
Multi-Agent Reinforcement Learning for
Power Grid Topology Optimization

Erica van der Sar, Alessandro Zocca, Sandjai Bhulai
Department of Mathematics, Vrije Universiteit, Amsterdam, The Netherlands

{e.t.van.der.sar, a.zocca, s.bhulai}@vu.nl

Abstract—Recent challenges in operating power networks arise
from increasing energy demands and unpredictable renewable
sources like wind and solar. While reinforcement learning (RL)
shows promise in managing these networks, through topological
actions like bus and line switching, efficiently handling large action
spaces as networks grow is crucial. This paper presents a hier-
archical multi-agent reinforcement learning (MARL) framework
tailored for these expansive action spaces, leveraging the power
grid’s inherent hierarchical nature. Experimental results indicate
the MARL framework’s competitive performance with single-
agent RL methods. We also compare different RL algorithms for
lower-level agents alongside different policies for higher-order
agents.

Index Terms—Graph neural networks, Multi-agent reinforcement
learning, Power grid reliability, Topology optimization, Transmis-
sion networks.

I. INTRODUCTION

In 2019, the French TSO RTE launched the Learning to Run
a Power Network (L2RPN) challenge [1], encouraging diverse
researchers to use reinforcement learning (RL) for power
network maintenance. While various solutions emerged, see
[2]–[4] and more recently [5], [6], all faced challenges with the
vast combinatorial action space, including line-switching and
bus-splitting. This underscores the need for an advanced RL
framework ensuring scalability and easy integration of actions
like generation redispatch.
Multi-Agent Reinforcement Learning (MARL) seems a well-
suited approach to address these challenges due to their
scalability. However, its potential in this domain remains
underexplored. A recent paper by [7] introduced a hierarchical
reinforcement learning (HRL) framework where RL agents
have roles based on their operational level. Still, a primary
agent determines the best topological action.
A recent paper [2] utilizes a hierarchical framework that
activates a soft actor-critic (SAC) agent [8] only when issues
related to grid safety arise and uses graph attention layers
to learn the intricate dependencies within the power network.
While this SAC approach keeps a small action space due to
its after-state implementation, its adaptability to network shifts
is limited. To address this limitation, we transitioned to a soft
actor-critic discrete (SACD) agent [9] that learns directly from
actions rather than the after-state.
Although this adjustment does lead to a larger action space,
we distribute tasks to multiple RL agents per substation
instead of one global agent. This change brings benefits like
reduced action space per agent, enhanced scalability, and easier

integration of actions like generator redispatching, forming a
cooperative MARL framework [10].
The simplest independent learning MARL treats each agent
independently and considers the rest of the agents as part
of the environment [11]. This approach avoids scalability
and communication issues, however, the non-stationarity of
the environment from each agent’s perspective slows and
possibly hinders learning. We use the centralized training
with decentralized execution strategy [12], allowing agents to
access additional information during training but not during
execution.
This paper introduces various MARL strategies for power grid
control, utilizing the problem’s inherent hierarchical structure.
In addition to SACD, we use another state-of-the-art RL
algorithm, proximal policy optimization (PPO) [13].
The paper is organized as follows: Section II discusses Grid2Op
and previous solutions on L2RPN; Section III details our RL
methods; Section IV presents our findings; and Section V
concludes and outlines future work.

II. BACKGROUND AND RELATED WORK

A. Controlling a power network: the Grid2Op environment

This section introduces Grid2Op [14], an open-source frame-
work used for the Learning to Run a Power Network (L2RPN)
competitions [1], [15], [16]. Designed for sequential decision-
making in power systems, its aim is to ensure a safe power
network by avoiding contingencies and ensuring constant
connectivity. Grid2Op simulates real-world power grids, de-
picting them as graphs with nodes as substations and edges as
transmission lines or transformers. Each substation connects
various elements like generators, loads, and storage units, and
connects to one of two buses. A consistent bus connection
makes a substation a singular node; differing connections ‘split’
it, changing the local network topology. Grid2Op can compute
the resulting power flow configurations from any topology
change; see an example in Fig. 1. Modifications in a substation’s
bus configuration are termed bus-switching actions. Grid2Op
simulates other actions like line-switching and power redispatch
actions. Cost-effective for responding to contingencies, these
topological actions redistribute line flows, mitigating issues
without the need for pricier generators or load adjustments.
In this paper, we focus solely on bus-switching actions, and we
use the realistic Grid2Op environment to develop a sequential
decision-making RL model, termed agent, that keeps the power
grid in a safe regime by choosing optimal bus-switching actions.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

Figure 1: Example of a bus-switching action by an agent and
the effect on the environment. Some elements of substation 0
are assigned to bus 2, which results in a split of substation 0,
and a consequent power flow redistribution.

B. Previous solution approaches for L2RPN

The winning approach of L2RPN WCCI 2020 was the Semi-
Markov Afterstate Actor-Critic (SMAAC) proposed by [2]. It
acts only in dangerous states, transitioning from a Markov to a
semi-Markov decision process. Instead of learning specific ac-
tions, SMAAC learns the optimal bus substation configuration,
termed goal topology. Given that only one substation can be
acted on at once in L2RPN, determining the action sequence
is crucial. The authors of [2] used a two-tiered system: the
“high-level” SAC-based policy sets the goal, while the “low-
level” policy defines the sequence, with four rule-based options
tested for the latter. SMAAC’s goal topology ensures the SAC
algorithm learns fewer values. Yet, this leads to an agent that is
largely unresponsive to environmental shifts. It tends to stick to
one effective configuration without adapting as needed. Small
actor output changes often do not influence the action unless
they surpass a set threshold, complicating course correction
during gradient descent.
Another recent paper [7] employs a three-tiered structure for
optimal power network topology control. Like [2], the top level

is rule-based. The intermediate-level agent selects the substation
and utilizes PPO or SAC-trained policies. The lowest level uses
either a brute-force method examining all configurations or an
RL agent with an action mask aligned with the intermediate-
level agent’s choice.

III. METHODS

In this section, we provide details about the RL environment
we used and our proposed RL architectures and algorithms.

A. Reinforcement learning environment: Grid2Op

The Grid2Op environment described in Section II-A is typically
described as a Markov Decision Process (MDP) defined by
(S,A, p, r), where at each time step t an agent observes
a state st ∈ S from the environment and takes an action
at ∈ A. The environment returns the next state st+1 ∈ S
to the agent with probability p(st+1|st, at), which is the
unknown state transition probability, and the agent receives an
immediate reward r(st, at) ∈ R. With this MDP formulation,
reinforcement learning (RL) can be used to learn a (stochastic)
policy π(at|st) that optimizes the expected discounted reward
Eπ[

∑T
t=0 γ

tr(st, at)], where γ ∈ (0, 1) is the discount factor.
Within the Grid2Op environment, the state st that the agent can
observe at time t consists of (i) the current generator and load
states, including power production/consumption; (ii) the current
topology configuration, comprehensive of line connections and
current bus configuration at each substation; and (iii) the current
load ρℓ ∈ [0, 1] on each line ℓ, measured as the fraction of the
capacity of that power line.
The agent must choose a bus-switching action at from
the fixed collection A of substation reconfigurations. These
always include the trivial action, which we name do-nothing
action, that does not change the current bus configuration. As
mentioned in Section II, the objective is to keep the power
network in a safe state cost-effectively throughout each episode.
Congested lines auto-disconnect based on overload severity
and have a reconnection delay. Any network disconnection or
isolation of a load or generator results in a “game over” with
a reward of −1.
To steer the agent towards learning how to maintain a safe
power grid, it is important to have a proper reward function that
penalizes whenever power lines are in overload. When lines
are congested, it leads to an increase in energy loss within
the network. Therefore, during training, we use the energy
efficiency of the power grid as a reward function defined
by rescaling the ratio of the total served load and the total
generation, similarly to [2].

B. Reinforcement learning algorithms

Next, we introduce two RL algorithms: a discrete Soft Actor-
Critic variant (SACD) and Proximal Policy Optimization
(PPO). In both algorithms, the policy, indicated by π, will be
parameterized using a neural network with learnable parameters
θ, while the action-value function, denoted by Q(st, at), and
for PPO the state-value function V (st) will be represented by
a neural network with parameters ϕ.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

1) Soft actor-critic discrete (SACD): Soft Actor-Critic (SAC)
[8] is an off-policy reinforcement learning algorithm aiming for
efficient and stable learning in continuous action spaces. The
algorithm incorporates an entropy term into its reward function,
effectively encouraging more exploratory behavior. This leads
to improved state-space exploration and provides a degree of
robustness in policy learning. The core advantage of SAC is
its ability to balance exploration and exploitation efficiently.
Soft actor-critic discrete (SACD) is an adjustment of SAC to
make the algorithm applicable to discrete environments [9].
For the critic, we learn a soft q-function Qϕ(s, a) via off-policy
temporal-difference learning by minimizing the critic-loss:

JQ(ϕ) = E(st,at)∼D

[1
2

(
Qϕ(st, at)− y(st, at)

)2]
(1)

with y(st, at) = rt + γE[Vϕ̄(st+1)],

where D is a replay buffer of past experiences and ϕ̄ is the
parameter for the target critic network, and the soft state value
calculation is defined as

Vϕ̄(st+1) = πθ(st+1)
T
[
Q(st+1)− α log

(
πθ(st+1)

)]
,

where α determines the relative importance of the entropy term
versus the reward and is called the temperature parameter.
The objective function of the policy, the actor-loss, is:

Jπ(θ) = Est∼D

[
π(st)

[
α log

(
πθ(st)

)
−Qϕ(st)

]]
. (2)

The objective function for the temperature parameter α is

J(α) = πθ(st)
T
[
− α

(
log

(
πθ(st)

)
+ H̄

)]
,

with H̄ a constant vector equal to the hyperparameter repre-
senting the target entropy.
2) Proximal Policy Optimization (PPO): Proximal Policy
Optimization (PPO) [13] is a policy optimization algorithm that
improves upon traditional policy gradient methods by introduc-
ing a clipped surrogate objective function. This ensures that
policy updates remain close to the original policy, effectively
balancing the trade-off between exploration and exploitation.
For PPO, the policy loss is computed as

LCLIP
t (θ) = E

[
min

(
rt(θ)At, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
At

)]
,

with ϵ a clipping hyperparameter, rt(θ) = πθ(at|st)/πθ̄(at|st)
denotes the probability ratio with θ̄ the parameters of the
current policy, and At is the generalized advantage estimation
(GAE) function defined as

At =

h∑
l=0

(γλ)l
[
rt+l + γVϕ(st+l+1)− Vϕ(st+l)

]
,

where h is the number of time steps collected in each iteration.
The critic-loss is again a squared error loss

LVF
t (ϕ) =

(
Vϕ(st)− V targ

t

)2
=

(
Vϕ(st)− (At + Vϕ̄(st)

))2

.

Combining both losses, the following objective is obtained,
which is minimized in each iteration:

Lt = Et

[
− LCLIP

t (θ) + c1L
VF
t (ϕ)− c2S

[
πθ(st)

]]
,

where c1, c2 are coefficients, and S denotes an entropy bonus.

C. Hierarchical architecture

Building on suggestions from [2] and [7], power network
control naturally fits a hierarchical scheme due to the tiered
nature of topological actions. Decisions range from determining
if an action is needed, selecting substations to act upon, to
finalizing their busbar configuration. We introduce a three-
level hierarchical reinforcement learning framework, detailed
subsequently.
1) Highest level: At the highest level, a single agent determines
whether to act at each time step, often doing nothing in safe
environments. We use a rule-based method, similar to prior
L2RPN implementations. The agent checks for any critically
loaded line, with a load ρ exceeding a threshold ρthresh. When
the environment is unsafe, that is maxℓ ρℓ > ρthresh, the highest-
level agent activates the mid-level one. It remains passive while
lower agents work, evaluating environment safety after their
actions conclude.
2) Mid level: The intermediate level has a single agent that,
upon activation, selects the substations requiring action. Since
network operators typically prefer to intervene at a single
substation at a time, the mid-level agent is also tasked with
establishing the order in which the selected substations should
act. Taking a rule-based approach, we apply the CAPA policy
from [2], known for its effectiveness in the context of goal
topology. This policy prioritizes substations with higher line
loads. The mid-level agent then sequentially activates the low-
level agents based on the chosen order.
3) Lowest level: The lowest level features substation-specific
agents, each responsible for selecting bus assignments for their
substation’s elements. These agents have a predefined discrete
action space, further reduced by excluding symmetric actions.
Unlike rule-based higher-level agents, these agents use rein-
forcement learning to determine optimal policies, aligning with
the Multi-Agent Reinforcement Learning (MARL) framework.
Our unique approach of multiple substation-specific agents
for topology decisions distinguishes our method from prior
hierarchical strategies. The subsequent section delves into the
MARL architectures we explore.

D. Multi-agent reinforcement learning (MARL)

As mentioned in Section III-C3, for the lowest level agent, we
use a Multi-Agent Reinforcement Learning (MARL) framework
where multiple agents function in a shared environment.
We explored two MARL variants with independent and
dependent agents. Independent agents each learn their own
policy, viewing others as part of the environment. This
makes the environment non-stationary for each agent due to
others’ learning, eliminating convergence assurances. However,
independent agent structures have empirically shown effective
performance. In contrast, dependent agents, collaborating and
sharing information, can produce more coherent and effective
multi-agent policies. Yet, handling inter-agent dependencies can
increase computational costs and scaling difficulties. Hence, for
the dependent agents, we embrace the Centralized Training with
Decentralized Execution (CTDE) paradigm, a favored approach
in cooperative MARL [17], [18]. In this paradigm, agents train

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

using global state information for collective learning, but make
decisions via decentralized local policies.
We evaluate two primary model-free RL algorithms, Proximal
Policy Optimization (PPO) and the Soft Actor-Critic with a
discrete action space (SACD) from Section III-B, resulting in
four distinct MARL strategies:

1) Independent agents SACD (ISACD);
2) Independent agents PPO (IPPO);
3) Dependent agents SACD (DSACD);
4) Dependent agents PPO (DPPO).

In the next subsections, we elaborate on each strategy. Regard-
less of the chosen approach, the mid-level agent’s activation
sets a sequence for the low-level agents. Although the sequence
persists even if a low-level agent takes no action, we omit such
actions to save time and reduce “game over” risks.
1) Independent SACD (ISACD): In the independent MARL
version, each agent has its own critic and actor, which are
updated based on their own state-action pairs. For each agent i,
we update its state-action value-function Qi

ϕ and its policy πi
θ

using (1) and (2) respectively, based on the transitions stored
in Di. Thus, to compute the critic-loss for agent i, we have:

JQi(ϕ) = E(st,at)∼Di

[1
2

(
Qi

ϕ(st, at)− y(st, at)
)2]

(3)

with

y(st, at) = rt + γE
[
V i
ϕ̄(st+1)

]
,

where the soft state-value function of the next state is calculated
based on the agents’ i own policy and critic:

V i
ϕ̄(st+1) = πi

θ(st+1)
T
[
Qi(st+1)− α log

(
πi
θ(st+1)

)]
.

2) Independent PPO (IPPO): Similarly to the independent
MARL version for SACD, in IPPO, the policy and critic-loss
for each agent i are calculated based on their own replay buffer
Di. For each agent i we, will update the policy loss with

LCLIP
t (θi) = E

[
min

(
rt(θ

i)Ai
t, clip

(
rt(θ

i), 1− ϵ, 1 + ϵ
)
Ai

t

)]
,

where rt(θ
i) = πθi(at|st)/πθ̄i(at|st) and the GAE becomes

Ai
t =

h∑
l=0

(γλ)lδit+l with δit = rit + γV i(st+1)− V i(st). (4)

The critic-loss and combined loss are computed per agent i.
3) Dependent SACD (DSACD): The independent learning
method, while simple, often struggles with non-stationarity
and may not achieve the optimal policy due to limited
information sharing during training. A proposed solution is
using a centralized critic, incorporating all agents’ actions
Q(s, a1, . . . , an). However, this approach risks the curse of
dimensionality since we can have

∏n
i=1 |Ai| number of action

combinations.
The L2RPN challenge environment’s structure ensures agents
do not act simultaneously within a time step. As detailed in
Section III-C2, lower-level agents activate sequentially based on
substation loads. There is a certain probability pij that the lower-
level agent j acts after agent i, based on the load distribution in

this substation. These distributions are not known a priori, so
they are estimated during the training phase. These probabilities
pij are stored in matrix π̂mid, which is used to update the
value functions of the critics, making the update of agent i
dependent on the current value function of the other agents. We
still use (3) to compute the critic-loss for agent i, but modify
the expression y into y(st, at) = rt + γE[V̂ (st+1)]. Here,
V̂ (st+1) is the average soft state-value function accounting for
the likelihood of each agent to act after agent i, i.e.,

V̂ (st+1) = (π̂i
mid)

T

V
1(st+1)

...
V n(st+1)

 ,

where π̂i
mid = [pi1 . . . pin]

⊤ is a vector whose j-th entry is the
empirical probabilities of activating agent j after agent i using
the current mid-level agents’ policy πmid.
4) Dependent PPO (DPPO): Like the DSACD agent, the
DPPO agent will use the probability matrix π̂mid, but now to
update the GAE. All equations remain the same, except for
the temporal difference in (4), which changes to

δit = rit + γ(π̂i
mid)

T

V
1(st+1)

...
V n(st+1)

− V i(st)

to reflect a dependent update for each agent i.

IV. RESULTS

In this section, we present the results obtained using both single-
agent and multi-agent architectures in the L2RPN context.

A. Experimental setup

We apply our RL-based design to the IEEE case 5 environment,
a power grid with 5 substations, 8 lines, 2 generators, and 3
loads, shown in Fig. 1. This environment has 20 episodes,
or chronics, per Grid2Op documentation. Each episode has
2016 time steps, representing 5-minute intervals, showcasing
varying demand and supply patterns. For diverse training starts,
episodes are divided into five overlapping sub-episodes of 864
time steps, equaling three days. We allocated 18 episodes for
training, one for testing, and one for validation.
Each of the four RL architectures was trained for 10,000
interactions across five model seeds, counting only steps where
the low-level agents were active. For every 100 interactions,
agent performance was assessed using test sub-episodes and
the L2RPN Codalab competition’s rescaled score function. This
score differs from the reward function used during training, but
it captures the agents’ performance well. Using this function,
the agent receives a score between −100 and 0 when the agent
dies before the Do-Nothing baseline agent would, a score above
0 when it outperforms the baseline, and a score between 80
and 100 if the agent is able to finish the episode.
Substations with less than three connected elements are not
as crucial to control, since most actions either disconnect
elements or resemble line-switching actions. We limit agents
to substations of size larger than 3, resulting in three low-level
agents in the MARL setup.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

Figure 2: Training progress of the single-agent SACD, and
two versions of multi-agents ISACD and DSACD, using the
original and tuned parameters, respectively (cf. Table I).

B. Hyperparameters

Both PPO and SACD algorithms have multiple hyperparameters
that influence the progress of training. For single-agent algo-
rithms, we used default parameters both for PPO and SACD
based on the literature [2], [9], [13]. However, as mentioned
in [19], multi-agent RL may require different hyperparameters
compared to single-agent RL for optimal performance. There-
fore, in the MARL context, we tuned the hyperparameters
using Optuna, an open-source hyperparameter optimization
framework [20]. Table I summarizes the hyperparameters we
used both in the single-agent and multi-agent settings.

Parameters PPO MAPPO SACD MASACD
(Mini-)Batch size 4 x 32 2 x 32 64 16
Update start 4 3
Discount (γ) 0.95 0.996 0.995 0.998
Learning-rate 0.003 0.002 5× 10−5 0.0002
VF coeff. (c1) 0.5 0.5
Entropy coeff. (c2) 0.01 5× 10−5

Clipping param. (ϵ) 0.2 0.12
GAE param. (λ) 0.95 0.85
Target entropy scale 0.98 0.98
Tau 0.001 0.002

Table I: Parameters used for the different RL algorithms. The
two multi-agent versions of PPO (IPPO and DPPO) use the
same parameters, reported in the column MAPPO. Similarly,
the column MASACD reports the parameters used for both
the multi-agent versions of SACD (ISACD and DSACD).

We did not perform any hyperparameter tuning for the design
of the actor and critic networks. For training, we used the
Adam optimizer. In both single- and multi-agent SACD, we
used 3 GNN blocks in the shared layer with a dimension of 128.
For the actor, we use 3 GNN blocks again, and for the critic 1
GNN block. Furthermore, in both the single- and multi-agent
PPO we used 3 GNN blocks in both the critic and the actor.

Figure 3: Training progress of the single-agent PPO, and two
versions of multi-agents IPPO and DPPO, using the original
and tuned parameters, respectively (cf. Table I).

C. Comparison of Single-Agent RL vs. Multi-Agent RL

In this section, we present the main results for single-agent
and multi-agent RL architectures. In all plots, we show the
mean episode score (solid line) and the corresponding standard
error (shaded area) averaged over different model seeds to give
insight into the training progress.

1) SACD algorithm: Fig. 2 shows the results of the single-
and multi-agent versions of SACD. The single-agent version is
able to achieve the optimal score but seems to remain unstable
until the end. Fig. 2 also reports the scores of ISACD and
DSACD deployed either (i) using hyperparameters identical to
those used in the single-agent SACD (cf. the SACD column in
Table I) or (ii) using ad-hoc hyperparameters obtained using
Optuna. It is clear that hyperparameters optimized for the
single-agent SACD version exhibit suboptimal performance
when directly applied to their multi-agent counterparts. With
optimized parameters, ISACD achieves peak scores but suffers
from instability, performing significantly worse than SACD, as
expected in Section III-D3. The DSACD agent with tuned
parameters achieves an optimal score after a number of
environment interactions comparable to those needed by the
single agent. However, this agent is much more stable and, in
fact, maintains a perfect optimal score until the training ends.

2) PPO algorithm: Fig. 3 illustrates the results for the single-
and multi-agent versions of PPO. Even if the single-agent
version converges more quickly, all agents are able to find
the optimal solution. In terms of hyperparameters, the score
difference between multi-agent algorithms with or without
optimized parameters is less significant than when using SACD.
This can be explained by the fact that the difference between
the hyperparameters in PPO and MAPPO is modest and by
the fact that PPO is less sensitive to hyperparameter changes.
In the single-agent case, PPO outperforms SACD, but looking
at the multi-agent setting, they achieve the maximum score

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

Figure 4: Training progress using different policies for the
mid-level agent for DSACD.

after a similar number of environment interactions. Note that
the independent version of PPO is not as unstable as ISACD.

D. Comparing different mid-level policies

For completeness, we investigate the effects of using other
policies for the mid-level agent, which are different from the
CAPA policy described in Section III-C2. More specifically,
we consider a fixed policy, in which the mid-level agent orders
the low-level agents based on the size of the corresponding
substations, and a random policy, in which every time the
low-level agents act in random order. The results of these tests
are shown in Figs. 4 and 5. The random policy results in more
unstable behavior than the other two. The difference between
CAPA and the fixed policy is more difficult to appreciate. It
makes sense that with random patterns in the order of the
agents, the agents have more trouble learning the right actions
compared to a more fixed order. We expect that when training
both the mid-level and lowest-level agents simultaneously this
will become a challenge.

V. CONCLUSION

This paper presents a hierarchical Multi-Agent Reinforcement
Learning (MARL) framework for power network management
through topological actions. Our architecture uses rule-based
agents at the highest and mid levels, emphasizing varied MARL
strategies for the lowest level. Future work will develop learning
policies for these agents, addressing inter-level dependencies,
and expand experiments to larger networks, further amplifying
MARL’s advantages over single-agent systems.

REFERENCES

[1] A. Marot, B. Donnot, C. Romero, B. Donon, M. Lerousseau, L. Veyrin-
Forrer, I. Guyon, Learning to run a power network challenge for training
topology controllers, Electr. Power Syst. Res. 189 (2020) 106635.

[2] D. Yoon, S. Hong, B.-J. Lee, K.-E. Kim, Winning the l2rpn challenge:
Power grid management via semi-Markov afterstate actor-critic, in:
International Conference on Learning Representations, 2021.

Figure 5: Training progress using different policies for the
mid-level agent for DPPO.

[3] B. Zhou, H. Zeng, Y. Liu, K. Li, F. Wang, H. Tian, Action set based policy
optimization for safe power grid management, in: Machine Learning
and Knowledge Discovery in Databases. Applied Data Science Track,
Springer International Publishing, 2021, pp. 168–181.

[4] M. Subramanian, J. Viebahn, S. H. Tindemans, B. Donnot, A. Marot, Ex-
ploring grid topology reconfiguration using a simple deep reinforcement
learning approach, 2021 IEEE Madrid PowerTech (2021) 1–6.

[5] M. Dorfer, A. R. Fuxjäger, K. Kozak, P. M. Blies, M. Wasserer, Power
grid congestion management via topology optimization with alphazero,
arXiv preprint arXiv:2211.05612 (2022).

[6] A. R. R. Matavalam, K. P. Guddanti, Y. Weng, V. Ajjarapu, Curriculum
based reinforcement learning of grid topology controllers to prevent
thermal cascading, IEEE Trans. Power Syst. 38 (5) (2023) 4206–4220.

[7] Anonymous, Hierarchical reinforcement learning for power network
topology control, Submitted to TMLR, https://openreview.net/forum?id=
XgmAz5MSQH (2023).

[8] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,
in: ICML, PMLR, 2018, pp. 1861–1870.

[9] P. Christodoulou, Soft actor-critic for discrete action settings, arXiv
preprint arXiv:1910.07207 (2019).

[10] A. Oroojlooy, D. Hajinezhad, A review of cooperative multi-agent deep
reinforcement learning, Applied Intelligence 53 (11) (2023) 13677–13722.

[11] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative
agents, in: Proceedings of the tenth international conference on machine
learning, 1993, pp. 330–337.

[12] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch,
Multi-agent actor-critic for mixed cooperative-competitive environments,
Advances in neural information processing systems 30 (2017).

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017).

[14] Grid2op 1.9.4 documentation, https://grid2op.readthedocs.io/en/latest/.
[15] A. Marot, B. Donnot, G. Dulac-Arnold, A. Kelly, A. O’Sullivan,

J. Viebahn, M. Awad, I. Guyon, P. Panciatici, C. Romero, Learning to
run a power network challenge: a retrospective analysis, in: Proceedings
of the NeurIPS 2020, Vol. 133 of PMLR, 2021, pp. 112–132.

[16] A. Marot, B. Donnot, K. Chaouache, A. Kelly, Q. Huang, R.-R. Hossain,
J. L. Cremer, Learning to run a power network with trust, Electr. Power
Syst. Res. 212 (2022) 108487.

[17] R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, I. Mordatch,
Multi-agent actor-critic for mixed cooperative-competitive environments,
in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information
Processing Systems, Vol. 30, 2017.

[18] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Coun-
terfactual Multi-Agent Policy Gradients, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32, 2018.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

https://openreview.net/forum?id=XgmAz5MSQH
https://openreview.net/forum?id=XgmAz5MSQH
https://grid2op.readthedocs.io/en/latest/

[19] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, Y. WU, The
surprising effectiveness of PPO in cooperative multi-agent games, in:
Advances in Neural Information Processing Systems, Vol. 35, 2022, pp.
24611–24624.

[20] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-
generation hyperparameter optimization framework, in: Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, 2019, pp. 2623–2631.

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024

	Introduction
	Background and Related work
	Controlling a power network: the Grid2Op environment
	Previous solution approaches for L2RPN

	Methods
	Reinforcement learning environment: Grid2Op
	Reinforcement learning algorithms
	Soft actor-critic discrete (SACD)
	Proximal Policy Optimization (PPO)

	Hierarchical architecture
	Highest level
	Mid level
	Lowest level

	Multi-agent reinforcement learning (MARL)
	Independent SACD (ISACD)
	Independent PPO (IPPO)
	Dependent SACD (DSACD)
	Dependent PPO (DPPO)

	Results
	Experimental setup
	Hyperparameters
	Comparison of Single-Agent RL vs. Multi-Agent RL
	SACD algorithm
	PPO algorithm

	Comparing different mid-level policies

	Conclusion
	References

