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a b s t r a c t

We examine the impact of torpid mixing and meta-stability issues on the delay
performance in wireless random-access networks. Focusing on regular meshes as
prototypical scenarios, we show that themean delays in an L×L toric grid with normalized
load ρ are of the order ( 1

1−ρ
)L. This superlinear delay scaling is to be contrasted with the

usual linear growth of the order 1
1−ρ

in conventional queueing networks. The intuitive
explanation for the poor delay characteristics is that (i) high load requires a high activity
factor, (ii) a high activity factor implies extremely slow transitions between dominant
activity states, and (iii) slow transitions cause starvation and hence excessively long queues
and delays.

Our proof method combines both renewal and conductance arguments. A critical
ingredient in quantifying the long transition times is the derivation of the communication
height of the uniformized Markov chain associated with the activity process. We also
discuss connections with Glauber dynamics, conductance, and mixing times. Our proof
framework can be applied to other topologies as well, and is also relevant for the hard-core
model in statistical physics and sampling from independent sets using single-site update
Markov chains.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Emerging wireless mesh networks typically lack any centralized control entity, and instead vitally rely on a distributed
mechanism for regulating the access of the various nodes to the shared medium. A popular mechanism for distributed
medium access control is provided by the so-called Carrier-Sense Multiple-Access (CSMA) protocol, various incarnations
of which are implemented in IEEE 802.11 networks. In the CSMA protocol, each node attempts to access the medium after
a random back-off time, but nodes that sense activity of interfering nodes freeze their back-off timer until the medium is
sensed idle.

While the CSMA protocol is fairly easy to understand at a local level, the interaction among interfering nodes gives
rise to quite intricate behavior and complex throughput characteristics on a macroscopic scale. In recent years, relatively
parsimonious models have emerged that provide a useful tool in evaluating the throughput characteristics of CSMA-like
networks [1–4]. These models essentially assume that the interference constraints can be represented by a general conflict
graph, and that the various nodes activate asynchronously whenever none of their neighbors are presently active. Although
such a representation of the IEEE 802.11 back-off mechanism is not as detailed as in the landmark work of Bianchi [5],
the general conflict graph provides far greater versatility in describing a broad range of topologies. Experimental results in
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Liew et al. [6] demonstrate that these models, while idealized, yield throughput estimates that match remarkably well with
measurements in actual IEEE 802.11 networks.

Besides long-term throughput estimates, the above-described models also provide valuable qualitative insights in
transient characteristics. In particular, the models reveal that the activity process of the various nodes may exhibit slow
mixing and meta-stable behavior due to slow transitions between dominant states [7,8]. As a result, individual nodes will
experience long sequences of transmissions in rapid succession, interspersed with extended periods of starvation. Since
the above-described models assume saturated buffers, they do not explicitly capture the effect of temporal starvation on
queue lengths and delays though. In the present paper, we therefore augment the basic model with queueing dynamics, and
analyze average steady-state delays in order to examine the performance repercussions of temporal starvation.

Only a few results for average steady-state delays in random-access networks have been obtained so far. An interesting
paper by Shah et al. [9] showed that low-complexity schemes cannot achieve low delay in arbitrary topologies (unless P
equals NP), since that would imply that certain NP-hard problems could be solved efficiently. However, the notion of delay
in [9] is a transient one, and it is not exactly clear what the implications are for the average steady-state delay in specific
networks, if any. Jiang et al. [10] derived upper bounds for the average steady-state delay. The bounds show that for low
load the delay grows only polynomiallywith the number of nodes in bounded-degree graphs. Subramanian andAlanyali [11]
presented similar upper bounds for bounded-degree graphs with low load based on analysis of neighbor sets and stochastic
coupling arguments.

Focusing on regular meshes as prototypical scenarios, we establish that the average steady-state delays in an L × L toric
gridwith normalized loadρ scale as ( 1

1−ρ
)L, in contrast to the typical linear growth of the order 1

1−ρ
in conventional queueing

networks. The intuitive explanation for the adverse delay scaling is that (i) high load requires a high activity factor, (ii) a
high activity factor implies extremely slow transitions between dominant activity states, and (iii) slow transitions cause
starvation and hence excessively long queues and delays.

Our novel proof method combines both renewal and conductance arguments. A critical role in determining the long
transition times in (ii) is played by the derivation of the communication height of the uniformized Markov chain associated
with the activity process. As a side-result, we gain valuable insight in the exponentially small conductance of Glauber
dynamics on the independent sets in the L × L grid, and hence in the resulting exponentially large mixing time. Our
proof methodology can be applied to other graphs as well, and is also relevant for the hard-core model in statistical
physics [12] and sampling from independent sets using single-site updateMarkov chains in the theoretical computer science
literature [13–15].

The remainder of the paper is organized as follows. In Section 2, we present a detailedmodel description. In Section 3, we
give an overview of the main results for the delays, transition times, communication height, and mixing times, and provide
heuristic interpretations and high-level sketches of the proof arguments. In Section 4, we establish the intimate connection
between long transition times and long delays. Section 5 is devoted to the derivation of the communication height, which
plays a pivotal role in characterizing the slow transitions between dominant activity states, proved in Section 6. In Section 7,
we make some concluding remarks and sketch some directions for further research.

2. Model description

In this section, we present a detailed description of the model for random-access networks with queueing dynamics.
In Section 2.1, we specify the network dynamics for arbitrary conflict graphs with node-specific arrival, transmission,
and activation rates. To facilitate a more insightful analysis, we introduce in Section 2.2 several symmetry assumptions,
amounting to toric grids with homogeneous arrival, transmission, and activation rates. This symmetric network will be the
focus throughout the paper. In Section 2.3, we establish the stability conditions for the network.

2.1. Network dynamics

Consider a network ofN nodes sharing awirelessmedium. Thenetwork is representedby anundirected graphG = (V , E),
called the conflict graph or interference graph, where the set of vertices V = {1, . . . ,N} corresponds to the various nodes
and the set of edges E ⊆ V × V indicates which pairs of nodes interfere. Nodes that are neighbors in the conflict graph are
prevented from simultaneous activity, and thus the independent sets of G (sets of vertices not sharing any edge) correspond
to the feasible joint activity states of the network. A node is said to be blockedwhenever the node itself or any of its neighbors
is active, and unblocked otherwise. Denote by Ω ⊆ {0, 1}N the collection of all independent sets of G. Packets arrive at node
i as a Poisson process of rate λi. The packet transmission times at node i are independent and exponentially distributed with
mean 1/µi. Let X(t) ∈ Ω represent the joint activity state of the network at time t , with Xi(t) indicating whether node i is
active at time t or not. Let {Q (t)}t≥0 be the joint queue-length process, with Qi(t) the number of packets waiting at node i
at time t (excluding the packet that may be in the process of being transmitted).

The various nodes share themediumaccording to a random-accessmechanism.When a node ends a packet transmission,
it either starts a back-off period with probability pi before the next packet transmission, or immediately starts the next
packet transmission otherwise. The back-off periods of node i are independent and exponentially distributedwithmean1/νi.
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The back-off period of a node is suspendedwhenever it becomes blocked by activity of any of its neighbors, and only resumes
once the node becomes unblocked again.

Under this random-access mechanism, the process {(X(t),Q (t))}t≥0 evolves as a continuous-time Markov process with
state spaceΩ×NN . Transitions from a state (X,Q ) to (X,Q +ei) due to arrivals occur at rate λi, transitions due to activations
from a state (X,Q )with Xi = 0 and Xj = 0 for all neighbors j of node i to (X+ei,Q −eiI{Qi>0}) occur at rate νi, transitions due
to transmission completions followed by a back-off period from a state (X,Q ) with Xi = 1 to (X − ei,Q ) occur at rate piµi,
and transitions due to transmission completions immediately followed by another transmission (without an intermediate
back-off period) from a state (X,Q ) with Xi = 1 to (X,Q − eiI{Qi>0}) occur at rate (1 − pi)µi.

For any x ∈ Ω , define π(x) = limt→∞ P (X(t) = x) as the stationary probability that the activity process resides in
state x. The activity process {X(t)}t≥0 does not depend on the process {Q (t)}t≥0, and in fact constitutes a reversible Markov
process with a product-form stationary distribution [1]:

π(x) = Z−1
N
i=1

σ
xi
i , x ∈ Ω,

where σi = νi/(piµi) and Z is the normalization constant defined as

Z =


x∈Ω

N
i=1

σ
xi
i .

In contrast, the queue-lengthprocess {Q (t)}t≥0 does strongly dependon the activity process {X(t)}t≥0, and is considerably
harder to analyze. Since the evolution of {Q (t)}t≥0 is modulated by that of {X(t)}t≥0, the former process can be viewed as
a queueing network in a random environment, and in principle the queue-length process at each individual node could be
considered as a quasi-birth-and-death process, and analyzed using matrix-analytic techniques. However, this would only
yield numerical solutions and not provide explicit insight into how the queue-length process and delay performance are
affected by the temporal starvation issues.

Remark. We have implicitly assumed that a node may become active even when its buffer is empty, and then transmits
dummy packets. It would be interesting to extend the analysis to the case where nodes with empty buffers refrain from
transmission activity, but this would be challenging, since the behavior of the activity process then does depend on the
queue-length process.

2.2. Symmetry assumptions

To obtain more transparent results, we henceforth focus on a symmetric scenario with homogeneous arrival,
transmission, and activation rates, as well as equal back-off probabilities at all nodes:

λi ≡ λ, µi ≡ µ, νi ≡ ν, pi ≡ p, i = 1, . . . ,N.

The stationary distribution of the activity process then simplifies to

π(x) = Z−1σ
N

i=1 xi , x ∈ Ω, (1)

where σ = ν/(pµ) and the normalization constant may be written as Z =


x∈Ω σ
N

i=1 xi . As (1) shows, when σ > 1, the
stationary probability of an activity state x ∈ Ω increases with its cardinality in an exponential fashion.

As prototypical examples of a symmetric topology, we will focus on toric grids, i.e., those with a periodic (wrap-around)
boundary to preserve symmetry. More precisely, we consider as conflict graph G = (V , E) the even discrete torus of size
L. The vertex set is V = {1, . . . , L}2; hence N = |V | = L2, and two vertices in V are adjacent if they differ by 1(mod L) in
only one coordinate. A vertex is called even (odd) if the sum of its two coordinates is even (odd). The vertex set V is thus
partitioned into two classes: the set E of even nodes and the setO of odd nodes. Clearly, |E | = L2/2 = |O|, and these are the
twomaximum independent sets of the graph G. In the case of the toric grid, (1) shows that, as σ grows large, the probability
mass will concentrate on the maximum independent sets E and O, to which we will also refer as dominant activity states.

For the toric grid, the conflict graph G is a bipartite graph, and in the special case L = 2, it becomes even a complete
bipartite graph with components E and O. This conflict graph has additional features which simplify its analysis [8], and in
the remainder of the paper we will therefore assume that L ≥ 4.

By virtue of the symmetry, all the nodes will be active the same fraction of time θ , which will approach 1/2 as σ grows
large, since the probabilitymasswill then concentrate on the two dominant activity states E andO. However, the transitions
between the two dominant activity states will occur at an increasingly slow rate, resembling meta-stability phenomena in
statistical physics [16,17]. As a result, individual nodes will experience long sequences of transmissions in rapid succession,
during which their buffers drain, interspersed with extended periods of starvation, during which large numbers of packets
accumulate. Our objective in this paper is to examine the effect of the temporal starvation on queue lengths and delays. As it
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turns out, the analysis will revolve around the transition times TE→O and TO→E between the two dominant activity states,
defined as

TE→O := inf{t > 0 : X(t) = O | X(0) = E} and TO→E := inf{t > 0 : X(t) = E | X(0) = O}.

Note that these two random variables only depend on the activity process {X(t)}t≥0, and are independent of the queue-
length process {Q (t)}t≥0.

2.3. Stability conditions

In view of the above observations, it is natural to define the normalized load as ρ = λ/2µ and to assume ρ < 1, since
otherwise all the queues will be unstable. The latter condition is not only necessary for stability, but in fact also sufficient
for the queue-length processes at each individual node to be positive recurrent for large enough values of σ , as stated in the
next proposition.

Proposition 2.1. Assume that ρ < 1. Then the queue-length process {Qi(t)}t≥0 at each individual node is positive recurrent for
sufficiently large values of σ .

The above proposition may be intuitively explained as follows. As mentioned earlier, the fraction of time θ that each
individual node is active will approach 1/2 arbitrarily close for sufficiently large values of σ . This suggests that λ < µ/2,
i.e., ρ < 1, is sufficient for stability for large enough values of σ .

Proof. We say that the activity process resides in an even period if the last dominant state it visited was E , and likewise
in an odd period if the last dominant state it visited was O. We refer to a period consisting of an even and subsequent odd
period as a cycle. Define {Q̂n}n∈N to be the queue-length process of an odd node embedded at the epochs when even periods
start (or equivalently when cycles start). Thanks to the strong Markov property, this latter process is an irreducible time-
homogeneous Markov chain on N. Denote by Sn the number of packets served during the nth odd period and by An the total
number of packets which arrived during the nth cycle. By construction, these two random variables are independent of each
other and independent from those of different cycles. We claim that the following inequality holds:

Q̂n+1 ≤ (Q̂n − Sn)+ + An.

Indeed we underestimate the total number of packets served by allowing transmission only during the odd period (instead
of continuously) and only the awaiting packets which arrived in the previous cycles.

Consider now another fictitious Markov chain {Q̄n}n∈N defined by the initial condition Q̄ (0) = Q̂ (0) and by the classical
Lindley recursion Q̄n+1 = (Q̄n − Sn + An)

+. Clearly, Q̂n ≤ Q̄n + An for every n ∈ N. Let Y be a random variable
distributed as A − S. It is well known that 0 is a positive recurrent state for {Q̄n}n∈N if EY < 0. This is indeed the case,
since EY = λETE→O + (λ − µ)ETO→E = (2λ − µ)ETE→O = µ(ρ − 1) < 0. Therefore, also for the chain {Q̂n}n∈N, the
state 0 is positive recurrent and, since the cycle time has finite expectation (the Markov process {X(t)}t≥0 is irreducible on
a finite state space, and hence positive recurrent), it follows that the original continuous-time process {Qi(t)}t≥0 is positive
recurrent as well. �

The next proposition provides a lower bound for the value of σ that is required for stability in terms of the normalized
load ρ.

Proposition 2.2. In order for all queues to be stable, it is required that

σ >
ρ

2(1 − ρ)
.

Proof. In order to be stable, each individual node should be active at least a fraction λ/µ = ρ/2 of the time, and thus
θ > ρ/2. The fraction of time that a node is active may be expressed as θ = σP (node is unblocked). Now consider an
arbitrary node and any of its neighbors. Then the fraction of time that the former node is unblocked is bounded from above
by the fraction of time that both nodes are inactive, soP (node is unblocked) ≤ 1−ρ. Combining the above three inequalities
and some rearranging yields the result. �

3. Main results

In Section 3.1, we present the two main theorems, which lead to bounds for the long-term average delay in random-
access grid networks. The first result follows from a third theorem on the so-called communication height, presented in
Section 3.2, along with a sketch of the proof. In Section 3.3, we show how the result for the communication height can be
leveraged to characterize the mixing time of the activity process, and we also discuss connections with other results in the
areas of statistical physics and theoretical computer science.
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3.1. Transition times and delays

Asmentioned earlier, the boundswe derive revolve around three simple observations: (i) high load requires high activity
factors for stability; (ii) high activity factors cause longmixing times, in particular slow transitions between dominant activity
states; (iii) slow transitions between dominant states imply long starvation periods, and hence large queue lengths and
delays.

The next two theorems formalize the last two observations. We henceforth assume µ to be fixed, and when we write
σ → ∞ we allow for either ν → ∞, p ↓ 0, or both. For compactness, we only attach σ in brackets to various quantities to
reflect the dependence on both ν and p in limit statements for σ → ∞. Define α := lim infσ→∞ −

log p
log σ

≥ 0.

Theorem 3.1 (Transition Time Between Dominant States).

lim inf
σ→∞

log(µETE→O(σ ))

log σ
≥ L + α ≥ L.

Withminor abuse of notation, let EW (σ ) be the long-term average delay (waiting time plus service time) of an arbitrary
packet, where again the attached σ in brackets describes the dependence on both ν and p.

Theorem 3.2 (Long-Term Average Delay).

lim inf
σ→∞

EW (σ )

ETE→O(σ )
≥

1
4

µ

µ − λ
=

1
4 − 2ρ

.

In view of Proposition 2.2 and Theorem 3.2, an immediate corollary of the above theorem is that the long-term average
delay must scale as ( 1

1−ρ
)L as ρ ↑ 1. This is to be contrasted with the usual linear scaling in 1

1−ρ
in conventional queueing

networks, and further reveals that the exponential rate of growth increases with the size of the grid.
Theorem 3.2may be understood as follows. First, by virtue of the symmetry, wemay aswell consider the average delay of

an arbitrary packet at a particular node, say an odd one. In view of the nature of the transitions between the dominant states
E and O, this node will hardly be active during the transition time TE→O(σ ) for large values of σ . As a result, the queue at
this nodewill roughly grow at rate λ, reaching an expected length of λETE→O(σ ) at the end of the transition period, and thus
having an average size of approximately 1

2λETE→O(σ ) over this period. During the subsequent transition time TO→E (σ ), the
queue will decrease at a rate of at most λ − µ, and thus requires a time period of at least λ

µ−λ
ETE→O(σ ) to empty, so the

average size over that period is at least

1
2

λ2

µ − λ

E((TE→O(σ ))2)

ETE→O(σ )
.

Noting that E((TE→O(σ ))2) ≥ (ETE→O(σ ))2 and ETO→E (σ ) = ETE→O(σ ), we conclude that the average queue length over
the course of the cycle consisting of the transition periods TE→O(σ ) and TO→E (σ ) is at least

1
2


1
2
λ +

1
2

λ2

µ − λ


ETE→O(σ ) =

λ

4
µ

µ − λ
ETE→O(σ ) =

λ

4 − 2ρ
ETE→O(σ )

for sufficiently large values of σ . Invoking Little’s law, we then obtain the lower bound as stated in the theorem for the
long-term average delay of an arbitrary packet.

Of course, the above arguments are heuristic in nature. We will provide a rigorous proof of Theorem 3.2 in Section 4.
Specifically, wewill establish that an odd node receives hardly any service during a transition time TE→O(σ ) for large values
of σ , and justify the informal calculations based on drifts and expected values.

3.2. Communication height

The high-level idea of the proof of Theorem 3.1 is that, in order for a transition from the even dominant state E
to the odd dominant state O to occur, the activity process X(t) must follow a transition path through some highly
unlikely configurations consisting of mixtures of even and odd active nodes, and the time to reach such configurations
is correspondingly long. Theorem 3.3 below shows a key feature of all such transition paths.

In the rest of the paper, we will interchangeably refer to a feasible configuration x ∈ Ω or to the corresponding
independent set I of the conflict graph G. Clearly,

N
i=1 xi = |I|. For any independent set I ∈ Ω , define ∆(I) to be the

difference between the size of a maximum independent set and that of the set I , i.e., ∆(I) := L2/2 − |I|. The quantity ∆(I)
describes how ‘‘inefficient’’ the configuration I is with respect to the maximum independent sets E and O, and hence how
much less likely it is in view of (1). For this reason, we will refer to ∆(I) as the efficiency gap of configuration I . A path
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is a sequence ω = (I1, . . . , In), n ∈ N, where Ik ∈ Ω for k = 1, . . . , n and such that Ik and Ik+1 differ by a single flip, for
k = 1, . . . , n−1.Wewriteω : I → I ′ to denote a path from I to I ′. The communication height between two states I, I ′ ∈ Ω is

φ(I, I ′) := min
ω:I→I ′

max
J∈ω

∆(J).

The quantity φ(I, I ′) is theminimumnumber of nodeswhichmust be simultaneously inactivewith respect to themaximum
number of active nodes to make the transition I → I ′ possible. The cornerstone of the proof of Theorem 3.1 is the derivation
of the communication height Γ := φ(E, O) between the two dominant configurations E and O.

Theorem 3.3 (Communication Height).

Γ = L + 1.

The proof of Theorem 3.3, given in Section 5, is technically challenging, since all possible paths between the dominant
states need to be taken into consideration. In order to do so, we use a similar approach as in [13–15] which associates with
each independent set I ∈ Ω a collection of cutsets and contours, that effectively translates the problem into geometric
properties of these contours.

Theorem 3.3 is a powerful result. In Section 6, we show that together with a general result for exit times for interacting
particle systems in statistical physics [17] it readily leads to Theorem 3.1. Theorem 3.3 also gives a way to derive results for
mixing times. Since the majority of related literature has been dealing with mixing times, instead of transition times, we
present in Section 3.3 the mixing time result that can be obtained using Theorem 3.3.

3.3. Mixing times

Let d(t) be themaximal distance over x ∈ Ω , measured in terms of total variation, between the distribution at time t and
the stationary distribution, i.e., d(t) := maxx∈Ω ∥P (X(t) ∈ · | X(0) = x) − π∥TV, where ∥p − q∥TV =

1
2


x∈Ω |p(x) − q(x)|

is the total variation distance between two probability measures p, q on the finite state space Ω . The mixing time of the
process {X(t)}t≥0 is defined as

tmix(ε, σ ) = inf{t ≥ 0 : d(t) ≤ ε},

and it expresses the time needed for a process to converge to stationarity.
An important observation is that, when σ is large, the distribution in (1) favors dense configurations with∆(I) small and

with extremes E and O, while configurations that are roughly half odd and half even are highly unlikely. This ‘bimodality’
causes slow convergence to equilibrium, because the Markov process is either in the even or odd sublattice, while it can
hardly pass through the less likely set in the middle (the bottleneck) to go from the even to the odd sublattice or vice
versa. Hence, a classical strategy for proving slow mixing is to separate the state space into three sets, two of which are
exponentially larger (in terms of probability) than the third, such that moving from one large set to the other through local
steps of the Markov process requires passing through the small bottleneck set in the middle. This strategy has been applied
in [13–15] to prove slow mixing of local or single-site update Markov processes (like ours) on the grid. Traditionally, the
two dominant sets are those configurations that lie predominantly on the even or odd sublattice, and the bottleneck set
consists of those configurations that have a relatively balanced number of even and odd vertices. The challenge is then
to show that this bottleneck or balanced set has exponentially small probability, in which case the conductance of the
Markov process would be exponentially small, leading via a standard argument to exponentially large mixing times. This
challenge essentially boils down to counting the number of balanced configurations, which is solved in [13,14] by powerful
combinatorial enumeration methods. In [15], a different way of partitioning was introduced, which divides the state space
according to a certain topological obstruction, rather than according to the relative number of even and odd vertices. In that
case, again a counting problem needs to be solved, in order to establish that the set of configurations having this topological
obstruction is exponentially small, but the counting problem is much simpler. Recently, the same approach was followed
in [18], but with sharper estimates for the counting problem.

What is new about our approach is that we partition the state space in a fundamentally different way, such that there is
no longer the need to solve a counting problem. The approach is best explained in terms of the set

S := {I ∈ Ω | φ(E, I) ≤ L}. (2)

From the perspective of the maximum configuration E , the set S contains all configurations that can be reached by the
process by having at most L nodes simultaneously inactive with respect to themaximumnumber of active nodes. Moreover,
Theorem 3.3 tells us that the Markov process starting in E cannot reach the configuration O without leaving the set S.
Hence, the two dominant sets are S = {I ∈ Ω | φ(E, I) ≤ L}, and by symmetry S′

:= {I ∈ Ω | φ(O, I) ≤ L}, while the
remaining configurations together form the bottleneck. Now, since the distribution (1) readily provides an upper bound on
the probability of this bottleneck set, there is no counting problem involved in proving exponentially small conductance and
hence slow mixing; see Theorem 3.5 below.
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Let us now demonstrate the above reasoning to get an upper bound on the conductance of the activity process and thus a
lower bound for the mixing time. These two results are not necessary for deriving the delay bounds, but are of independent
interest in view of Refs. [13–15]. Therefore, for simplicity, we assume that p = 1 and µ = 1 in the rest of this subsection.

For S ⊆ Ω , let π(S) :=


x∈S π(x) be its stationary probability, and define the conductance of S ⊆ Ω as

Φ(S) :=


x∈S


y∈Sc

π(x)q(x, y)

π(S)
,

where q(x, y) is the transition rate from state x to state y. The conductance of a Markov process, also known in the literature
as the bottleneck ratio or Cheeger constant, is effectively a measure of how well connected the state space is, taking into
account possible geometric features, usually referred to as bottlenecks, that strongly influence the mixing time.

Let ∂−S denote the inner boundary of the set S, i.e., the states in S that communicate with Sc .

Lemma 3.4 (Upper Bound on Conductance of S).

Φ(S) ≤
|∂−S|(L2/2 − L)

σ L
.

Proof. From the definition of S, it follows that all states x ∈ ∂−S have the same stationary probability, namely π(x) =

Z−1σ L2/2−L. Moreover, the only way to exit from S is by deactivating one node, and this happens at rate q(x, y) = µ = 1, if
x ∈ S, y ∈ Sc , and

N
i=1 |xi − yi| = 1. Hence

x∈S


y∈Sc

π(x)q(x, y) ≤ Z−1σ L2/2−L
|∂−S|(L2/2 − L).

The last inequality comes from the fact that the exit from S can occur only by deactivation of one node, and there are exactly
L2/2 − L of them to be turned off in each configuration in ∂−S. Trivially, π(S) ≥ π(E) = Z−1σ L2/2, and thus

Φ(S) ≤
σ L2/2−L

σ L2/2
|∂−S|(L2/2 − L) =

|∂−S|(L2/2 − L)
σ L

,

which completes the proof. �

Due to the relation (see [8])

tmix(ϵ) ≥


1
2

− 2ε


max
A⊆Ω:π(A)≤1/2

1
Φ(A)

,

the following result is then an immediate consequence of Theorem 3.3 and Lemma 3.4.

Theorem 3.5 (Lower Bound on Mixing Time). For any σ > 1, the mixing time of the process {X(t)}t≥0 satisfies

tmix(ε, σ ) ≥


1
2

− 2ϵ


σ L

|∂−S|(L2/2 − L)
.

Remark. At first sight, our novel approach might look deceptively simple, because no sophisticated enumeration method
is needed. In fact, there is no counting problem to be solved. However, the technical challenge is shifted to establishing the
communication height in Theorem 3.3. Indeed, this result is very powerful, and the proof relies on an approach similar to
that in [13–15]. Once the communication height is established, Theorems 3.1 and 3.5 readily follow.

4. Proof of Theorem 3.2 (Long-Term Average Delay)

In this section, we present the proof of Theorem 3.2. Guided by the intuitive arguments in Section 3.1, we consider an
alternating renewal process. As before, an even renewal period starts each time we observe a first entrance into the even
dominant state E after a visit to the odd dominant state O, and likewise an odd renewal period starts each time the process
enters the odd dominant state O for the first time after a visit to the even dominant state E . Thus the lengths of the even
and odd renewal periods correspond to the transition times TE→O and TO→E , respectively. We have defined a cycle as the
period consisting of an even and subsequent odd renewal period. Let SE and UE be two random variables representing the
amounts of time during an even renewal period that the activity process {X(t)}t≥0 spends in the even dominant state E and
in other activity states, respectively. Since the random variable SE tracks the total time the process spends in the state E in
an entire cycle, the renewal-reward theorem yields

ESE

ETE→O + ETO→E

= π(E) ↑
1
2
, σ → ∞,
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where we suppress the implicit dependence on σ for notational compactness. By symmetry, ETE→O = ETO→E , so

ESE

ETE→O

↑ 1 and
EUE

ETE→O

↓ 0, σ → ∞.

In particular, for any δ > 0, there exists σδ > 0 such that, for all σ > σδ ,

EUE

ETE→O

≤ δ. (3)

As mentioned earlier, by virtue of the symmetry, we may consider the long-term average delay of an arbitrary packet at
a particular node, say an odd one. With minor abuse of notation, let

EL = lim
T→∞

1
T

 T

t=0
L(t)dt, (4)

with L(t) denoting the queue length at that particular node at time t , i.e., the total number of packets, including the packet
that may possibly be in the process of being transmitted. Assuming that EW exists, Little’s law can then be invoked to
conclude that EL = λEW exists as well, so it suffices to establish a lower bound for EL.

By definition, L(t) increases whenever a packet arrives at the node, as governed by a Poisson process of rate λ. Further
observe that L(t) cannot decrease when the activity process resides in the even dominant state E , since that precludes
activity of any odd node.When the activity process does not reside in the even dominant state, the node could potentially be
active, and L(t) decreaseswhenever a transmission is completed and there are packets in the node (L(t) ≠ 0). Unfortunately,
there are intricate dependences that arise between the transmission periods of the node under consideration and the
dynamics of the activity process, and in particular the durations of time that it does not reside in the even dominant state.
However, the number of transmissions that occur during such a period is a stopping time, and hence the expected number
is bounded from above by the amount of time divided by the mean transmission time. Based on the above considerations,
we conclude, conditioning on the durations of the even and odd renewal periods, that Eλ,µL(t) is bounded from below by
Z(t), where the subscripts λ and µ indicate expectation with respect to the arrival epochs and transmission periods, and
{Z(t)}t≥0 is a process with Z(0) = L(0) that increases at rate λ when the activity process resides in the even dominant state
and decreases at rate λ − µ at all other times, as long as Z(t) is positive. Unconditioning, this implies in particular that

lim
T→∞

1
T

 T

t=0
EL(t)dt ≥ lim

T→∞

1
T

 T

t=0
EZ(t)dt. (5)

In order to evaluate the latter limit expression, let Tk and Vk be the durations of the kth even and kth odd renewal periods,
respectively, let Uk be the amount of time that the activity process does not reside in the even dominant state during the kth
even renewal period, and let SK =

K
k=1(Tk + Vk) be the duration of the first K cycles. Note that Tk and Vk are i.i.d. copies of

the random variables TE→O and TO→E , respectively. Assume that an even renewal period starts at time 0 with Z(0) = 0, and
define the random variable M = inf{K ≥ 1 : Z(SK ) = 0}. Observe that SM is a regeneration epoch for the process {Z(t)}t≥0,
and hence the renewal-reward theorem implies that

lim
T→∞

1
T

 T

t=0
Z(t)dt =

E
 SM
t=0 Z(t)dt
ESM

. (6)

Considering the denominator, it follows from Wald’s equation and symmetry considerations that ESM = EM(ETE→O +

ETO→E ) = 2EMETE→O . Turning attention to the numerator, we first condition on the number of cyclesM that have elapsed
by the regeneration epoch, the durations T1, T2, . . . , TM of the even renewal periods involved, and the amounts of time
U1,U2, . . . ,UM that the activity process does not reside in the even dominant state.

When Uk = 0, inspection of Fig. 1 shows that the area of the triangle associated with the kth cycle is

1
2
λT 2

k +
1
2

λ2

µ − λ
T 2
k =

1
2

λµ

µ − λ
T 2
k ,

while the area of the parallelogram associated with the kth cycle is

Zk


Tk +

λ

µ − λ
Tk


=

µ

µ − λ
ZkTk,

with Zk = Z(Sk) the value of the process Z(·) at the start of the kth cycle.
In general, when Uk may not be zero, a similar geometric construction leads to the conclusion that the two areas are

1
2
λTk


Tk −

µ

λ
Uk


+

1
2

λ2

µ − λ


Tk −

µ

λ
Uk

2
≥

1
2

λµ

µ − λ


Tk −

µ

λ
Uk

2
,
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Fig. 1. Sample path of the process Z(t), withM = 4.

and

Zk


Tk +

λ

µ − λ


Tk −

µ

λ
Uk


=

µ

µ − λ
Zk (Tk − Uk) ,

respectively. Unconditioning, i.e., taking expectations with respect to the number of cycles M and the random variables Tk
and Uk, k = 1, . . . ,M , we find

E
 SM

t=0
Z(t)dt ≥

1
2

λµ

µ − λ
E


M

k=1


Tk −

µ

λ
Uk

2
+

µ

µ − λ
E


M

k=1

Zk(Tk − Uk)


,

yielding

E
 SM
t=0 Z(t)dt
ESM

=
1
4

λµ

(µ − λ)ETE→O

E


M
k=1


Tk −

µ

λ
Uk
2

EM
+

µ

2(µ − λ)ETE→O

E


M
k=1

Zk(Tk − Uk)


EM

=
1
4

λµ

(µ − λ)ETE→O

E

TE→O −

µ

λ
UE

2
+

µ

2(µ − λ)ETE→O

EZ(TE→O − UE ),

where the three random variables TE→O , UE , and Z have the joint distribution of the duration of an even renewal period, the
amount of time that the activity process does not reside in the even dominant state during that period, and the value of the
process Z(·) at the start of that period.

Applying Jensen’s inequality and noting that TE→O and UE are independent of Z , we obtain

E
 TM
t=0 Z(t)dt
ETM

≥
1
4

λµ

(µ − λ)ETE→O


ETE→O −

µ

λ
EUE

2
+

µ

2(µ − λ)ETE→O

EZ (ETE→O − EUE )

≥
1
4

λµ

µ − λ
ETE→O


1 −

µ

λ

EUE

ETE→O

2

+
µ

2(µ − λ)
EZ


1 −

EUE

ETE→O


.

In view of (3), we find that, for any δ > 0, the liminf of the latter expression (for large values of σ ) is bounded from below
by

1
4

λµ

µ − λ
ETE→O


1 − δ

µ

λ

2
+

µ

2(µ − λ)
EZ (1 − δ) .

Since Z is non-negative and δ > 0 is arbitrary, we deduce that

lim inf
σ→∞

EL
ETE→O

≥
λ

4
µ

µ − λ
,

where we also used the fact that the expectation signs in (5) can bemoved in front of the integrals and then dropped in view
of (4) and (6). The statement of the theorem then follows by applying Little’s law.

5. Proof of Theorem 3.3 (Communication Height)

In this section, we obtain the communication height Γ . In Section 5.1, we introduce cutsets and contours, which we
use in Section 5.2 to distinguish among feasible configurations. We then explore the geometric properties of the set S in
Section 5.3, and we present the proof of Theorem 3.3 in Section 5.4.
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5.1. Cutsets and contours

We start by introducing some notation. Given S ⊆ V , define Sc := V \ S, the set ∂−S of vertices in S which are adjacent
to a vertex in Sc , the set ∂+S of vertices in Sc which are adjacent to a vertex in S (in particular, for v ∈ V , we write ∂v for
∂+

{v}), and the sets S+
:= S ∪ ∂+S, SE

:= S ∩ E and SO
:= S ∩ O. Let ∇S := {(v, w) ∈ E | v ∈ ∂−S, w ∈ ∂+S} denote the

set of edges having one end in S and the other in Sc .
An independent set I ∈ Ω consists of vertices in IE and/or vertices in IO . In between these regions, there is always an

unoccupied two-layer interface, which corresponds to a collection of edge cutsets. Recall that γ ⊆ E is an edge cutset if the
graph (V , E \γ ) is disconnected, and it is said to beminimal if it is inclusion-wise minimal. We describe a way of associating
with each independent set I ∈ Ω a collection of minimal edge cutsets, following the approach and some ideas of [13–15].

For a given I ∈ Ω , the vertices in V can be partitioned into two sets, RO(I) = IO ∪ (E \ IE ) and its complement
RE (I) = IE ∪ (O \ IO). The collection RO(I) (RE (I)) consists of one or more connected components to which we will refer
as odd regions (even regions). From this point onward, our focus will be on the odd regions only and, unless stated otherwise,
all regions that will be mentioned will be odd.

For each region R ⊆ RO(I), we consider the corresponding edge cutset γR := ∇(R), which can consist of several disjoint
components. A well-known identity relates the size of a specific edge cutset to the number of even and odd vertices present
in its interior; see [18,13,14]. This can be generalized and, in the case of a region R ⊆ RO(I), it reads

|γR| = |∇(R)| = 4(|RE
| − |RO

|). (7)

One way to interpret (7) is the following. For a given region R ⊆ RO(I), |γR| is equal to 4 times the difference between the
number of even inactive nodes in R, i.e., |RE

|, and the number of odd active nodes in R, i.e., |RO
|. With this interpretation in

mind, the idea behind the proof is easily explained. Indeed, one way to count all the edges of∇(R), i.e., the ‘‘outgoing’’ edges
of R, is counting first how many edges the subgraph induced by R+ has and then subtracting the number of its ‘‘internal’’
edges. The total number of edges of R+ is 4|RE

|, while the number of internal ones is 4|RO
|, since each of them has precisely

one endpoint in RO .
Consider the dual graph G′ of the graph G, which is a discrete torus of the same size. For every region R ⊆ RO(I),

we associate with the edge cutset γR the edge set cR on G′ which consists of all the edges of G′ orthogonal to edges in
γR. The set cR, to which we will refer as the contour of R, is a collection of one or more disjoint piecewise linear closed
curves. By construction, |cR| = |γR|, and |cR| has a natural interpretation as the total length of the contour of R. Define
L(I) :=


R⊆RO (I) cR to be the collection of contours of all the regions in RO(I), and l(I) to be their total length, i.e.,

l(I) :=


R⊆RO (I) |cR|. The total contour length of a configuration I ∈ Ω is related to its efficiency gap ∆(I) as follows:

l(I) = 4 · ∆(I), (8)

which follows from (7) and the definition of RO(I). Indeed,

l(I) =


R⊆RO (I)

|cR| =


R⊆RO (I)

|γR| =


R⊆RO (I)

4(|RE
| − |RO

|) = 4

 
R⊆RO (I)

|RE
| −


R⊆RO (I)

|RO
|


= 4


|RO(I)E

| − |RO(I)O
|


= 4

|E \ IE | − |IO|


= 4 (|E | − |I|) = 4 · ∆(I).

To help the reader, we will present later some examples of independent sets of the graph G, with the corresponding
regions and contours. Displaying a configuration I ∈ Ω , a vertex is drawn as a disk if it belongs to I , and otherwise as a
circle. Moreover, we use the following color conventions:

vertex odd even
active
inactive

With these conventions, all regions in RO(I) end up being colored in black (and those in RE (I) in gray).

5.2. Clusters, stripes, and crosses

In this subsection, we present a partition of the state space Ω exploiting geometric properties of the configurations. Let
ΛO be the graph whose vertex set is O and such that two odd vertices are connected if and only if they have distance 2 in G,
and define ΛE analogously. A closed path or curve is said to be contractible in a graph H if it can be continuously deformed
or contracted in H to a single vertex. Given an independent set I ∈ Ω , a region R ⊆ RO(I) is called a stripe if there exists a
curve in cR which is non-contractible in G′, a cross if all the curves in cR are contractible in G′ and there is a non-contractible
closed path in ΛO ∩ RO , and a cluster if all the curves in cR are contractible in G′ and all the closed paths are contractible in
ΛO ∩ RO . Notice that, if R is a stripe, by parity there must be two non-contractible closed curves in cR. If instead R is a cross,
then one can show that there exist two non-contractible paths inΛO ∩RO which are not homotopic and intersect each other
(this motivates the name cross). Fig. 2 shows some examples of these types of region.
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(a) Cluster. (b) Cluster with holes. (c) Cross O.

(d) Cross. (e) Stripe. (f) Stripe with holes.

Fig. 2. Examples of configurations in Ω for L = 10, with the respective contours.

We partition the state space Ω into the following three subsets: Ωs, the collection of independent sets which have at
least one stripe; Ωcr , the collection of independent sets which have a cross; Ωcl, the collection of independent sets whose
regions, if any, are clusters only. SubsetΩcl is disjoint from the other two by definition. Then, to guarantee thatΩs∪Ωcr ∪Ωcl
is indeed a partition ofΩ , we need to prove that there are no configurations I ∈ Ω which display simultaneously a cross and
a stripe, i.e., Ωs ∩ Ωcr = ∅. This is indeed the case, since the non-contractible curve, which the contour of a stripe displays,
is surrounded by an unoccupied two-layer interface that precludes the existence of one the two non-contractible paths on
ΛE which a cross must have.

Denote by A△B the symmetric difference between two sets A and B. Consider the collection of independent sets which
exhibit a critical cross, defined as Ωcc := {I ∈ Ωcr | ∃ I ′ ∈ Ωcl : |I△I ′| = 1}. In words, a critical cross is a cross which can be
‘‘broken’’ by deactivating just a single node directly into clusters, without becoming a stripe as an intermediate stage.

The next lemma gives some lower bounds on the length of the contour of certain types of region, and it will be crucial in
understanding the geometrical properties of the set S.

Lemma 5.1 (Minimal Contour Length for Stripes and Critical Crosses). Let R ⊆ RO(I) be a region, for some I ∈ Ω . If R is a stripe,
then |cR| ≥ 4L. If R is a critical cross, then |cR| ≥ 8L − 12.

This lemma implies that, if I has a stripe, then ∆(I) ≥ L, while if I has a critical cross, then ∆(I) ≥ 2L − 3.

Proof. (a) Consider a stripe R. By definition, its contour cR has at least one non-contractible curve, but, by parity, there are
two disjoint non-contractible curves. A non-contractible curve has length at least 2L, because it should be long enough in
one direction to wind around the L× L toric grid. Moreover, every curve of the contour has by construction an equal number
of vertical and horizontal edges, which means that both curves have length at least 2L. Hence |cR| ≥ 4L, and the proof is
concluded.

(b) Let I ∈ Ωcc be an independent set which exhibits a critical cross R, and consider a configuration I ′ ∈ Ωcl such that
|I△I ′| = 1, i.e., I ′ ∈ ∂+Ωcc . A single cluster cannot evolve in a single step into a cross, so the configuration I ′ must have at
least two clusters, say R1 and R2, from which the critical cross R will be created. Moreover, such clusters must have specific
features: R1 and R2 must miss the same odd vertex v ∉ I ′ to become (individually) a stripe; see Fig. 3. This means that R1
and R2 are clusters ‘‘stretched in different directions’’. More precisely, one of them, say R1, has a projection of length L − 1
in the horizontal direction, and the other one, R2, a projection of length L − 1 in the vertical direction. This fact implies that
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(a) Configuration I ∈ Ωcc . (b) Configuration I ′ ∈ ∂+Ωcc , |I△I ′| = 1.

Fig. 3. Structure of configurations with critical crosses.

both R1 and R2 have a contour of length at least 4(L − 1). Indeed, to have a close curve, at each latitude and longitude there
must be two edges, and a contour has the same number of vertical and horizontal edges. Thus l(I ′) ≥ |cR1 |+|cR2 | ≥ 8(L−1)
and, by construction, l(I) = |cR1 | + |cR2 | − 4 ≥ 8(L − 1) − 4 = 8L − 12. �

5.3. The set S and its properties

Consider two configurations I, I ′ ∈ Ω, I ≠ I ′. By construction, if the Markov process {X(t)}t≥0 can make the transition
I → I ′ in a single step, then |I△I ′| = 1, and hence ∆(I ′) = ∆(I) ± 1. In particular ∆(I ′) ≠ ∆(I).

The bottom F (S) of a non-empty set S ⊆ Ω is the set of the largest independent sets in S, i.e., F (S) = {I ∈ S : ∆(I) =

minI ′∈S ∆(I ′)}. The independent sets in F (S) all have the same efficiency gap, which we will denote by ∆(F (S)). Thanks to
(8) and the definition of the communication height, for any integer c ,

φ(I, I ′) ≤ c ⇔ ∆(J) ≤ 4 · c, ∀ J ∈ ω : I → I ′. (9)
A non-trivial cycle is a connected set C such that maxI∈C ∆(I) < ∆(F (∂+C)). Any singleton that is not a non-trivial cycle

is called a trivial cycle. The depth of a cycle C is given by D(C) := ∆(F (∂+C)) − ∆(F (C)).
Recall definition (2) of the set S = {I ∈ Ω | φ(E, I) ≤ L}. Thanks to (9), the condition φ(E, I) ≤ L is equivalent to

l(I ′) ≤ 4 · L for all configurations I ′ ∈ ω : E → I . Moreover, S ≠ Ω , because for instance an independent set J consisting of
a single vertex does not belong to S. Indeed, ∆(J) = L2/2 − 1 > L for L > 2. This fact and the irreducibility of the process
on Ω imply that ∂+S ≠ ∅.

Lemma 5.2 (Stripes and Crosses Do Not Belong To S). Consider an independent set I ∈ Ω .
(a) If I has at least one stripe, then any path ω : I → E satisfiesmaxI ′∈ω ∆(I ′) > L.
(b) If I has a cross, then any path ω : I → E satisfiesmaxI ′∈ω ∆(I ′) > L.

Proof. (a) Consider a path ω : I → E, ω = (I1, . . . , In), n ∈ N, I1 = I , In = E . There exists 1 ≤ m ≤ n− 1 such that Im is the
first configuration belonging to Ωcl along the path ω. In the configuration Im−1 there is either a stripe S or a critical cross C .

Suppose that Im−1 has a stripe S. Its contour satisfies |cS | ≥ 4L, as proved above in Lemma 5.1. Due to our assumptions,
the stripe S must ‘‘break’’ in a single step into clusters. Recall that, in a single transition, we can either add a vertex to or
remove a vertex from the current independent set. The action of adding an (even or odd) vertex cannot break the stripe S.
Therefore, the only way to break a stripe S is by removing at least one vertex (on its inside), obtaining a new independent
set I ′ which satisfies ∆(I ′) = ∆(I) + 1 ≥ L + 1.

Suppose instead that Im−1 has a cross C . By construction, C must be a critical cross, and then Lemma 5.1 implies that
∆(Im−1) ≥ 2L − 3, which is greater than L, since L ≥ 4.

(b) Consider a path ω′
: I → E, ω′

= (I1, . . . , In′), n′
∈ N, I1 = I , In′ = E . There exists 1 ≤ m′

≤ n′
− 1 such that Im′

is the first configuration belonging to Ωcl along the path ω′. In the configuration Im′−1 there is either a stripe S or a critical
cross C , and then we can argue as in (a). �

In particular, this latter lemma implies that S ⊆ Ωcl. We remark that S ≠ Ωcl. Indeed there exist independent sets
I ∈ Ωcl which have a cluster with a contour larger than 4L and therefore do not belong to S. The next proposition gives two
crucial properties of the set S, following the general method proposed in [16, p. 614].

Proposition 5.3. The set S satisfies the following two properties.
(a) S is a connected set, E ∈ S, and O ∉ S.
(b) There exists a path ω∗

: E → O such that the maximum of ∆(·) is reached in F (∂+S), namely

argmax
ω∗

∆ ∩ F (∂+S) ≠ ∅. (10)
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Proof. (a) Clearly, E ∈ S, and S is connected by construction. We claim that every path ω : E → O satisfies maxI∈ω ∆(I) >
L, which implies that O ∉ S. Indeed, E ∈ Ωcl, O ∈ Ωcr \ Ωcc , and therefore along any path ω : E → O there must be a
configuration showing a stripe or a critical cross, and Lemma 5.2 proves our claim.

(b) The reference path ω∗ can be constructed as follows. Starting from E , we gradually create a linear cluster, until it
contains L/2 − 1 odd active nodes. This configuration, say I , still belongs to S, since its only cluster has a contour of length
4L − 4, and hence ∆(I) = L − 1. In order to add the odd vertex v which is missing to create a stripe, we first need to
remove sequentially the two even vertices v1, v2 in I ∩∂v. Let us call I1 and I2 the configurations corresponding to these two
intermediate steps and I3 the configuration where the stripe finally appears, adding the vertex v. By construction, I1 ∈ S,
with ∆(I) = L, while ∆(I2) = L + 1, and hence I2 ∈ ∂+S. From I3 it is possible to reach the configuration O visiting
only configurations J ∈ Ω such that ∆(J) ≤ L + 1, just gradually expanding the stripe column by column. Therefore
I2 ∈ argmaxω∗ ∆ ∩ F (∂+S). �

5.4. Proof of Theorem 3.3

Proposition 5.3(a) implies that the process should exit from the set S to reach the state O, and so it must visit a
configuration I ∈ ∂+S. Therefore φ(E, O) ≥ ∆(F (∂+S)). Moreover, the existence of a path ω∗

: E → O such that the
maximum of ∆(·) is reached in F (∂+S), guaranteed by Proposition 5.3(b), gives φ(E, O) ≤ maxI∈ω∗ ∆(I), and by (10) the
two bounds coincide and are equal to ∆(F (∂+S)). The definition of S yields that any I ∈ F (∂+S) is such that ∆(I) = L+1,
and the conclusion follows.

6. Proof of Theorem 3.1 (Transition Time Between Dominant States)

In this section, we prove Theorem 3.1, exploiting the communication height Γ , together with a well-known result about
exit times fromcycles, namely Theorem6.23 in [17]. In order to do so,wewill consider the uniformized discrete-time version
of the activity process. In more detail, we construct a discrete-time Markov chain {X̃(t)}t∈N starting from the continuous-
time Markov process {X(t)}t≥0 by means of uniformization at rate qmax = L2ξ , where ξ = max{pµ, ν}. The transition
probabilities of the new Markov chain are as follows:

p(I, J) =


ν/qmax, if |I△J| = 1, I ⊂ J,
pµ/qmax, if |I△J| = 1, J ⊂ I,

1 −


I ′≠I

p(I, I ′), if I = J,

0, otherwise.

Since we are interested in the regime σ → ∞, we will assume that σ ≥ 1, so ξ = ν, and the above transition probabilities
may be written in the form

p(I, J) =


c(I, J)σ−[H(J)−H(I)]+ , if I ≠ J,

1 −


I ′≠I

p(I, I ′), if I = J,

where H : Ω → R is the Hamiltonian defined as H(I) := −|I| and c is the connectivity function c : Ω2
\ {(I, I) : I ∈ Ω} →

[0, 1], defined as

c(I, J) =


1/L2, if |I△J| = 1,
0, otherwise.

The process {X̃(t)}t∈N is a reversible Markov chain which, taking σ = eβ , satisfies conditionM in [17, p. 336], and thus fits in
that framework. Moreover, its stationary distribution is the same as that of the original continuous-time process {X(t)}t≥0,
see (1), and can be rewritten as

π(I) =
e−βH(I)

J∈Ω

e−βH(J)
, I ∈ Ω.

Let (Yn)n∈N be a sequence of i.i.d. exponential random variables with mean 1/qmax. If X̃(0) = X(0) and n(t) := sup{m :m
n=1 Yn ≤ t}, then {X(t)}t≥0

d
= {X̃(n(t))}t≥0.

For I ∈ Ω and A ⊆ Ω , let τ I
A(σ ) := inf{t > 0 : X̃(t) ∈ A} be the first hitting time of the set A for the process X̃(t) starting

in I at t = 0, and let TI→A(σ ) := inf{t > 0 : X(t) ∈ A} be its continuous-time counterpart, namely the first hitting time of
the set S for the process X(t) starting in I at t = 0. These hitting times are closely related:

TI→A
d
=

τ I
A

n=1

Yn.
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In particular,

ETI→A(σ ) =
1

qmax
Eτ I

A(σ ). (11)

Let us now focus on the Markov chain {X̃(t)}t∈N. As shown in Proposition 5.3, this process must exit from the set S in
order to make the transition E → O. In particular, it must hit the set ∂+S, the external boundary of S, before reaching E .
Therefore τ E

O ≥st τ
E
∂S , and hence

P

τ E
O ≥ eβ(Γ −ε)


≥ P


τ E
∂+S

≥ eβ(Γ −ε)

. (12)

Theorem 6.23 in [17] says that, for any ε > 0, there exist k(ε) > 0 and β0 > 0 such that, for all β ≥ β0, and for any I ∈ S,

P

τ I
∂+S < eβ(D(S)−ε)


≤ e−k(ε)β , (13)

where D(S) is the depth of the cycle S, which is equal to Γ by construction. Eqs. (12) and (13) imply that for every ε > 0
there exist k(ε) > 0 and β0 > 0 such that, for all β ≥ β0,

P

τ E
O ≥ eβ(Γ −ε)


≥ 1 − e−βk(ε).

In particular, ∃ β1 > β0 such that P

τ E
O ≥ eβ(Γ −ε)


≥ 1/2. Thus

Eτ E
O ≥ E


τ E
O | τ E

O ≥ eβ(Γ −ε)


P

τ E
O ≥ eβ(Γ −ε)


≥

1
2
eβ(Γ −ε).

Therefore, for β > β1,

logEτ E
O ≥ β(Γ − ε) log 2−1

= β(Γ − ε) − log 2,

and hence
1
β

logEτ E
O ≥ Γ − ε −

log 2
β

,

or, equivalently, by replacing β = log σ , for σ sufficiently large,

logEτ E
O

log σ
≥ Γ − ε −

log 2
log σ

.

Taking the liminf for σ → ∞ on both sides, we get

lim inf
σ→∞

logEτ E
O

log σ
≥ Γ − ε,

and, since ε is arbitrary, it follows that

lim inf
σ→∞

logEτ E
O

log σ
≥ Γ . (14)

Using the fact that qmax = L2ν = L2σpµ, (11) implies that

log(µETE→O) = logEτ E
O − log(L2) − log σ − log p,

and hence

lim inf
σ→∞

log(µETE→O)

log σ
= lim inf

σ→∞

logEτ E
O − log(L2) − log σ − log p

log σ
= lim inf

σ→∞

logEτ E
O

log σ
− 1 + α

(14)
≥ Γ − 1 + α,

with α = lim infσ→∞ −
log p
log σ

. The conclusion then follows from Theorem 3.3, which states that Γ = L + 1.

7. Concluding remarks

We have obtained delay bounds for random-access grid networks, which show that the delays grow dramatically with
both the load and the dimension of the network. For transparency, we have focused on symmetric grid networks, but the
proof techniques and delay bounds are expected to extend to a far broader range of scenarios.

In the present paper, we have assumed the activation rate ν and back-off probability p to be static parameters. A natural
question is whether dynamic activation rates and back-off probabilities can potentially achieve better delay performance.
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Specifically, various algorithms have recently been proposed where the back-off probability at each node is dynamically
adapted over time as a (decreasing) function p(q) of the instantaneous queue length q [19–22]. Remarkably, for suitable
choices of the function p(·), such algorithms are guaranteed to provide maximum stability in arbitrary topologies, without
any explicit knowledge of the arrival rates. However, lower bounds in [23] demonstrate that for such choices of p(·) the
delays are of the order exp

 1
2(1−ρ)


, for the L × L toric grid growing even faster with the load than the (1 − ρ)−L scaling we

obtained.
In the specific case of an L × L grid, the fluid-limit results in [24] suggest that maximum stability would actually be

maintained as long as the function p(q) decays no faster than q−2/L2 . The lower bounds in [23] then indicate that the delays
grow as (1 − ρ)−L2/2, which is still faster than the bounds we obtained for fixed back-off probabilities. In order for the lower
bounds for queue-based back-off probabilities in [23] to match the lower bounds in the present paper for fixed back-off
probabilities, the function p(q) should decay as q−1/L, but it is not clearwhethermaximumstabilitywould remain guaranteed
in that case.
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