertical quasi-bridges, but no black
vertical quasi-bridges, see Figure 7.16b, or (3) black vertical quasi-bridges, see
Figure 7.17.

In sub-case (1), by Lemma 7.3.3 Uc(ωm∗−1) ≥ 2 in every column c and hence

U(ωm∗−1) ≥ 2L.
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In sub-case (2), ωm∗−1 can have only one vertical gray quasi-bridge and it
must lie in column c′ by Lemma 7.3.2, see Figure 7.16b. Lemma 7.3.3 gives
Uc′(om∗−1) = 1. All the columns c 6= c′ do not display a vertical quasi-bridge,
so Uc(om∗−1) ≥ 2 by Lemma 7.3.3. These facts and (7.18) yield

U(ωm∗−1) =
L−1

∑
j=0

Ucj(om∗−1) ≥ 2L− 1.

If K < L, then U(ωm∗−1) ≥ 2L− 1 ≥ 2K + 1 and the proof of sub-case (2) is
complete. If K = L and U(ωm∗−1) ≥ 2L, then the proof is also complete. Sup-
pose instead that K = L and U(ωm∗−1) = 2L− 1 = 2K − 1 and consider the
configuration ωm∗−2 preceding ωm∗−1 in the path ω. By construction, ωm∗−2
differs from ωm∗−1 by a single-site update and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.21)

Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = 2K − 2, which means
that configuration ωm∗−2 has exactly one more particle than configuration
ωm∗−1. By virtue of the the pigeonhole principle, the configuration ωm∗−2
must have at least two horizontal quasi-bridges or one horizontal bridge,
which cannot exists neither black or gray by Lemma 7.3.2 due to the presence
of the black quasi-bridge in column c∗ and the gray quasi-bridge in column
c′. Hence, U(ωm∗−2) 6= 2K − 1, and from the fact that U(ωm∗−1) = 2K − 1
and (7.21) it follows that

U(ωm∗−2) = 2K,

which completes the proof of sub-case (2).

r∗

c∗ c′

v∗

(a) ωm∗−1 in sub-case (1)

r∗

c∗ c′

v∗

(b) ωm∗−1 in sub-case (2)

Figure 7.16: Schematic representation of sub-cases (1) and (2) in scenario (c2.iii)

In sub-case (3), illustrated in Figure 7.17 the presence of a vertical black
quasi-bridge in a column c′′ 6= c∗ means that there are no horizontal quasi-
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bridges in ωm∗−1. Indeed the presence of a horizontal black quasi-bridge to-
gether with the quasi-bridge in column c′′ would create a quasi-cross, violat-
ing the definition of m∗. Furthermore, it is impossible for ωm∗−1 to have a
horizontal gray quasi-bridge, since every row has either a black particle or
two empty sites, see Figure 7.17.

r∗

c∗ c′ = c′′

v∗

ωm∗−1 with the empty site of column c′ in
row r∗

r∗

c∗ c′ c′′

v∗

ωm∗−1 with the empty site of column c′

aligned with that of column c∗

r∗

c∗ c′′

v∗

c′

ωm∗−1 with the empty site of column c′ not in
row r∗ and not aligned with that of column
c∗

Figure 7.17: Schematic representation of configuration ωm∗−1 in sub-case (3) of (c2.iii)

Since trivially ωm∗−1 displays no bridges either, by applying Lemma 7.3.3
to the rows, we get

U(ωm∗−1) ≥ 2K.

If U(ωm∗−1) ≥ 2K + 1, then the proof of sub-case (3) is complete. Suppose
instead that U(ωm∗−1) = 2K and consider the configuration ωm∗−2 preceding
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ωm∗−1 in the path ω. By construction, the configuration ωm∗−2 differs from
ωm∗−1 by a single-site update and thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.22)

Consider the case where U(ωm∗−2) = U(ωm∗−1)− 1 = 2K− 1, so that configu-
ration ωm∗−2 has exactly one more particle than configuration ωm∗−1. Thanks
to the pigeonhole principle, the configuration ωm∗−2 must have at least one
row, say r′ with energy wastage strictly less than 2. On such a row ωm∗−2 then
has to display a bridge or a quasi-bridge, thanks to Lemma 7.3.3. This leads
to a contradiction, since ωm∗−2 cannot have in row r′

• a black bridge, by definition of m∗;

• a black quasi-bridge, since otherwise ωm∗−2 would have a quasi-cross in
row r′ and column c′′, violating the definition of m∗;

• a gray bridge or quasi-bridge, since every row has either a black particle
or two empty sites, see Figure 7.17.

Hence, by (7.22) we obtain that

U(ωm∗−2) = 2K + 1.

Reduction algorithm for toric grids

We now describe an iterative procedure, to which we will refer as reduction
algorithm that builds a path ω from a suitable initial configuration σ to the
stable state b. We require that the initial configuration σ has no gray particles
in the first vertical stripe C1 (or equivalently in the first two columns, since
C1 = c0 ∪ c1), i.e.

∑
v∈C1

1{σ(v)=a(v)} = 0. (7.23)

The desired path ω is built as the concatenation of L paths ω(1), . . . , ω(L). For
every j along path ω(j) the particles agreeing with a are removed from j+ 1-th
column and simultaneously the j-th column is progressively changed to agree
with b. We will show that all configurations visited by ω are admissible and
that the maximum energy achieved along the path ω is H(σ) + 1. Path ω(j)

goes from σj to σj+1, where we recursively define σ1 = σ and

σj+1(v) =



σj(v) if v ∈ V \ (cj ∪ cj+1),

σj(v) if v ∈ cj+1 and σ(v) = b(v),

b(v) if v ∈ cj,

0 if v ∈ cj+1 and σ(v) = a(v),
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for j = 1, . . . , L. Clearly, due to the periodic boundary conditions, the col-
umn indices L and 0 should be identified. It can be checked that indeed
σL+1 = b. We now describe in detail how to construct each of the paths ω(j)

for j = 1, . . . , L. We build a path ω(j) = (ω
(j)
1 , . . . , ω

(j)
2K+1) of length 2K + 1

(but possibly with void moves), with ω
(j)
1 = σj and ω

(j)
2K+1 = σj+1. We repeat

iteratively the following procedure for every i = 1, . . . , 2K:

• If i ≡ 1 (mod 2), consider site v = (j + 1, (i− 1)/2).

- If ω
(j)
i (v) = 0 or ω

(j)
i (v) = b(v), we set ω

(j)
i+1(v) = ω

(j)
i (v).

- If ω
(j)
i (v) = a(v), then we remove the gray particle in site v from

configuration ω
(j)
i , obtaining in this way the configuration ω

(j)
i+1

such that ω
(j)
i+1(v) = 0 and thus H(ω

(j)
i+1) = H(ω

(j)
i ) + 1.

• If i ≡ 0 (mod 2), consider site v = (j, i/2− 1).

- If ω
(j)
i (v) = b(v), we set ω

(j)
i+1(v) = ω

(j)
i (v) = b(v).

- If ω
(j)
i (v) = 0, then we add a black particle in site v, obtaining

in this way a new configuration ω
(j)
i+1 such that ω

(j)
i+1(v) = b(v).

This configuration is admissible because by construction there are
no gray particles in any neighboring sites of v. In particular, the
site at its right (that is site v + (1, 0)) has possibly been emptied
at the previous step, if there was a gray particle in it. Moreover,
H(ω

(j)
i+1) = H(ω

(j)
i )− 1.

Note that for the last path ω(L) all steps corresponding to odd values of i are
void (there are no gray particles in c0 in configuration σ by virtue of (7.23)).
For every j = 1, . . . , L, the configurations σj and σj+1 and the path ω(j) are
constructed in such a way that

H(σj+1) ≤ H(σj),

since the number of black particles added in column cj is greater than or equal
to the number of gray particles removed in column cj+1. Moreover,

Φω(j) ≤ H(σj) + 1,

since along the path ω(j) every particle removal (if any) is always followed
by a particle addition. These two properties imply that the path ω : σ → b
created by concatenating ω(1), . . . , ω(L) satisfies Φω ≤ H(σ) + 1, and thus
Φ(σ, b)− H(σ) ≤ 1.

Note that a similar procedure can also be used to construct a path with
target configuration the stable state a, by inverting the role of gray and black
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particles in the reduction algorithm we just described. It is possible to reduce
a configuration σ to a using this procedure if

∑
v∈C1

1{σ(v)=b(v)} = 0, (7.24)

that is when σ has no black particles in the first vertical stripe.
We now show how the reduction algorithm can be used to build a refer-

ence path between the two stable states. The maximum energy barrier along
such a reference path matches the right-hand side of inequality (7.11), proving
Theorem 7.3.1(i).

Proposition 7.4.2 (Reference path from a to b). Consider the K × L toric grid
graph ΛT

K,L. There exists a path ω∗ : a→ b in X such that

Φω∗ − H(a) =

2K if K = L,

2K + 1 if K < L.

Proof. We distinguish two cases, depending on whether (a) K = L and (b)
K < L.

Consider case (a) first. We will show that there exists a path ω∗ : a → b
such that Φω∗ − H(a) = 2K = 2L. If K = 2, ω∗ is simply the path that grad-
ually removes all the four gray particles that a has and then add four black
particles one by one; one can immediately check that Φω∗ − H(a) = 4 = 2K.
We henceforth assume that K ≥ 3. We construct the path ω∗ as concatenation
of three paths, which we denote by ω(1), ω(2) and ω(3), respectively.

We first build a path ω(1) of length 4(K− 1) + 3 as follows. First remove in
two steps the gray particles in sites (0, 0) and (0, K − 1), obtaining configura-
tion ω

(1)
3 with energy H(ω(1)) = H(a) + 2, as illustrated in Figure 7.18. Then,

iteratively define configuration ω
(1)
4+i from ω

(1)
4+i−1 for i = 0, . . . , 4(K − 2) + 3

as follows:

• If i ≡ 0 (mod 4), then ω
(1)
4+i−1 is the configuration obtained from ω

(1)
4+i

by removing the gray particle in site (L− 1, b i
4c).

• If i ≡ 1 (mod 4), then ω
(1)
4+i−1 is the configuration obtained from ω

(1)
4+i

by removing the gray particle in site (1, b i
4c).

• If i ≡ 2 (mod 4), then ω
(1)
4+i−1 is the configuration obtained from ω

(1)
4+i

by removing the gray particle in site (0, b i
4c+ 1).

• If i ≡ 3 (mod 4), then ω
(1)
4+i−1 is the configuration obtained from ω

(1)
4+i

by adding a black particle in site (0, b i
4c).

Note that the move corresponding to i = 4(K− 2) + 2 is void, since there is no
particle in site (0, K − 1) to be removed, having been removed at the second
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ω
(1)
3 ω

(1)
7

ω
(1)
11

σ′

Figure 7.18: Some snapshots of the path ω(1) for ΛT
8,8

step of ω(1). Denote by σ′ := σ
(1)
4(K−1)+3 the configuration obtained by this

procedure, which has energy wastage

U(σ′) = H(σ′)− H(a) = 2K− 1.

The way the path ω(1) is built guarantees that

Φω(1) − H(a) = max
η∈ω(1)

H(η)− H(a) = 2K. (7.25)

If K = 3, the second path ω(2) is not needed: Consider the configuration σ′′′

obtained from σ′ by removing the gray particle in the site (1, K− 1) and thus
H(σ′′′) = H(σ′) + 1. The configuration σ′′′ satisfies the initial condition (7.23),
so we can use the reduction algorithm to build the path ω(3) from σ′′′ to b.
The concatenation of ω(1) and ω(3) yields a path ω∗ from a to b such that

Φω∗ − H(a) = 6 = 2K.
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ω
(3)
21 ω

(2)
33

ω
(2)
34 σ′′ = ω

(2)
36

σ′′′

Figure 7.19: Some snapshots of the path ω(2) for ΛT
8,8

Assume now that K ≥ 4. In this case, we build a path ω(2) of length K(K−
4)+ 4, which gradually enlarges the quasi-bridge (that configuration σ′ has) to
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obtain a configuration, say σ′′, which has a “black rhombus” (see Figure 7.19)
and energy wastage

U(σ′′) = H(σ′′)− H(a) = 2K− 2.

It is possible to construct the path ω(2) by alternatively removing a (gray)
particle and adding immediately after a (black) particle, so that

Φω(2) − H(σ′) = max
η∈ω(2)

H(η)− H(σ′) = 1. (7.26)

Consider now configuration σ′′′ obtained from σ′′ by removing the gray par-
ticle in the site (1, K − 1) and thus H(σ′′′) = H(σ′′) + 1. The configuration
σ′′′ satisfies the initial condition (7.23), so we can use the reduction algorithm
to build the path ω(3) from σ′′′ to b. As illustrated earlier, this procedure
guarantees that

Φω(3) − H(σ′′′) = max
η∈ω(3)

H(η)− H(σ′′′) = 1. (7.27)

In view of (7.25)-(7.27), the path ω∗ obtained by concatenating ω(1), ω(2) and
ω(3) is such that

Φω∗ − H(a) = max
η∈ω∗

H(η)− H(a) = 2K.

In case (b), where K < L, we will show that there exists a path ω∗ : a → b
such that Φω∗ − H(a) = 2K + 1. We construct such a path ω∗ as the con-
catenation of two shorter paths, ω(1) and ω(2), where ω(1) : a → σ∗ and
ω(2) : σ∗ → b for a suitable configuration σ∗ ∈ X . The configuration σ∗ is
the admissible configuration that differs from a only in the sites of the first
vertical stripe (see also Figure 7.20):

σ∗(v) :=

a(v) if v ∈ V \ C1,

0 if v ∈ C1.

The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
2K+1), with ω

(1)
1 = a and ω

(1)
2K+1 = σ∗ can be

constructed as follows. For i = 1, . . . , 2K, at step i we remove from configu-
ration ω

(1)
i the particle in site (b i

K c, i − K · b i
K c), increasing the energy by 1

and obtaining in this way configuration ω
(1)
i+1. Therefore the configuration σ∗

is such that H(σ∗)− H(a) = 2K and

Φω(1) = H(σ∗) = H(a) + 2K. (7.28)

The second path ω(2) : σ∗ → b is then constructed by means of the reduction
algorithm presented before, which can be used since the configuration σ∗

satisfies condition (7.23). The algorithm guarantees that

Φω(2) = H(σ∗) + 1. (7.29)
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The concatenation of ω(1) and ω(2) yields a path ω∗ : a → b, that, in view
of (7.28) and (7.29), satisfies Φω∗ = H(a) + 2K + 1.

a σ∗

ω
(2)
2 ω

(2)
16

ω
(2)
18

b

Figure 7.20: Some snapshots of the reference path ω∗ for ΛT
8,9
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We will now use again the reduction algorithm for toric grids to prove
Theorem 7.3.1(ii).

Proof of Theorem 7.3.1(ii). We want to show that for every admissible configu-
ration σ 6= a, b, the following inequality holds

Φ(σ, {a, b})− H(σ) < 2K.

Let g be the number of gray particles that the configuration σ has in the first
vertical stripe, that is

g := ∑
v∈C1

1{σ(v)=a(v)}. (7.30)

We distinguish two scenarios, depending on whether (a) g ≥ 2K − 1 or (b)
g < 2K − 1. In scenario (a) we will show that Φ(σ, a)− H(σ) ≤ 1, while in
scenario (b) we will prove that Φ(σ, b)− H(σ) < 2K.

Consider scenario (a) first, where σ has at least 2K− 1 gray particles in the
first vertical stripe. This means that σ has no black particles in the first vertical
stripe and is then a suitable initial configuration for the reduction algorithm
with target state a, since condition (7.24) is satisfied. Using this procedure, we
obtain a path ω such that Φ(σ, a) − H(σ) ≤ 1, since at every step where a
black particle is (possibly) removed, at the next step a gray particle is added.

As far as scenario (b) is concerned, let σ∗ ∈ X be the configuration obtained
from σ by removing all the g gray particles in the first vertical stripe, namely

σ∗(v) :=


σ(v) if v ∈ V \ C1,

σ(v) if v ∈ C1 and σ(v) = b(v),

0 if v ∈ C1 and σ(v) = a(v).

Clearly H(σ∗)− H(σ) = g. We construct a path ω(1) = (ω
(1)
1 , . . . , ω

(1)
g+1) from

ω
(1)
1 = σ to ω

(1)
g+1 = σ∗ as follows. For i = 1, . . . , g, at step i we remove the

first gray particle in lexicographic order from configuration ω
(1)
i , obtaining in

this way ω
(1)
i+1, which is such that H(ω

(1)
i+1) = H(ω

(1)
i ) + 1. Thus,

Φω(1) = H(σ∗) = H(σ) + g. (7.31)

Note that the configuration σ∗ satisfies condition (7.23), since it has no gray
particles in the first vertical stripe C1. Thus, σ∗ is a suitable initial config-
uration for the reduction algorithm described before, which we can use to
construct a path ω(2) : σ∗ → b such that

Φω(2) ≤ H(σ∗) + 1. (7.32)

The concatenation of paths ω(1) and ω(2) yields a new path ω : σ → b that,
in view of (7.31) and (7.32), satisfies inequality Φω ≤ H(σ) + g + 1. Therefore,
using (7.30), we get

Φ(σ, b)− H(σ) ≤ g + 1 < 2K.
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7.5 proofs for open grids

In this section we prove the structural properties for the energy landscape
of the Widom-Rowlison model on the open grid graph ΛO

K,L given in Theo-
rem 7.3.1(iii) and (iv).

We first prove a lower bound for the communication height between the two
stable states a and b, see Proposition 7.5.1 below. We then introduce a reduc-
tion algorithm, similar to the one described in the previous section. Using this
algorithm, we exhibit in Proposition 7.5.2 a reference path from a to b that at-
tains that lower bound, completing in this way the proof of Theorem 7.3.1(iii).
Lastly, we use again the reduction algorithm to construct a specific path from
every configuration σ 6= a, b to the subset {a, b} and prove Theorem 7.3.1(iv).

Proposition 7.5.1 (Lower bound for Φ(a, b)). Consider the Widom-Rowlison
model on the K × L open grid ΛO

K,L. The communication height between a and b
in the corresponding energy landscape satisfies

Φ(a, b)− H(a) ≥ min{K, L}+ 1.

Proof. Without loss of generality, we may assume that K ≤ L. We need to show
that in every path ω : a → b there is at least one configuration with energy
wastage greater than or equal to K + 1. Take a path ω = (ω1, . . . , ωn) ∈ Ωa,b.
Without loss of generality, we may assume that there are no void moves in
ω, i.e. at every step either a particle is added or a particle is removed, so that
H(ωi+1) = H(ωi)± 1 for every 1 ≤ i ≤ n− 1. Since a has no black bridges,
while b does, at some point along the path ω there must be a configuration
ωm∗ that is the first to display a black vertical bridge or a black horizontal
bridge or both simultaneously (i.e. a black cross). We claim that

max{U(ωm∗−1), U(ωm∗−2)} ≥ min{K, L}+ 1.

We distinguish the following three cases:

(a) ωm∗ displays a black vertical bridge only;

(b) ωm∗ displays a black horizontal bridge only;

(c) ωm∗ displays a black cross.

These three cases cover all the possibilities, since the addition of a single par-
ticle cannot create two parallel bridges simultaneously.

For case (a), we claim that the energy wastage in every row is greater than
or equal to one. Suppose by contradiction that there exists a row r∗ such that
Ur∗(ωm∗) = 0. Then, by Lemma 7.3.4, ωm∗ would have a bridge in row r∗. Such
a bridge cannot be black, since otherwise ωm∗ would have a black cross, and
neither gray, which by Lemma 7.3.2 could not coexist with the black vertical
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bridge that ωm∗ has, contradiction. Hence Ur(ωm∗) ≥ 1 for every row r and
thus

U(ωm∗) ≥
K−1

∑
i=0

Uri (ωm∗) ≥ K.

The previous configuration ωm∗−1 along the path ω differs from ωm∗ in exactly
one site v∗, which is such that ωm∗−1(v∗) = 0 and ωm∗(v∗) = b(v∗). Hence
U(ωm∗−1) = U(ωm∗) + 1 and therefore

U(ωm∗−1) ≥ K + 1.

For case (b) we can argue as in case (a), but interchanging the role of rows
and columns, and obtain that

U(ωm∗−1) ≥ L + 1.

For case (c), let r∗ and c∗ be respectively the row and the column where the
black cross lies in configuration ωm∗ . The previous configuration ωm∗−1 along
the path ω differs from ωm∗ in exactly one site, denoted by v∗, which has
to be the site where row r∗ and column c∗ intersect (otherwise configuration
ωm∗−1 would have a black bridge, violating the definition of m∗). Furthermore,
Uc∗(ωm∗−1) ≥ 1, since ωm∗−1(v∗) = 0 by definition of m∗. We claim that the
energy wastage of ωm∗−1 in all columns different from c∗ is also greater than
or equal to one, namely

Uc(ωm∗−1) ≥ 1 ∀ c 6= c∗. (7.33)

These inequalities follow from Lemma 7.3.4 after noticing that in each of these
L− 1 columns configuration ωm∗−1 cannot display

• a black vertical bridge, by definition of m∗;

• a gray vertical bridge, since every column c 6= c∗ has at least one black
particle (at the intersection with row r∗).

Summing the energy wastage of all columns we get

U(ωm∗−1) ≥
L−1

∑
j=0

Ucj(ωm∗−1) ≥ L. (7.34)

If U(ωm∗−1) ≥ L + 1, then the proof is complete. If instead U(ωm∗−1) = L,
consider the configuration ωm∗−2 preceding ωm∗−1 in the path ω. By construc-
tion, the configuration ωm∗−2 differs from ωm∗−1 by a single-site update and
thus

U(ωm∗−2) = U(ωm∗−1)± 1. (7.35)

Consider the case where U(ωm∗−2) = U(ωm∗−1) − 1 = L − 1. In this case,
thanks to the pigeonhole principle, the configuration ωm∗−2 must have either
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at least one column c with Uc(ωm∗−2) = 0. By Lemma 7.3.4, ωm∗−2 must have
a bridge in this column, see Figure 7.21. However it cannot be a black bridge,
due to the definition of m∗, and neither a gray bridge, since it would not be
possible to obtain a black bridge in row r∗ (which ωm∗ has) with only two
single-site updates, since at least five are needed, as shown in Figure 7.21.

r∗

c∗

v∗

Figure 7.21: The dashed line encloses the five sites that should be updated if configu-
ration ωm∗−2 had a gray bridge in column c

Therefore, it is not possible that U(ωm∗−2) = U(ωm∗−1)− 1 = L− 1, and (7.35)
yields that

U(ωm∗−2) = U(ωm∗−1) + 1 = L + 1.

Reduction algorithm for open grids

We now present an iterative procedure similar to that for toric grids that con-
structs a path ω from an initial suitable configuration σ to the stable state b.
Thanks to the free boundary conditions of ΛO

K,L, the condition on the initial
configuration σ is weaker than (7.23). Indeed, we require that σ should not
have gray particles in the first column c0 only, i.e.

∑
v∈c0

1{σ(v)=a(v)} = 0. (7.36)

The path ω : σ → b is built as the concatenation of L paths ω(1), . . . , ω(L).
Path ω(j) goes from σj to σj+1, where we recursively define σ1 = σ and

σj+1(v) =



σj(v) if v ∈ V \ (cj ∪ cj+1),

σj(v) if v ∈ cj+1 and σ(v) = b(v),

a(v) if v ∈ cj,

0 if v ∈ cj+1 and σ(v) = a(v),
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for j = 1, . . . , L. It can be checked that indeed σL+1 = b. We now describe in
detail how to construct each of the paths ω(j) for j = 1, . . . , L. We build a path
ω(j) = (ω

(j)
1 , . . . , ω

(j)
2K+1) of length 2K + 1 (but possibly with void moves), with

ω
(j)
1 = σj and ω

(j)
2K+1 = σj+1. We repeat iteratively the following procedure for

every i = 1, . . . , 2K:

• If i ≡ 1 (mod 2), consider site v = (j + 1, (i− 1)/2).

- If ω
(j)
i (v) = 0 or ω

(j)
i (v) = b(v), we set ω

(j)
i+1(v) = ω

(j)
i (v).

- If ω
(j)
i (v) = a(v), then we remove the gray particle in site v from

configuration ω
(j)
i , obtaining in this way configuration ω

(j)
i+1 with

H(ω
(j)
i+1) = H(ω

(j)
i ) + 1.

• If i ≡ 0 (mod 2), consider site v = (j, i/2− 1).

- If ω
(j)
i (v) = b(v), we set ω

(j)
i+1(v) = ω

(j)
i (v) = b(v).

- If ω
(j)
i (v) = 0, then we add a black particle in site v, obtaining in

this way a new configuration ω
(j)
i+1 such that ω

(j)
i+1(v) = a(v). This

configuration is admissible because by construction there are no
gray particles in any neighboring sites of v. In particular, the site
at its right (that is v + (1, 0)) has possibly been emptied at the pre-
vious step, if there was a gray particle in it. Moreover, H(ω

(j)
i+1) =

H(ω
(j)
i )− 1

Note that for the last path ω(L) all steps corresponding to odd values of i are
void, since there is no column cL.

In words, the reduction algorithm alternately removes a gray particle (if
any) and adds a black particle, progressively column by column. For every
j = 1, . . . , L, the configurations σj and σj+1 and the path ω(j) are constructed
in such a way that

H(σj+1) ≤ H(σj),

since the number of black particles added in column cj is greater than or equal
to the number of gray particles removed in column cj+1. Moreover,

Φω(j) ≤ H(σj) + 1,

since along the path ω(j) every particle removal (if any) is always followed
by a particle addition. These two properties imply that the path ω : σ → b
created by concatenating ω(1), . . . , ω(L) satisfies

Φω ≤ H(σ) + 1,

which shows that Φ(σ, b)− H(σ) ≤ 1.
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We remark that, with a few minor tweaks, we can define a similar reduc-
tion algorithm that builds a path ω from a configuration σ to the stable state a
such that Φω ≤ H(σ) + 1. In this scenario, however, the initial configuration σ
should satisfy an initial condition analogous to (7.36), namely it should have
no black particles in the first column.

The reduction algorithm will now be used in the next proposition to build a
reference path from a to b, which shows that Φ(a, b)−H(a) ≤ min{K, L}+ 1.

Proposition 7.5.2 (Reference path). There exists a path ω∗ : a → b in X such
that

Φω∗ − H(a) = min{K, L}+ 1.

Proof. Without loss of generality, we may assume K ≤ L and show that there
exists a path ω∗ : a → b such that Φω∗ − H(a) = K + 1. We describe just
briefly how the reference path ω∗ is constructed, since it is very similar to the
one given in case (b) of the proof of Proposition 7.4.2, see Figure 7.22. Also in
this case, the path ω∗ is the concatenation of two shorter paths, ω(1) and ω(2),
where ω(1) : a → σ∗ and ω(2) : σ∗ → b, where σ∗ is the configuration that
differs from a only by having all sites of the leftmost column empty, i.e.

σ∗(v) :=

a(v) if v ∈ V \ c0,

0 if v ∈ c0.

The path ω(1) consists of K steps, at each of which we remove the first par-
ticle in c0 in lexicographic order from the previous configuration. The last
configuration is precisely σ∗, which has energy H(σ∗) = H(a) + K, and, triv-
ially, Φω(1) = H(a) + K. The second path ω(2) : σ∗ → b is then constructed by
means of the reduction algorithm, which can be used since configuration σ∗ is
a suitable initial configuration for it, satisfying condition (7.36). The algorithm
guarantees that Φω(2) = H(σ∗) + 1 and thus the concatenation of the two
paths ω(1) and ω(2) yields a path ω∗ with Φω∗ = H(a) + K + 1 as desired.

Proof of Theorem 7.3.1(iii). It is an immediate consequence of the lower bound
for Φ(a, b) in Proposition 7.5.1 and the matching upper bound that follows
from Proposition 7.5.2.
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a σ∗

ω
(2)
2 ω

(2)
16

ω
(2)
18

b

Figure 7.22: Some snapshots of the reference path from a to b for ΛO
8,8
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We now present the proof of Theorem 7.3.1(iv), which uses again the reduc-
tion algorithm for open grids described earlier in this section.

Proof of Theorem 7.3.1(iv). We want to show that for every configuration σ 6=
a, b we have Φ(σ, {a, b}) − H(σ) ≤ min{K, L}. Since we may assume that
K ≤ L without loss of generality, it is enough to prove that

Φ(σ, {a, b})− H(σ) ≤ K, ∀ σ 6= a, b.

Let g be the number of gray particles present in configuration σ in the first
column of Λ, i.e.

g := ∑
v∈c0

1{σ(v)=a(v)}.

Every column in Λ has K sites, so 0 ≤ g ≤ K. We distinguish two cases: (a)
g = K and (b) g < K.

In case (a), g = K and thus σ has a gray bridge in column c0. In particular, σ
has no black particles in the first column and we can use the modified version
of the reduction algorithm for open grids with a as target configuration. We
build in this way a path ω : σ → a such that Φω ≤ H(σ) + 1, showing that in
this case Φ(σ, a)− H(σ) ≤ 1.

Consider now case (b), where g < K. In this case we create a path ω : σ→ b
as the concatenation of two shorter paths, ω(1) and ω(2), where ω(1) : σ→ σ∗,
ω(2) : σ∗ → b and σ∗ is a suitable configuration which depends on σ (see
definition below). The reason why ω is best described as concatenation of
two shorter paths is the following: Since g > 0, the reduction algorithm for
open grids can not be started directly from σ and the path ω(1) indeed leads
from σ to σ∗, which is a suitable configuration to initialize the procedure. The
configuration σ∗ is obtained from σ by removing the g gray particles that
reside in the leftmost column, i.e.

σ∗(v) :=


σ(v) if v ∈ V \ c0,

σ(v) if v ∈ c0 and σ(v) = b(v),

0 if v ∈ c0 and σ(v) = a(v).

The path ω(1) = (ω
(1)
1 , . . . , ω

(1)
g+1), with ω

(1)
1 = σ and ω

(1)
g+1 = σ∗, can be

constructed as follows. For i = 1, . . . , g, at step i we remove from configuration
ω
(1)
i the topmost gray particle in c0 increasing the energy by 1 and obtaining

in this way configuration ω
(1)
i+1. Therefore, the configuration σ∗ is such that

H(σ∗)− H(σ) = g and

Φω(1) ≤ H(σ∗) = H(σ) + g.
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The path ω(2) : σ∗ → b is then constructed by means of the reduction algo-
rithm for open grids described earlier, using σ∗ as initial configuration and b
as target configuration. This procedure guarantees that

Φω(2) ≤ H(σ∗) + 1.

The concatenation of the two paths ω(1) and ω(2) gives a path ω : σ → b that
satisfies the inequality Φω ≤ H(σ) + g + 1 and, since g < K, we obtain

Φ(σ, b)− H(σ) = g + 1 ≤ K.
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S U M M A RY

In this thesis we study mathematical models that capture the collective behav-
ior of devices sharing a wireless medium in a distributed fashion by viewing
them as repelling particles. Our research is motivated by fundamental chal-
lenges in wireless networks, which typically are very large and lack central-
ized control. Instead these networks vitally rely on a distributed mechanism
for regulating the access of the various devices to the shared medium.

Thanks to their low implementation complexity, randomized algorithms
provide a popular mechanism for distributed medium-access control. The
work in this thesis is particularly concerned with the so-called Carrier-Sense
Multiple-Access (CSMA) protocol, various incarnations of which are imple-
mented in IEEE 802.11 networks. Despite its simplicity on a local level, the
macroscopic behavior of the CSMA protocol in large networks tends to be
exceedingly complex, and critically depends on global spatial characteristics
of the network in non-intuitive ways.

We consider stylized stochastic models to understand how the spatial de-
ployment of the various transmitter-receiver pairs affects the global perfor-
mance of the network. Specifically, we model the random-access network as
an interacting particle system on a graph, which captures the interplay of
conflicting transmissions due to interference. The global evolution of such
a particle system is described by a continuous-time Markov process, which
exhibits fascinating connections with the hard-core interaction between gas
particles studied in chemistry and statistical physics. Specific attention is paid
to scenarios in which nodes become more aggressive in trying to activate,
which is relevant for networks in high-load regimes, where one cannot afford
to leave network resources unutilized. This scenario corresponds to the low-
temperature regime for the corresponding interacting particle system. The
most likely activity states for the network in this regime are those with a max-
imum number of active nodes, to which we refer as dominant states. Even in
scenarios where all nodes have an equal opportunity to be active in the long
run or in symmetric scenarios where spatial fairness is automatically ensured,
transient yet significant starvation effects can arise due to the fact that the
dominant states become extremely rigid, by which we mean that the transi-
tions between dominant states can be extremely slow, causing starvation for
the nodes not in the currently active dominant state.

Chapter 1 introduces the stochastic models for CSMA networks considered
in this thesis and illustrates their equivalent description as interacting particle
systems. Furthermore, we briefly indicate how the usage of multiple frequen-
cies in such networks leads to a non-trivial trade-off between the aggregate
throughput and average packet delay.
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We examine the impact of slow transitions between dominant states on
the delay performance in random-access networks in Chapter 2. Focusing on
highly symmetric networks, we show how delays in symmetric partite graphs
are intimately connected with the transition times between dominant states in
a high-load scenario. In particular, we prove an asymptotic lower bound for
the average steady-state delay for such networks.

In Chapter 3 we then focus on complete partite graphs, which are graphs
that are useful for modeling dense networks, and therefore provide a “worst-
case” perspective. Leveraging the presence of a unique bottleneck configu-
ration for these networks, we establish a geometric-sum representation for
the transition times using regenerative arguments, which we then use to ob-
tain the asymptotic order-of-magnitude and scaled distribution in the regime
where the activity rates become large.

We then we turn our attention to regular meshes, such as square and trian-
gular lattices, and analyze how the temporal starvation of the nodes depends
on the structure of these networks in high-load scenarios. In order to do so,
we generalize in Chapter 4 the existing Metropolis Markov chain framework,
which is commonly used to study the meta-stability of particle systems in sta-
tistical mechanics. In particular, we obtain asymptotic results in probability, in
expectation and in distribution for any first hitting times in the corresponding
energy landscape by analyzing the most likely paths that the Markov process
follows in the low-temperature regime.

Furthermore, in Chapters 5 and 6 we develop a novel combinatorial method
to analyze the structure and the features of the typical transition paths be-
tween dominant states on regular meshes. As a result, we then quantify how
the order-of-magnitude of the transition times between dominant states de-
pends on the size and properties of these network topologies. In particular,
Chapter 5 is dedicated to grid graphs, while Chapter 6 is devoted to triangu-
lar grid graphs.

Lastly, in Chapter 7 we study the Widom-Rowlison model, an interacting
particle system that we show to be the discrete-time counterpart of a multi-
channel CSMA network when there are two available channels and the conflict
graph is bipartite. Focusing on grid graphs, we study the asymptotic behavior
of the transition time between its two dominant states in the low-temperature
regime.
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