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This paper investigates large fluctuations of Locational
Marginal Prices (LMPs) in wholesale energy markets
caused by volatile renewable generation profiles.
Specifically, we study events of the form

P
(
LMP /∈

n∏
i=1

[α−i , α
+
i ]
)
, (0.1)

where LMP is the vector of LMPs at the n

power grid nodes, and α−,α+ ∈Rn are vectors
of price thresholds specifying undesirable price
occurrences. By exploiting the structure of the supply-
demand matching mechanism in power grids, we
look at LMPs as deterministic piecewise affine,
possibly discontinuous functions of the stochastic
input process, modeling uncontrollable renewable
generation. We utilize techniques from large deviations
theory to identify the most likely ways for extreme
price spikes to happen, and to rank the nodes of the
power grid in terms of their likelihood of experiencing
a price spike. Our results are derived in the case of
Gaussian fluctuations, and are validated numerically
on the IEEE 14-bus test case.

1. Introduction
Modern-day power grids are undergoing a massive
transformation, a prominent reason being the increase
of intermittent renewable generation registered in
the first two decades of the 21st century [29]. The
inherently uncertain nature of renewable energy sources
like wind and solar photovoltaics is responsible for
significant amounts of variability in power output, with
important consequences for energy markets operations.
In particular, energy prices can exhibit significant
volatility throughout different hours of the day, and are
usually negatively correlated with the amount of
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renewable generation in the grid [25]. In this paper, we focus on the Locational Marginal
Pricing (LMP) mechanism [8], a market architecture adopted by many US energy markets.
Under the LMP market architecture prices are location-dependent, and the presence of congested
transmission lines causes them to vary wildly across different locations, contributing to their
erratic behavior. On the other hand, under the zonal pricing mechanism [24] (as in most European
markets) a single price is calculated for each zone in the market.

The topic of energy price forecasting has received a lot of attention in the forecasting
community in the last 20 years, since the restructuring of energy markets from a government-
controlled system to a deregulated market [36]. Thanks to the particularly rich mathematical
structure of the LMP mechanism, prediction models for LMPs are not limited to traditional
statistical analysis and stochastic model-based techniques, but include structural methods
exploiting the mathematical properties of the supply-demand matching process performed by
grid operators, known as the Optimal Power Flow (OPF) problem [15].

The relevant literature on structural prediction models can be categorized based on whether it
takes an operator-centric [2,16] or a participant-centric [9,28,38] point of view.

In the former case, it is assumed that the modeler has full knowledge of all the parameters
defining the OPF formulation, such as generation cost functions, grid topology, and physical
properties of the network. In [2], the authors analyze the uncertainty in LMPs with respect to
total load in the grid, relying on the structural property that changes in LMPs occur at the so-
called critical load levels. In [16], both load and generation uncertainty is considered, and a
multiparametric programming approach is proposed.

The market participant-centric approach, conversely, relies only on publicly available data,
usually limited to grid-level, aggregated demand and generation, and nodal price data, without
assuming knowledge of the network parameters. In [38], the authors utilizes the structure of the
OPF formulation to infer the congestion status of transmission lines based only on zonal load
levels, while in [9] a semi-decentralized data-driven approach, based on learning nodal prices as a
function of nodal loads using support vector machines, is proposed. In [28], a fully decentralized
forecasting algorithm combining machine learning techniques with structural properties of the
OPF is presented, and validation on the Southwest Power Pool market data results in accurate
day-ahead predictions of real-time prices.

The methodologies described above have varying levels of performance in predicting expected
intra-day variations, but they all have limitations when predicting extreme price spike values.
Even when assuming a a fully centralized perspective, forecasting price spikes is a notoriously
difficult problem [18], and is mostly undertaken within the framework of zonal electricity
markets [12,18,26,35], while the corresponding problem for LMP-based markets has received less
attention. At the same time, the connection between locational marginal pricing and congestion
status of the grid makes this problem particularly relevant for the discussion on financial
transmission rights [5], while a deeper understanding of the occurrence of high price events can
inform network upgrades aimed at mitigating them [37].

In this paper, we study the problem of predicting large price fluctuations in LMP-based energy
markets from a centralized perspective, proposing a novel approach combining multiparametric
programming techniques [33] with large deviations theory [6]. Large deviations techniques have
been successfully used in fields such as queueing theory, telecommunication engineering, and
finance [4]. In the recent years, they also have been applied in the context of power systems in
order to study transmission line failures [20,23] and statistical properties of blackouts [21].

In the present work we study the probability of nodal price spikes occurrences of the form
P
(
LMP /∈

∏n
i=1[α−i , α

+
i ]
)
, where LMP is the vector of Locational Marginal Prices at the n grid

nodes and α−,α+ ∈Rn are vectors of price thresholds specifying undesirable price occurrences.
Assuming full knowledge of the power grid parameters, we first derive the deterministic function
linking the stochastic input process, modeling renewable generation, to the LMP vector. This,
in turn, allows us to use large deviations theory to identify the most likely ways for extreme
LMP spikes to happen as a result of unusual volatile renewable generation profiles. The large
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deviations approach offers a powerful and flexible framework that holistically combines the
network structure and operation paradigm (the OPF) with a stochastic model for renewable
generation. This approach enables us to: i) approximate the probability of price spikes by means
of solving a deterministic convex optimization problem, ii) rank the nodes of the power grids
according to their likelihood of experiencing price spike events, iii) handle the multimodal nature
of the LMP’s probability distribution, and iv) relax the LICQ regularity condition, an assumption
that is usually required in the relevant literature [2,3,17,38].

The rest of this paper is organized as follows. A rigorous formulation of the problem under
consideration is provided in Section 2, while a connection to the field of multiparametric
programming is established in Section 3. In Section 4, we derive our main large deviations result
relating the event of a rare price spike to the solution of a deterministic optimization problem,
which is further analyzed in Section 5. We illustrate the potential of the proposed methodology
in Section 6 with a case study on the IEEE 14-bus test case and draw our conclusions in Section 7.

2. System model and problem formulation
The power grid is modeled as a connected graph G = G(N , E), where the set of nodesN represents
the n buses in the system, and the set of edges E model the m transmission lines. We assume that
N =Ng tNθ , with |Ng|= ng, |Nθ|= nθ , ng + nθ = n, and wheret denotes a disjoint union. Each
bus i∈Ng houses a traditional controllable generator gi, while each bus i∈Nθ houses a stochastic
uncontrollable generating unit θi. Finally, we assume that a subset of nodesNd ⊆N houses loads,
with |Nd|= nd. We denote the vectors of conventional generation, renewable generation, and
demand, as the vectors g ∈RNg+ ,θ ∈RNθ+ , and d∈RNd+ , respectively. 1 To simplify notation, we
extend the vectors g,θ,d to n-dimensional vectors g̃, θ̃, d̃∈Rn by setting g̃i = 0 whenever i /∈Ng ,
and similarly for θ̃ and d̃. The vectors of net power injections and power flows are denoted by p :=

g̃ + θ̃ − d̃∈Rn and f ∈Rm, respectively.
To optimally match power demand and supply while satisfying the power grid operating

constraints, the Independent System Operator (ISO) solves the Optimal Power Flow (OPF [15])
problem and calculates the optimal energy dispatch vector g∗ ∈Rng , as well as the vector of nodal
prices LMP∈Rn, as we will describe in Section 2(a).In its full generality, the OPF problem is a
nonlinear, nonconvex optimization problem, which is difficult to solve [1].

In this paper we focus on the widely used approximation of the latter known as DC-OPF, which
is based on the DC approximation [27]. The DC approximation relates any zero-sum vector p of net
power injections and the corresponding power flows f via the linear relationship f = Vp, where
the matrix V ∈Rm×n, known as the power transfer distribution factor (PTDF) matrix, encodes
information on the grid topology and parameters, cf. Section 2(c). The DC-OPF can be formulated
as the following quadratic optimization problem:

min
g∈Rng

ng∑
i=1

Ji(gi) =
1

2
g>Hg + h>g (2.1)

s.t. 1>(g̃ + θ̃ − d̃) = 0 : λen (2.2)

f ≤V(g̃ + θ̃ − d̃)≤ f̄ : µ−,µ+ (2.3)

g≤ g̃≤ ḡ : τ−, τ+ (2.4)

where the variables are defined as follows:

H∈Rng×ng diagonal positive definite matrix appearing in the quadratic term of (2.1);
h∈Rng vector appearing in the linear term of the objective function (2.1) ;
V ∈Rm×n PTDF matrix (see definition later, in Eq. (2.11));
f , f̄ ∈Rm vector of lower/upper transmission line limits;

1The notation x∈ RA indicates that the entries in the |A|-dimensional vector x are indexed by the setA.
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g, ḡ ∈Rng vector of lower/upper generation constraints;
λen ∈R dual variable of the energy balance constraint;
µ−,µ+ ∈Rm+ dual variables of the transmission line constraints (2.3),
τ−, τ+ ∈Rng+ dual variables of the generation constraints (2.4);
1∈Rn n-dimensional vector of ones.

Following standard practice [31], we model the generation cost function Ji(·) at i∈Ng as an
increasing quadratic function of gi, and denote by J(g) :=

∑n
i=1 Ji(gi) the aggregated cost.

(a) Locational marginal prices
In this paper, we focus on energy markets adopting the concept of Locational Marginal Prices
(LMPs) as electricity prices at the grid nodes. Under this market architecture, the LMP at a specific
node is defined as the marginal cost of optimally supplying the next increment of load at that
particular node while satisfying all power grid operational constraints, and can be calculated
by solving the OPF problem in Eqs. (2.1)-(2.4). More precisely, let g∗ and J∗ = J(g∗) denote,
respectively, the optimal dispatch and the optimal value of the objective function of the OPF
problem in Eqs. (2.1)-(2.4), and let L be the Lagrangian function. The LMP at bus i is defined as
the partial derivative of J∗ with respect to the demand di, and is equal to the partial derivative of
the Lagrangian with respect to demand di evaluated at the optimal solution:

LMPi =
∂J∗

∂di
=
∂L
∂di

∣∣∣
g∗
. (2.5)

Following the derivation in [28], the LMP vector can be represented as

LMP = λen1 + V>µ∈Rn, (2.6)

where µ = µ− − µ+. Note that µ` = 0 if and only if line ` is not congested, that is, if and only if
f
`
< f` < f̄`. In particular, µ+

` > 0 if f` = f̄`, and µ−` < 0 if f` = f
`
.2 As a consequence, if there are

no congested lines, the LMPs at all nodes are equal, i.e., LMPi = λen for every i= 1 . . . , n, and the
common value λen in (2.6) is known as the marginal energy component. The energy component λen

reflects the marginal cost of energy at the reference bus. If instead at least one line is congested,
the LMPs are not all equal anymore and the term π̃ := V>µ in Eq. (2.6) is called the marginal
congestion component. When ISOs calculate the LMPs, they also include a loss component, which
is related to the heat dissipated on transmission lines and is not accounted for by the DC-OPF
model. The loss component is typically negligible compared to the other price components [30],
and its inclusion goes beyond the scope of this paper.

(b) Problem statement
In this paper, we adopt a functional perspective, i.e., we view the uncontrollable generator as
a variable parameter, or input, of the OPF. In particular, we are interested in a setting where
the objective function, PTDF matrix, nodal demand d, line limits and generation constraints are
assumed to be known and fixed. Conversely, the uncontrollable generation θ ∈RNθ corresponds
to a variable parameter of the problem, upon which the solution of the OPF problem in Eqs. (2.1)-
(2.4) (to which we will henceforth refer as OPF(θ)), and thus the LMP vector, depend.

In other words, the LMP vector is a deterministic function of θ

Rnθ ⊇Θ 3 θ→LMP(θ)∈Rn, (2.7)

where Θ⊆Rnθ is the feasible parameter space of the OPF, i.e., the set of parameters θ such that
OPF(θ) is feasible. In particular, we model θ as a non-degenerate multivariate Gaussian vector
θε ∼Nnθ (µθ, εΣθ), where the parameter ε > 0 quantifies the magnitude of the noise. The mean
µθ ∈ Θ̊ (where Å denotes the interior of the set A) of the random vector θ is interpreted as
the expected, or nominal, realization of renewable generation for the considered time interval.
2µ−, µ+ cannot be both strictly positive, since lower and upper line flow constraints cannot be simultaneously binding.
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Furthermore, we assume that Σθ is a known positive definite matrix, and consider the regime
where ε→ 0. In view of the mapping (2.7), LMP is a n-dimensional random vector whose
distribution depends on that of θ, and on the deterministic mapping θ→LMP(θ). We assume
that the LMP vector corresponding to the expected renewable generation µθ is such that

LMP(µθ)∈ Π̊, (2.8)

where Π :=
∏n
i=1[α−i , α

+
i ], and α−,α+ ∈Rn are vectors of price thresholds. We are interested in

the event Y = Y (α−,α+) of anomalous price fluctuations (or price spikes) defined as

Y (α−,α+) =
{
θ ∈Θ : LMP(θ) /∈

n∏
i=1

[α−i , α
+
i ]
}

(2.9)

=

n⋃
i=1

{θ ∈Θ : LMPi(θ)<α−i or LMPi(θ)>α+
i }, (2.10)

which, in view of Eq. (2.8) and the regime ε→ 0, is a rare event. Without loss of generality, we only
consider thresholds α−,α+ such that the event Y (α−,α+) has a non-empty interior in Rnθ .
Otherwise, the fact that µθ is non degenerate would imply P

(
Y (α−,α+)

)
= 0.

We observe that the above formulation of a price spike event is quite general, and can cover
different application scenarios, as we now outline. For example, if α= α+

i =−α−i > 0 for all i,
then the price spike event becomes

Y (α) = {θ ∈Θ : ‖LMP‖∞ = max
i=1,...,n

|LMPi|>α},

and models the occurrence of a price spike larger than a prescribed value α. On the other hand, if
we define α− = LMP(µθ)− β and α+ = LMP(µθ) + β, for β ∈Rn+, the spike event

Y (β) =

n⋃
i=1

{θ ∈Θ : |LMPi − LMPi(µθ)|>βi},

models the event of any LMPi deviating from its nominal value LMPi(µθ) more than βi > 0.
Moreover, by setting α− = LMP(µθ)− β− and α+ = LMP(µθ) + β+, β−,β+ ∈Rm,+ and
β− 6= β+, we can weigh differently negative and positive deviations from the nominal values. We
remark that negative price spikes are also of interest [10,11] and can be covered in our framework,
by choosing the threshold vectors α−,α+ accordingly. Finally, we can study price spikes at a
more granular level by restricting the union in Eq. (2.10) to a particular subset of nodes Ñ ⊆N .

(c) Derivation of the PTDF matrix V
Choosing an arbitrary but fixed orientation of the transmission lines, the network topology is
described by the edge-vertex incidence matrix A∈Rm×n defined as A`,i = 1 if `= (i, j), A`,i =−1

if `= (j, i), and A`,i = 0 otherwise. We associate to every line `∈ E a weight w`, which we take
to be equal to the inverse of the reactance x` > 0 of that line, i.e., w` = x−1

` [1]. Let D∈Rm×m

be the diagonal matrix containing the line weights D = diag(w,1 . . . , wm). The network topology
and weights are simultaneously encoded in the weighted Laplacian matrix of the graph G, defined
as L = A>DA. Finally, by setting node 1 as the reference node, the PTDF matrix is given by

V := [0 DÃL̃−1], (2.11)

where Ã∈Rm×(n−1) is the matrix obtained by deleting the first columns of A, L̃(n−1)×(n−1) by
deleting the first row and column of L.

3. Multiparametric programming
As discussed in Section 2(b), LMPs can be thought as deterministic functions of the parameter θ.
Therefore, in order to study the distribution of the random vector LMP, we need to investigate
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the structure of the mapping θ→LMP(θ). We do this using the language of Multiparametric
Programming Theory (MPT) [33], which is concerned with the study of optimization problems
which depend on a vector of parameters, and aims at analyzing the impact of such parameters
on the outcome of the problem, both in terms of primal and dual solutions. In our setting, we
stress that the parameter θ models the uncontrollable renewable generation. Hence, the problem
OPF(θ) can be formulated as a standard Multiparametric Quadratic Program (MPQ) as follows:

min
g∈Rng

1

2
g>H>g + g>h (3.1)

s.t. Ag≤ b + Eθ, (3.2)

where A∈R(2+2m+2ng)×ng ,E∈R(2+2m+2ng)×nθ ,b∈R(2+2m+2ng) are defined as

A =



1>ng
−1>ng
VNg
−VNg

Ing
−Ing


, b =



1>d
−1>d

VNdd + f̄

−VNdd− f

ḡ

−g


, E =



−1>nθ
1>nθ

−VNθ
VNθ
0nθ
0nθ


. (3.3)

For k ∈N, denote by 1k, 0k ∈Rk and Ik ∈Rk×k the vector of ones, zeros, and the identity matrix
of dimension k, respectively. Moreover, VNg ∈Rm×ng and VNθ ∈Rm×nθ denote the submatrices
of V obtained by selecting only the columns corresponding to nodes inNg andNθ , respectively.

A key result in MPT [33] is that the feasible parameter space Θ⊆Rnθ of the problem Eqs. (3.1)-
(3.2) can be partitioned into a finite number of convex polytopes, each corresponding to a different
optimal partition, i.e., a grid-wide state vector that indicates the saturated status of generators and
congestion status of transmission lines.

Definition 1 (Optimal Partition). Given a parameter vector θ ∈Θ, let g∗ = g∗(θ) denote the optimal
generation vector obtained by solving the problem defined by Eqs. (3.1)-(3.2). Let J denote the index set of
constraints in Eq. (3.2), with |J |= 2 + 2m+ 2n. The optimal partition of J associated with θ is the
partition J =B(θ) t B{(θ), with B(θ) = {i∈J |Aig

∗ = b + Eiθ} and B{(θ) = {i∈J |Aig
∗ <

b + Eiθ}.

The sets B and B{, respectively, correspond to binding and non-binding constraints of the OPF
and, hence, identify congested lines and nonmarginal generators. With a minor abuse of notation,
we identify the optimal partition (B,B{) with the corresponding set of binding constraints B.
Given an optimal partition B, let AB,EB denote the submatrices of A and E containing the rows
Ai,Ei indexed by i∈B, respectively.

Remark 1. The energy balance equality constraint (2.2) in the original OPF formulation is rewritten as
two inequalities indexed by i= 1, 2 in Eq. (3.2), which are always binding and read Aig

∗ = bi + Eiθ,
i= 1, 2. Looking at Eq. (3.3), we see that the two equations Aig

∗ = bi + Eiθ, i= 1, 2, are identical, and
thus one of them is redundant. In the rest of this paper, we eliminate one of the redundant constraints from
the set B, namely the one corresponding to i= 2. Therefore, we write B= {1} t B(cong) t B(sat), where
B(cong) ⊆ {3, . . . , 2 + 2m} describes the congestion status of transmission lines, and B(sat) ⊆ {2 + 2m+

1, 2 + 2m+ 2n} describe the saturated status of generators.

Definition 2 (LICQ). Given an optimal partition B, we say that the linear independent constraint
qualification (LICQ) holds if the matrix AB ∈R|B|×n has full row rank.

Since there is always at least one binding constraint, namely i= 1 (corresponding to the
power balance constraint), we can write |B|= 1 + |B′|, where B′ =B(cong) t B(sat) contains
the indexes of binding constraints corresponding to line and generator limits. Since line and
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generation limits cannot be binding both on the positive and negative sides, we have that
|B′|= |B(sat)|+ |B(cong)| ≤ ng +m. Moreover, it is observed in [38] that the row rank of AB is
equal to min(1 + |B(sat)|+ |B(cong)|, ng), implying that the LICQ condition is equivalent to

1 + |B(sat)|+ |B(cong)| ≤ ng. (3.4)

The following theorem is a standard result in MPT, see [33, Theorem 1].

Theorem 1. Assume that H is positive definite, Θ a fully dimensional compact set in Rnθ , and that the
LICQ regularity condition is satisfied for every θ ∈Θ. Then, Θ can be covered by the union of a finite
number M of fully-dimensional compact convex polytopes Θ1, . . . ,ΘM , referred to as critical regions,
such that: (i) their interiors are pairwise disjoint Θ̊k ∩ Θ̊h = ∅ for every k 6= h, and each interior Θ̊k

corresponds to the largest set of parameters yielding the same optimal partition; (ii) within the interior of
each critical region Θ̊k, the optimal generation g∗ and the associated LMP vector are affine functions of θ,
(iii) the map Θ 3 θ→LMP(θ) defined over the entire parameter space is piecewise affine and continuous.

Theorem 1 states that there exist M affine maps defined in the interiors of the critical regions

Θ̊k 3 θ→LMP|Θ̊k
(θ) = C̃(k)θ + c̃(k), k= 1 . . . ,M

where C̃(k), c̃(k) are suitably defined matrices and vectors. Moreover, if LICQ holds for every
θ ∈Θ, then the maps agree on the intersections between the regions Θk’s, resulting in an overall
continuous map Θ 3 θ→LMP(θ)∈Rn.

(a) Relaxing the LICQ assumption
One of the assumptions of Theorem 1, which is standard in the literature [2,3,17,38], is that the
LICQ condition holds for every θ ∈Θ. In particular, this means that LICQ holds in the interior of
two neighboring regions, which we denote as Θ̊i and Θ̊j . Let H be the hyperplance separating
Θ̊i and Θ̊j . The fact that LICQ holds at Θ̊i implies that, if {i1, . . . , iq} are the binding constraints
at optimality in the OPF for θ ∈ Θ̊i, then in view of Eq. (3.4) we have q≤ ng , where we recall that
ng is the number of decision variables in the OPF (i.e., the number of controllable generators).

Requiring LICQ to hold everywhere means that, in particular, it must hold in the common facet
between regions. As we move from Θ̊k on to the common facet F = Θi ∩H between regions Θi

and Θj , which has dimension nθ − 1, there could be an additional constraint becoming active
(coming from the neighboring region Θj ), and therefore the LICQ condition implies q + 1≤ ng .
In general, critical regions can intersect in faces of dimensions 1, . . . , nθ − 1, and enforcing LICQ
to hold on all these faces could imply the overly-conservative assumption q + nθ − 1≤ ng .

In what follows, we relax the assumptions of Theorem 1 by allowing LICQ to be violated on
the union of these lower-dimensional faces

Θ◦ := Θ \
M⋃
k=1

Θ̊k. (3.5)

Since this union has zero nθ-dimensional Lebesgue measure, the event θ ∈Θ◦ rarely happens in
practice, and thus is usually ignored in the literature, but it does cause a technical issue that we
now address. If LICQ is violated on θ ∈Θ◦, the Lagrange multipliers of the OPF, and thus the
LMP, need not be unique. Therefore, the map θ→LMP(θ) is not properly defined on Θ◦. In
order to extend the map from

⋃M
k=1 Θ̊k to the full feasible parameter space Θ, we incorporate a

tie-breaking rule to consistently choose between the possible LMPs. Following [32], we break ties
by using the lexicographic order. This choice defines the LMP function over the whole feasible
parameter space Θ, but may introduce jump discontinuities on the zero-measure set Θ◦. In the
next section, we address this technicality and formally derive our main large deviations result.
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4. Large deviations results
Proposition 1. Let θε ∼Nnθ (µθ, εΣθ) be a family of nondegenerate nθ-dimensional Gaussian r.v.’s
indexed by ε > 0. Assume that the LICQ condition is satisfied for all θ ∈Θ \Θ◦. Consider the event

Y = Y (α−,α+) =

n⋃
i=1

{θ ∈Θ : LMPi(θ) /∈ [α−i , α
+
i ]},

defined in Eq. (2.9), assume that the interior of Y is not empty 3 and that

LMP(µθ)∈ Π̊, Π :=

n∏
i=1

[α−i , α
+
i ]. (4.1)

Then, the family of random vectors {θε}ε>0 satisfies

lim
ε→0

ε log P(θε ∈ Y ) =− inf
θ∈Y

I(θ), (4.2)

where I(θ) = 1
2 (θ − µθ)>Σ−1

θ (θ − µθ).

Proof. For notational compactness, in the rest of the proof we will write Y without making explicit
its dependence on (α−,α+). Defining Z :=

⋃n
i=1{θ ∈Rnθ : LMPi(θ) /∈ [α−i , α

+
i ]}, the event Y

can be decomposed as the disjoint union Y = Y∗ ∪ Y◦, where

Y∗ =

M⋃
k=1

Θ̊k ∩ Z, Y◦ = Θ◦ ∩ Z, (4.3)

and Y◦ ⊆Θ◦ = Θ \
⋃M
k=1 Θ̊k is a zero-measure set. As θε is non nondegenerate, it has a density f

with respect to the nθ-dimensional Lebesgue measure in Rnθ . Since the nθ-dimensional Lebesgue
measure of Y◦ is zero, we have

P(θε ∈ Y◦) =

∫
x∈Y◦

f(x)dx = 0

and P(θε ∈ Y ) = P(θε ∈ Y∗). As a consequence, we can restrict our analysis to the event Y∗.
Thanks to Cramer’s theorem in Rnθ [6], we have

− inf
θ∈Y̊∗

I(θ)≤ lim inf
ε→0

ε log
(
P(θε ∈ Y∗)

)
(4.4)

≤ lim sup
ε→0

ε log
(
P(θε ∈ Y∗)

)
≤− inf

θ∈Y∗

I(θ), (4.5)

where I(θ) is the Legendre transform of the log-moment generating function of θε. It is well-
known (see, for example, [34]) that when θε is Gaussian then I(θ) = (θ − µθ)>Σ−1

θ (θ − µθ). In
order to prove (4.2), it remains to be shown that

inf
θ∈Y̊∗

I(θ) = inf
θ∈Y∗

I(θ). (4.6)

Thanks to the continuity of the maps LMP|
Θ̊k

, the set Y∗ is open, since

Y∗ =

M⋃
k=1

Θ̊k ∩ Z =

M⋃
k=1

(
Θ̊k ∩

n⋃
i=1

{ LMPi|Θ̊k
(θ) /∈ [α−i , α

+
i ]}
)

(4.7)

=

M⋃
k=1

(
Θ̊k ∩

n⋃
i=1

{C̃(k)
i θ + c̃

(k)
i /∈ [α−i , α

+
i ]}
)

(4.8)

=

M⋃
k=1

n⋃
i=1

(
Θ̊k ∩ ({C̃(k)

i θ + c̃
(k)
i <α−i } ∪ {C̃

(k)θ + c̃(k) >α+
i })

)
. (4.9)

3 If Y̊ = ∅, then trivially P(θε ∈ Y ) = 0.
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Therefore, Y̊∗ = Y∗, Y̊∗ = Y∗ ⊇ Y∗ and Eq. (4.6) follows from the continuity of I(θ).

Proposition 1 allows us approximate the probability of a price spike, for small ε, as

P(θε ∈ Y )≈ exp
(− infθ∈Y I(θ)

ε

)
, (4.10)

as it is done in [20,23] in the context of studying the event of transmission line failures. Moreover,
the minimizer of the optimization problem (4.2) corresponds to the most likely realization
of uncontrollable generation that leads to the rare event. Furthermore, the structure of the
problem (4.2) allows us to efficiently rank nodes in terms of their likelihood to experience a price
spike, as we illustrate in Section 6.

5. Solving the optimization problem
In view of Proposition 1, in order to study limε→0 ε log P(θε ∈ Y (α−,α+)) we need to solve
the deterministic optimization problem infθ∈Y∗ I(θ). The latter, in view of Theorem 1 and the
definition of Y∗, the latter is equivalent to

inf
θ∈Y∗

I(θ) = min
k=1,...,M

inf
θ∈Θ̊k∩Z

I(θ) = min
i=1,...,n

min
k=1,...,M

inf
θ∈Θ̊k,C̃(k)

i θ+c̃
(k)
i /∈[α−

i ,α
+
i ]

I(θ).

This amounts to solving at most nM quadratic optimization problems of the form infθ∈Ti,k I(θ)

for i= 1, . . . , n, k= 1, . . . ,M , where

Ti,k = T−i,k t T
+
i,k, T−i,k = Θ̊k ∩ {C̃

(k)
i θ + c̃

(k)
i <α−i }, T+

i,k = Θ̊k ∩ {C̃
(k)
i θ + c̃

(k)
i >α+

i }.

In the rest of this section, we show how we can significantly reduce the number of optimization
problems that need to be solved by exploiting the geometric structure of the problem. First, since

inf
θ∈Y∗

I(θ) = min
i=1,...,n

inf
θ∈

⋃M
k=1 Ti,k

I(θ),

we fix i= 1 . . . , n and consider the sub-problems

inf
θ∈

⋃M
k=1 Ti,k

I(θ) = min
{

inf
θ∈

⋃M
k=1 T

−
i,k

I(θ), inf
θ∈

⋃M
k=1 T

+
i,k

I(θ)
}
. (5.1)

The reason why we want to solve the problems in Eq. (5.1) individually for every i is because we
are not only interested in studying the overall event Y , but also in the more granular events of
node-specific price spikes. For example, this would allow us to rank the nodes in terms of their
likelihood of experiencing a price spike (see Section 6). Define

L−(i,k) := Θk ∩ (T−i,k){ = Θk ∩ {C̃
(k)
i θ + c̃

(k)
i ≥ α−i }, L−i :=

M⋃
k=1

L−i,k = Θ ∩ {LMPi ≥ α−i },

L+
(i,k) := Θk ∩ (T+

i,k){ = Θk ∩ {C̃
(k)
i θ + c̃

(k)
i ≤ α+

i }, L+
i :=

M⋃
k=1

L+
i,k = Θ ∩ {LMPi ≤ α+

i },

and consider the partition of the sets L+
i and L−i into disjoint closed connected components, i.e.,

L−i =
⊔

`∈conn. comp. of L−
i

W
(i,−)
` , L+

i =
⊔

`∈conn. comp. of L+
i

W
(i,+)
` , (5.2)

and let W (i,−)
`−∗ ,W

(i,+)
`+∗ be the components containing µθ . Since ∂(A ∪B) = ∂A ∪ ∂B if A ∩B =

A ∩B = ∅, the boundary ∂L+
i =

⊔
`∈F+

i
∂W

(i,+)
` is the union of the set of parameters θ ∈Θ such

that LMP(θ) = α+
i with, possibly, a subset of the boundary of Θ (and similarly for ∂L−i ).

As stated by Proposition 2, we show that, in order to solve the two problems in the right hand
side of Eq. (5.1) we need to look only at the boundaries ∂W (i,−)

`∗ , ∂W
(i,+)
`∗ .
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Proposition 2. Under the same assumptions of Theorem 1, we have

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ), inf
θ∈

⋃M
k=1 T

−
i,k

I(θ) = inf
θ∈∂

⋃M
k=1 T

−
i,k

I(θ). (5.3)

Moreover,

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂W (i,+)

`∗+

I(θ), inf
θ∈

⋃M
k=1 T

−
i,k

I(θ) = inf
θ∈∂W (i,−)

`∗−

I(θ). (5.4)

Proof. First note that the rate function I(θ) is a (strictly) convex function, since Σθ is positive
definite. Since

⋃M
k=1 T

+
i,k is open and I(θ) is a continuous function, it holds that

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈

⋃M
k=1 T

+
i,k

I(θ).

Moreover, since I(θ) is continuous and
⋃M
k=1 T

+
i,k compact, the infimum is attained. The fact that⋃M

k=1 T
+
i,k ⊇ ∂

⋃M
k=1 T

+
i,k immediately implies that

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ)≤ inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ).

On the other hand, assume by contradiction that

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ)< inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ).

In particular, there exists a point θ0 in the interior of
⋃M
k=1 T

+
i,k such that I(θ0)< I(θ) for all

θ ∈
⋃M
k=1 T

+
i,k. Define, for t∈ [0, 1], the line segment joining µθ and θ0, i.e. θt = (1− t)µθ + tθ0.

Since θ0 lies in the interior of
⋃M
k=1 T

+
i,k, and µθ /∈

⋃M
k=1 T

+
i,k, there exist a 0< t∗ < 1 such that

θt ∈
⋃M
k=1 T

+
i,k for all t∈ [t∗, 1]. Due to the convexity of I(θ), and the fact that I(µθ) = 0, we have

I(θt∗)< (1− t∗)I(µθ) + t∗I(θ0) = t∗I(θ0)< I(θ0),

thus reaching a contradiction. Hence,

inf
θ∈

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ), (5.5)

and the minimum is achieved on ∂
⋃M
k=1 T

+
i,k, proving Eq. (5.3).

In view of Eq. (5.3), in order to prove Eq. (5.4) it is enough to show that

inf
θ∈∂

⋃M
k=1 T

+
i,k

I(θ) = inf
θ∈∂W (i,+)

`∗+

I(θ).

Given that the sets T+
i,k = Θ̊k ∪ {LMPi(θ)>α+

i }, for k= 1, . . . ,M , are disjoint, the boundary

of the union is equal to the union of the boundaries, i.e., ∂
⋃M
k=1 T

+
i,k =

⋃M
k=1 ∂T

+
i,k. Each term

∂T+
i,k is the boundary of the polytope T+

i,k = Θk ∩ {LMPi ≥ α+
i }, and thus consists of the union

of a subset of
⋃M
k=1 ∂Θk (a subset of the union of the facets of the polytope Θk) with the segment

Θk ∩ {LMPi = α+
i }. As a result, ∂

⋃M
k=1 T

+
i,kI(θ) intersects ∂W (i,+)

`∗+
in Θ ∩ {LMPi = α+

i }.
We now show that (i) the minimum is attained at a point θ0 such that LMPi(θ0) = α+

i ,

so that θ0 ∈
⊔
`∈conn. comp. of L+

i
∂W

(i,+)
` , and (ii) θ0 ∈ ∂W

(i,+)
`∗+

. Assume by contradiction that

LMPi(θ0)>α+
i , and consider the line segment joining µθ and θ0, θt = (1− t)µθ + tθ0, t∈ [0, 1].
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The function
[0, 1]3 t→ g(t) := LMPi(θt) = LMPi((1− t)µθ + tθ0)∈R,

is continuous and such that g(0) = LMP(µθ)<α and g(1) = LMP(θ0)>α∗i . Thanks to the
intermediate value theorem, there exists a 0< t∗ < 1 such that g(t∗) = LMPi(θt∗) = α∗i , and

I(θt∗)< (1− t∗)I(µθ) + t∗I(θ0) = t∗I(θ0)< I(θ0),

which is a contradiction, since θ0 is the minimum. Therefore, θ0 ∈
⊔
`∈conn. comp. of L+

i
∂W

(i,+)
` .

The same argument, based on the convexity of the rate function and the fact that I(µθ) = 0, shows
that θ ∈ ∂W (i,+)

`∗,+
. Lastly, Eq. (5.4) can be derived in the same way.

Proposition 2 shows that in order to solve the problem in Eq. (5.1) we only need to look at the
boundaries ∂W (i,+)

`∗ , ∂W
(i,−)
`∗ . Determining such boundaries is a non-trivial problem, for which

dedicated algorithms exist. However, such algorithms are beyond the scope of this paper and we
refer the interested reader to the contour tracing literature and, in particular, to [7].

6. Numerics
In this section, we illustrate the potential of our large deviations approach using the standard
IEEE 14-bus test case from MATPOWER [39]. This network consists of 14 nodes housing loads, 6
controllable generators, and 20 lines. As line limits are not included in the test case, we set them
as f̄ = λf̄ (planning), where f̄ (planning) := γline|f |, f is the solution of a DC-OPF using the data in the
test file, and γline ≥ 1. We interpret f̄ (planning) as the maximum allowable power flow before the
line trips, while λ is a safety tuning parameter satisfying 1/γline ≤ λ≤ 1. In the rest of this section,
we set γline = 2 and λ= 0.6.

We add two uncontrollable renewable generators at nodes 4 and 5, so that nd = 14, ng = 6

and nθ = 2. All the calculations related to multiparametric programming are performed using
the MPT3 toolbox [13]. We model the renewable generation as a 2-dimensional Gaussian random
vector θ∼N2(µθ,Σθ), where µθ is interpreted as the nominal, or forecast, renewable generation.
The covariance matrix Σθ is calculated as in [14] to model positive correlations between
neighboring (thus geographically “close”) nodes. More specifically, we consider normalized
symmetric graph Laplacian Lsym =∆−1/2Lsym∆

−1/2, where ∆∈Rn×n is the diagonal matrix
with entries equal to ∆i,i =

∑
j 6=i wi,j . We then compute the matrix

C = τ2κ(Lsym + τ2I)−κ ∈Rn×n, (6.1)

for κ= 2 and τ2 = 1 as in [14], and consider the nθ × nθ submatrix Σ̃θ obtained from of C by
choosing rows and columns indexed byNnθ = {4, 5}, and we define Σθ as

Σθ := diag({δi}nθi=1) Σ̃θ diag({δi}nθi=1) ∈Rnθ×nθ , (6.2)

where the parameters δi’s control the magnitudes of the standard deviations σi :=
√

Σθ(i, i),
i= 1, 2. In particular, the δi’s are chosen in such a way that the standard deviations σi’s match
realistic values for wind power forecasting error expressed as a fraction of the corresponding
installed capacity, over different time windows T , namely σi = q(T )× µ(installed)

i , i= 1, 2, where
q= [0.01, 0.018, 0.04], corresponding to time windows of 5, 15 and 60 minutes, respectively
(see [20], Section V.B). Finally, the installed capacity of the renewable generators are chosen based
on the boundary of the 2-dimensional feasible space Θ, namely µ

(installed)
1 = max{x : (x, y)∈

Θ}, µ(installed)
2 = max{y : (x, y)∈Θ}. Although θ∼N2(µθ,Σθ) is in principle unbounded, we

choose the relevant parameters in such a way that, in practice, θ never exceeds the boundary of
the feasible space Θ. Since Σθ is obtained from realistic values for wind power forecasting error,
the question is whether the matrix Σθ used in the numerics is close enough to the small-noise
regime to make the large deviations results meaningful. As we show, the answer to this question
is affirmative, validating the use of the large deviations methodology.
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(a) Multimodality and sensitivity with respect to µθ

Given µθ ∈Θ, we set the price thresholds defining the spike event as α−i = LMPi(µθ)−
errrel|LMPi(µθ)|, α+

i = LMPi(µθ) + errrel|LMPi(µθ)|, where errrel > 0. In other words, we are
interested in studying the event of a relative price deviation of magnitude greater than errrel > 0:

Y =

n⋃
i=1

Yi, Yi = {θ ∈Θ : |LMPi(θ)− LMPi(µθ)|> errrel|LMPi(µθ)|}. (6.3)

Next, we consider two scenarios, corresponding to low and high expected wind generation, i.e.

µ
(low)
θ = 0.1× µ(installed), µ(high)

θ = 0.5× µ(installed),and variance corresponding to the 15-minute
window, i.e. q(medium) = 0.018. Fig. 1 shows the location of µθ , together with 106 samples from
θ, the corresponding empirical density of the random variable LMP10 obtained through Monte
Carlo simulation, and a visualization of the piecewise affine mapping θ→LMP10(θ).

We observe that the results are extremely sensitive to the standard deviation and location of
the forecast renewable generation µθ relative to the geometry of the critical regions, as this affects
whether the samples of θ will cross the boundary between adjacent regions or not. In turn, the
crossing of a boundary can result in the distribution of the LMPs being multimodal (see Fig. 1,
left panels), due to the piecewise affine nature of the map θ→LMP. This observation shows
how the problem of studying LMPs fluctuations is intrinsically harder than that of emergent line
failures, as in [22,23]. The phenomenon is more pronounced in the presence of steep gradient
changes at the boundary between regions (or in the case of discontinuities), as can be observed
in the right panels of Fig. 1, which show the piecewise affine map θ→LMP10(θ) for the two
different choices of µθ . In particular, the expected LMP can differ greatly from LMP(µθ).

(b) Ranking of nodes based on their likelihood of having a price spike
As illustrated by Eq. (5.1), large deviations theory predicts the most likely node to be
arg mini=1,...,n I

∗
i , where I∗i := infθ∈

⋃M
k=1 Ti,k

I(θ). Indirectly, this approach produces also a
ranking of nodes according to their likelihood of having a price spike. The use of large deviations
theory to rank power grid components according to their likelihood of experiencing anomalous
deviations from a nominal state has been validated in [23] in the context of transmission line
failures. In order to validate the accuracy of the LDP methodology also for ranking nodes
according to the likelihood of their price spikes, we compare the LD-based ranking with the one
obtained via crude Monte Carlo simulation, as described in Table 1. We observe that the LD-based
approach is able to recover the exact ranking of nodes, for various levels of relative error errrel.
Table 1 reports the values of the probability P̂(Yi) of a price spike in node i, calculated using
Monte Carlo simulation, together with the corresponding decay rates I∗i = infθ∈

⋃M
k=1 Ti,k

I(θ),
showing that the LD-based approach correctly identifies the ranking. This property is validated
more extensively in Fig. 2, which depicts the values of P̂(Yi) against −mink I

∗
k/I
∗
i across a wider

range of price thresholds errrel, corresponding to decreasing probability of the price spike event.

7. Concluding remarks and future work
In this paper, we illustrate the potential of concepts from large deviations theory to study
the events of rare price spikes caused by fluctuations of renewable generation. By assuming a
centralized perspective, we are able to use large deviations theory to approximate the probabilities
of such events, and to rank the nodes of the power grids according to their likelihood of
experiencing a price spike. Our technical approach is able to handle the multimodality of LMP’s
distributions, as well as violations of the LICQ regularity condition. Future research directions
include extending the present framework to non-Gaussian fluctuations, as well as incorporating
a source of discrete noise in the form of line outages. Moreover, it would be of interest to
study the sensitivity of the approximation in Eq. (4.10) with respect to the tuning parameter
λ, which quantifies the conservatism in the choice of the line limits. This would allow us to
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(a) µ(low)
θ = 0.1× µ(installed), errrel = 0.25, q= 0.018.

(b) µ(high)
θ = 0.5× µ(installed), errrel = 0.25, q= 0.018.

Figure 1: forecast generation µθ and empirical distribution of renewable generation θ (left);
Empirical density of the random variable LMP10, with the thresholds α−i and α+

i represented
as red and blue vertical bars, respectively (middle); Piecewise affine map θ→LMP10(θ) with
price thresholds α±10 = LMP10(µθ)± errrel|LMP10(µθ)|, for two different choices of µθ (right).

(a) errrel = 0.25. (b) errrel = 0.5. (c) errrel = 1. (d) errrel = 10.

Figure 2: Comparison between empirical probabilities P̂(Yi) based on Monte Carlo simulation
and normalized decay rates −mini I

∗
i /I
∗
i for various level of errrel.

extend the notion of safe capacity regions [20,22] in the context of energy prices. An alternative
approach to deal with non-Gaussian fluctuations and more involved price spike structures
could be to efficiently sample conditionally on a price spike to have occurred, a problem for
which specific Markov chain Monte Carlo (MCMC) methods have been developed, e.g., the
Skipping Sampler [19]. In the case of a complicated multi-modal conditional distribution, the
large deviations results derived in this paper can be of extreme help in identifying all the relevant
price spikes modes, thus speeding up the MCMC procedure.

Data Accessibility. Supporting data can be made available from the corresponding author upon request.
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i P̂(Yi) I∗i rank
9 8.6371e-01 8.1160e-04 1
8 6.8984e-01 8.5572e-04 2
7 6.8984e-01 8.5572e-04 3

10 4.8713e-01 1.0786e-03 4
11 4.8690e-01 1.1123e-03 5
6 4.8613e-01 1.2438e-03 6

12 4.8586e-01 1.2849e-03 7
13 4.8586e-01 1.3296e-03 8
14 4.7559e-01 1.6548e-03 9
4 2.1282e-02 4.0854e+00 10
5 0 6.8384e+01 11
1 0 1.1584e+02 12
2 0 1.2971e+02 13
3 0 2.6984e+03 14

Table 1: Ranking of nodes based on the likelihood of having a price spike, according to both
Monte Carlo simulation (in terms of probabilities P̂(Yi)) and large deviations results (in terms of

decay rates I∗i ), for the case µ
(high)
θ = 0.5× µ(installed), errrel = 0.25, q= 0.018. The values P̂(Yi),

for i= 1, 2, 3, 5, are not reported as the Monte Carlo simulation is not sufficiently accurate for such
small probabilities.
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