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Abstract— Transmission power systems usually consist of
interconnected sub-grids that are operated relatively indepen-
dently. When a failure happens, it is desirable to localize
its impact within the sub-grid where the failure occurs. This
paper introduces three interface networks to connect sub-grids,
achieving better failure localization while maintaining robust
network connectivity. The proposed interface networks are
validated with numerical experiments on the IEEE 118-bus test
network under both DC and AC power flow models.

I. INTRODUCTION

An interconnected power system comprises sub-grids that
are usually individually managed by independent system
operators (ISOs). It is desirable to localize failure impact
within the sub-grid where the failure happens while leaving
other sub-grids unaffected. On the other hand, transmission
line failures are known to propagate non-locally [1], [2].
Historical data shows that successive failures in large cascades
can be far away from the preceding failure, both geometrically
and topologically [3].

Considerable attention in recent years has been given
to the task of understanding control policies and network
structural properties that can localize the impact of failures.
Papers have focused on active control actions such as load
shedding [4], [5] and controlled islanding [6], [7] to prevent
large-scale blackouts. Researchers also investigate the relation
between failure propagation and topological structures of
power networks [8], [9].

We have recently proven that non-cut failures are localized
if the sub-grids are connected in a tree structure and that,
if sub-grids are connected by multiple lines, failures cannot
be completely localized across sub-grids [10]. This suggests
switching off certain transmission lines in order to leave only
one line between each pair of sub-grids [11], [12], [13].

However, maintaining a tree structure at the sub-grid level
is at odds with the standard approach to reliability because
it creates single points of failure. Further, a tree-connected
power network significantly reduces the power transmission
capacity between the sub-grids, increasing the cost of power
dispatch. Instead, more traditionally, it is desirable to have
multiple lines between sub-grids so as to ensure there is
no single-point vulnerabilities and to increase the power
transmission capacity.

These contrasting views lead to an important open question:
Is it possible to provably localize failures within sub-grids
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while not creating a single point of failure?
Contributions. We study three interface networks that con-

nect the sub-grids in a way that achieves failure localization
and robust connectivity between the sub-grids.

Specifically, we use the line outage distribution factors
(LODF) as the metric to quantify failure localization and
prove, in Theorems III.1 and III.2, that the LODFs are
guaranteed to decrease if the sub-grids are connected by a
2×2 series (Fig. 1b) or parallel (Fig. 1c) interface network. We
further provide an upper bound for the LODF if the sub-grids
are connected by a 2×2 complete bipartite network (Fig. 1d)
in Theorem III.3. By carefully designing the line susceptances
of the interface network, the complete bipartite interface
network can completely eliminate failure propagation to other
sub-grids while keeping the impact on surviving lines in the
same sub-grid unchanged.

The localization of our proposed interface networks is
validated on the IEEE 118-bus test network under both DC
and AC power flow models. All three interface networks
decrease the LODF for lines in different sub-grids, with the
complete bipartite network achieving the best localization.

Related Work. There have been extensive efforts toward
understanding the localizability of failures in power systems
to network topological structures. Most papers focus on
summarizing empirical results. For example, [14] observes
the LODF decreases as the distance from the tripped line
increases, and [15] defines another distance metric that better
captures such decay. There are only a few papers presenting
analytical results on failure localization. A topological repre-
sentation for the LODF is proposed in [16] and the authors
further prove that LODF is zero if the sub-grids are connected
in a tree structure in [10]. The failure localization of tree
partitioning has been proposed in [17] to replace controlled
islanding as a defense mechanism to arrest cascading failure.
However, a power network with tree-connected sub-grids
is less practical as it creates a single point of failure. In
[18], authors propose to connect the sub-grids by a complete
bipartite interface, the network isolator, to suppress the
failure spreading. However, they require the adjacency matrix
(weighted by line susceptance) of the interface network
to be exactly rank-1 which can be difficult to satisfy in
practice. To the best of our knowledge, this paper is the
first to mathematically characterize the LODF with sub-grids
connected by interface networks beyond the rank-1 setting.

II. POWER REDISTRIBUTION

To begin, we introduce the linearized DC power flow
model and then illustrate how power flows redistribute in
the network after line failures. We further show how to



decompose the computation of the power transfer distribution
factor and derive their monotonicity property in terms of line
susceptances.

A. DC Power Flow

We model the power grid as a directed graph G =
(N , E) with a set N = {1, 2, . . . , n} of n buses and a
set E = {e1, . . . , em} ⊆ N × N of m transmission lines
connecting the buses. An arbitrary direction is assigned to
each transmission line, and (i, j) represents the transmission
line from bus i to bus j. We assume the lines are purely
reactive and characterized by their susceptances, which we
collect in the susceptance matrix B := diag (b1, . . . , bm).

Let p,θ ∈ Rn denote the power injection and phase angle
at each bus, and let f ∈ Rm denote the power flow along
every transmission line. The widely used DC power flow
equations [19] can be written in the following matrix form:

p = Cf , (1a)
f = BCTθ, (1b)

where C ∈ Rn×m is the incidence matrix:

Cie =


1 if bus i is the source of line e,

−1 if bus i is the destination of line e,

0 otherwise.

If the network is connected, the power injections must be
balanced, i.e.,

∑
i∈N pi = 0. Defining the Laplacian matrix

of the network as L := CBCT , we can uniquely determine
the line flows in terms of the power injections:

f = BCTL†p, (2)

where (·)† denotes the Moore-Penrose inverse.

B. Power Redistribution After Line Failures

When a line failure occurs, the power will redistribute
over the post-contingency network, and line flows can
both increase or decrease, sometimes even reversing their
directions. In the power systems literature two sensitivity
factors, the power transfer (PTDF) and the line outage (LODF)
distribution factors are commonly used to compute the post-
contingency line flows [20], [21]. It should be noted that these
sensitivity factors are independent of the power injections
and transmission line capacities.

Specifically, the PTDF De,̂iĵ is the relative flow change
over line e = (i, j) when a unit power is injected at bus î and
withdrawn from bus ĵ. The LODF Ke,ê is the relative flow
change over line e = (i, j) when line ê = (̂i, ĵ) is tripped.
They are given by:

De,̂iĵ = be(ei − ej)TL†(eî − eĵ), (3a)

Ke,ê =
be(ei − ej)TL†(eî − eĵ)

1− bê(eî − eĵ)TL†(eî − eĵ)
, (3b)

where {ek}k=1,...,n is the standard vector basis. It is known
that the PTDF and LODF can be related as follows [22]:

Ke,ê =
De,̂iĵ

1−Dê,̂iĵ

.

This expression suggests that the power redistribution after
line failures can be emulated by introducing fictitious injec-
tions over the pre-contingency network [20]. In fact, the power
redistribution can be analyzed over the post-contingency
network as well. The following lemma, which relates the
LODF for the pre-contingency network and the PTDF for the
post-contingency network, provides an alternative perspective
to study the impact of transmission line failures.

Lemma II.1. Consider a network G = (N , E) and a non-
bridge transmission line ê failure1. Let Ke,ê denote the LODF
for the pre-contingency network G, and let D̃e,̂iĵ denote the
PTDF for the post-contingency network G̃ = (N , E \ ê). We
have Ke,ê = D̃e,̂iĵ .

Proof. Without loss of generality, decompose the matrices
C = [Cê,C−ê] and B = diag(bê, bl), l 6= ê correponding
to the tripped line ê and the surviving lines −ê := E \ ê.
For clarity, we use (̃·) to denote all variables related to the
post-contingency network. The DC power flow equations for
the pre- and post-contingency networks thus rewrite as:

p = CBCTθ = bêCêC
T
ê θ +C−êB−êC

T
−êθ, (4a)

p = C−êB−êC
T
−êθ̃. (4b)

Subtracting (4b) from (4a), we get

C−êB−êC
T
−ê(θ̃ − θ) = bêCêC

T
ê θ = Cêfê.

By definition, the LODF can be computed as

Ke,ê =
f̃e − fe

fê
=

beC
T
e (θ̃ − θ)

fê
=

beC
T
e L̃
†Cêfê

fê
= D̃e,̂iĵ .

We remark that the above result holds also in the case of
multiple line failures. Consider a set Ê of lines that are si-
multaneously disconnected and suppose the post-contingency
network remains connected. The generalized LODF KÊ

e,ê

[20] is defined as the sensitivity of relative flow change over
the surviving line e ∈ E \ Ê with respect to a tripped line
ê = (̂i, ĵ) ∈ Ê. It equals the PTDF for line e with the pair
of buses î, ĵ of the post-contingency network.

Lemma II.1 suggests that the impact of a transmission line
ê = (̂i, ĵ) failure is equivalent to the power flows when the
pre-contingency flow fê is injected at bus î and withdrawn
from bus ĵ over the post-contingency network. This post-
contingency perspective allows us to convert the calculation
of LODF into the calculation of PTDF, relating the failure
impact directly to the network topology.

C. Decomposition of the PTDF

A power grid usually consists of several interconnected
sub-grids and it is of interest to decompose the calculation
of PTDF accordingly. In this section, we introduce such
a decomposition for certain network structures. Specifically,
suppose a connected network G = (N , E) can be decomposed

1A non-bridge line is a transmission line whose deletion does not increase
the network’s number of connected components. Otherwise it is a bridge.



into two sub-grids: G1 = (N1, E1) and G2 = (N2, E2) such
that:
• The line sets do not overlap: E1 ∩ E2 = ∅, E1 ∪ E2 = E ;
• The bus sets overlap with only 2 buses:N1∩N2 = {s, t},
N1 ∪N2 = N .

Given a pair of buses i, j of the network G (not necessarily
adjacent to each other), we define effective susceptance
between i, j to be

b
(e)
ij =

1

(ei − ej)TL†(ei − ej)
. (5)

The effective susceptance summarizes the network effect
between a pair of buses by a single line [23].

The following proposition demonstrates how De,̂iĵ , the
PTDF for line e and a pair of buses î, ĵ in different sub-grids,
can be decomposed.

Proposition II.2. Consider a network G and its decomposi-
tion G1, G2. Let Ĝ1 = (N1, E1 ∪ (s, t)) be a graph by adding
a fictitious line (s, t) to the sub-grid G1, with susceptance
equaling the effective susceptance between buses s, t of the
sub-grid G2:

b
(e)
st =

1

(es − et)TL†2(es − et)
,

where L2 is the Laplacian matrix of G2. For any pair of
buses î, ĵ ∈ N1 and any line e ∈ E2, the PTDF De,̂iĵ can be
computed as:

De,̂iĵ = D̂(s,t),̂iĵ · D̄e,st,

where D̂(s,t),̂iĵ is the PTDF for the fictitious line (s, t) and
the pair of buses î, ĵ of Ĝ1, and D̄e,st is the PTDF for line
e and the pair of buses s, t of G2.

Proof (sketch). Since a DC power network is a linear network
and the sub-grids are only joined by buses s and t, the
effect of G2 can be equivalently represented as a fictitious
transmission line (s, t) with the effective susceptance between
buses s, t of the sub-grid G2. Using Kron reduction [24], we
can decompose the PTDF as above.

We remark that this result is in fact a special case of the
Kron reduction [24] for linear networks.

D. Monotonicity of the PTDF

The next result describes the dependence of the PTDF for
a line e on its susceptance be and network topology.

Proposition II.3. Consider a connected network G. For any
line e and any pair of buses î, ĵ, the absolute value of PTDF
De,̂iĵ can be expressed as:

|De,̂iĵ | =
T1be

T2be + T3
, (6)

where Ti ≥ 0 is a constant independent of the susceptance be
for i = 1, 2, 3. Moreover, T3 = 0 if and only if e is a bridge
of G.
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Fig. 1. Two sub-grids (a) are interconnected by (b) series, (c) parallel and
(d) complete bipartite interface networks.

Proof. The PTDF can be computed as a quotient of different
spanning trees of the network, as shown in Theorem 4 in [10].
Specifically, the numerator involves a subset of spanning
trees that must pass through line e. The denominator involves
all spanning trees, including those that pass through line e,
accounted for in the term T2be, and those that do not, giving
rise to the term T3. Therefore, T3 = 0 if and only if e is a
bridge.

This proves that the absolute value of PTDF for a line is
monotonically increasing in its susceptance if the line is not a
bridge. This monotonicity result is aligned with the intuition
that lines with larger admittances (thus smaller impedances)
tend to “attract” more power to flow through.

III. FAILURE LOCALIZATION

The sub-grids that make up an interconnected power system
operate relatively independently and it is desirable to localize
the impact of failure within the sub-grid to prevent large-
scale blackouts. Failures in power systems, however, are
known to propagate non-locally. Real-world data shows
that a transmission line failure can lead to another line
failure far away from the initial failure [3]. A recent study
investigates the block decomposition of the power networks
and demonstrates that non-cut failures are localized if the
sub-grids are connected in a tree structure [10]. In practice,
however, designing a power system with tree-connected
sub-grids creates bridges and thus introduces single-point
vulnerabilities. Therefore, it is crucial to localize failures
while maintaining connectivity of the grid.

In this section we consider a power network with two
interconnected sub-grids G1,G2 joined by two buses s and
t and propose three interface networks, as shown in Fig. 1.
In contrast to the tree-connected sub-grids proposed in [11],
our design does not decrease the connectivity or introduce
any single point of failure into the original network. We
show that all three interface networks can achieve failure
localization by carefully designing the susceptances. Note
that the paper focuses on the interface networks of the power
grid where sub-grids are joined by two buses. Larger interface



networks require special topological structures of the sub-
grids to guarantee failure localization. For this reason we
leave this as a challenging topic for future work.

To quantify the benefit of the interface networks in Fig. 1,
we compare the LODF Ke,ê of the original network and
that of the modified network with various interface networks.
The tripped line ê and the monitored line e are in different
sub-grids. Without loss of generality, we assume that ê ∈ G1

and e ∈ G2. We assume buses s, t are not directly connected
(i.e., not adjacent to each other) in the original network to
simplify our discussion. We use the superscript (·)(m) to
denote variables corresponding to the modified network.

A. Series Interface Network

We first introduce the 2× 2 series interface network where
we split the buses s, t and connect (s, s′) and (t, t′) as
additional transmission lines, as shown in Fig. 1b. Intuitively,
the series interface network increases the topological distance
between the tripped line ê and the monitored line e. It is thus
likely to reduce the failure impact across the sub-grids. As
characterized by the following theorem, the LODF K

(m)
e,ê for

the modified grid with a series interface network is guaranteed
to decrease under mild conditions.

Theorem III.1. If G1 and G2 are connected by a series
network, then |K(m)

e,ê | ≤ |Ke,ê|, with equality if and only
if there is no path connecting buses s and t in the post-
contingency network of G1.

Proof. With Lemma II.1 and Proposition II.2, we can write
the LODF for the original network as:

Ke,ê = D̂(s,t),̂iĵ · D̄e,st.

We use D̂(s,t),̂iĵ to denote the PTDF for the fictitious line
(s, t) of the post-contingency sub-grid of Ĝ1, with susceptance
being the effective susceptance b

(e)
st of the sub-grid G2. D̄e,st

represents the PTDF for line e of the sub-grid G2.
For the modified network G(m), let G(m)

1 = G1 and
G(m)

2 = (N2 ∪ {s′, t′}, E2 ∪ {(s, s′), (t, t′)}). The LODF can
be decomposed similarly as:

K
(m)
e,ê = D̂

(m)

(s,t),̂iĵ
· D̄(m)

e,st .

Note that D̄
(m)
e,st = D̄e,st since line (s, s′) and (t, t′) are

bridges of G(m)
2 . The effective susceptance for the fictitious

line b
(m)
st = (1/bss′ + 1/btt′ + 1/b

(e
st)
−1 < b

(e)
st , so we

have |D̂(m)
(s,t)| ≤ |D̂(s,t)| from Proposition II.3. Therefore

we conclude |K(m)
e,ê | ≤ |Ke,ê|, with equality if and only if

the fictitious line (s, t) is a bridge in the post-contingency
network of Ĝ1.

When no path in the post-contingency network of G1

connects buses s, t, the LODF remains the same as that
of the original network. In particular, the LODF will only
depend on the structure of G2 and equal the PTDF of the
monitored line e for the buses s′, t′ in G2. Otherwise, the
LODF strictly decreases compared with that of the original
network.

We remark that many empirical studies show that the
LODF decreases as the distance from the initial failure
increases [14], [9]. Theorem III.1 provides theoretical support
for such observations. Furthermore, the LODF K

(m)
e,ê is a non-

decreasing function in the susceptance of lines (s, s′) and
(t, t′). Therefore, we can design the series interface network
to achieve different levels of failure localizability.

B. Parallel Interface Network

We now consider the parallel interface network where we
connect the buses s and t, as shown in Fig. 1c. Effectively, the
line (s, t) provides an alternative path to redistribute power
without passing through the other sub-grid G2. Therefore we
expect the line failures to be less impactful on the other
sub-grid. Indeed, the following theorem shows that the LODF
is guaranteed to decrease after connecting buses s, t.

Theorem III.2. If G1 and G2 are connected by a parallel
network, then |K(m)

e,ê | < |Ke,ê|.

Proof. Similar to the proof of Theorem III.1, we can write
the LODF for the original network and modified network as:

Ke,ê = D̂(s,t),̂iĵ · D̄e,st, K
(m)
e,ê = D̂

(m)

(s,t),̂iĵ
· D̄(m)

e,st ,

where we define G(m)
1 = G1,G(m)

2 = (N2, E2 ∪ {(s, t)}).
From Proposition II.3, we have

|D̂(s,t),̂iĵ | =
T1b

(e)
st

T2b
(e)
st + T3

, |D̂(m)

(s,t),̂iĵ
| = T1b

(m)
st

T2b
(m)
st + T3

,

where b
(m)
st = x + b

(e)
st with x being the susceptance of the

parallel line (s, t). On the other hand, a simple circuit analysis
shows that D̄(m)

e,st =
b
(e)
st

b
(m)
st

D̄e,st.
Therefore, we can conclude that

|K(m)
e,ê | =

T1b
(m)
st

T2b
(m)
st + T3

· b
(e)
st

b
(m)
st

|D̄e,st|

=
T1b

(e)
st

T2b
(m)
st + T3

|D̄e,st|

<
T1b

(e)
st

T2b
(e)
st + T3

|D̄e,st| = |Ke,ê|.

We remark that the LODF Ke,ê is monotonically decreasing
in the susceptance of the parallel line (s, t). We can thus
increase the susceptance of line (s, t) to improve the failure
localizability. On the other hand, the LODF for the parallel
line (s, t) increases as the susceptance increases according
to Proposition II.3. Thus we need to systematically design
the susceptance of the line (s, t).

C. Complete Bipartite Network

We now introduce the 2× 2 complete bipartite interface
network with two buses on each side, where we split the buses
s, t and connect (s, s′), (s, t′), (t, s′) and (t, t′) respectively.
This design is similar to the Wheatstone bridge in circuit



analysis literature. We show in the following theorem that
the LODF for lines across sub-grids can be upper bounded.
In particular, the impact of failures can be completely
eliminated under the condition bss′btt′ = bst′bts′ , where
bpq denotes the susceptance of line (p, q). We remark that
this specific interface network has been proposed in [18] as
the network isolator and shown to provide localization if a
rank-1 condition holds on the weighted adjacency matrix of
the interface network. The rank-1 condition is equivalent to
bss′btt′ = bst′bts′ for the 2 × 2 complete bipartite network.
Our result generalizes the failure localization properties of a
network isolator to the case in which the rank-1 condition
does not hold for the four-node bipartite network.

Theorem III.3. If G1 and G2 are connected by a complete
bipartite network, then |K(m)

e,ê | ≤
|bss′btt′−bst′bts′ |

(bss′+bst′ )(btt′+bts′ )
where

bpq is the susceptance for line (p, q). In particular, if
bss′btt′ = bst′bts′ , then K

(m)
e,ê = 0.

Proof. We have

K
(m)
e,ê = D̂

(m)

(s,t),̂iĵ
· D̄(m)

e,st ,

where G(m)
1 = G1 and G(m)

2 = (N2 ∪ {s′, t′}, E2 ∪
{(s, s′), (t, t′), (s, t′), (t, s′)}). Since the PTDF is guaranteed
to be within [−1, 1], we first bound |D̂(m)

(s,t),̂iĵ
| by 1 and focus

on the second term. Moreover, we can further decompose
G2 into G1

2 = ({s, s′, t, t′}, {(s, s′), (t, t′), (s, t′), (t, s′)}) and
G2

2 = (N2 ∪ {s′, t′}, E2). Therefore, we have

|K(m)
e,ê | ≤ |D̄

(m)
e,st | = |D̂1

(s′,t′),st| · |D̄
2
e,s′t′ | ≤ |D̂1

(s′,t′),st|.

Now all we need is to provide an upper bound for the
right hand side, which is the PTDF for the fictitious
line (s′, t′) with effective susceptance b(e) for Ĝ1

2 =
({s, s′, t, t′}, {(s, s′), (t, t′), (s, t′), (t, s′), (s′, t′)}). We can
compute the PTDF as in (3a):

D̂1
(s′,t′),st=b(e)(bss′btt′ − bst′bts′)/

[(bss′bst′bts′ + bss′bst′btt′ + bss′bts′btt′+

bst′bts′btt′) + (bss′bst′)(bts′ + btt′)b
(e)]

Therefore, we conclude an upper bound for the LODF:

|K(m)
e,ê | ≤ |D̂

1
(s′,t′),st| ≤

|bss′btt′ − bst′bts′ |
(bss′ + bst′)(btt′ + bts′)

.

Note that the bound depends only on the susceptance of
the transmission lines for the complete bipartite network,
and hence, is valid for every pair of the tripped line ê and
the monitored line e in different sub-grids. In practice, the
actual LODF under the complete bipartite interface network
is usually much lower than the theoretical bound due to the
internal connectivity of the network. Therefore, the complete
bipartite network can provide strong failure localization.

We remark that the complete bipartite interface network
can be designed not only to eliminate the impact outside the
sub-grid where the failure happens, but to maintain the same
level of robustness within the sub-grid. Specifically, as stated

in the following theorem, the LODF remains the same as the
original network if the lines are in the same sub-grids, while
the LODF is zero if the lines are in different sub-grids.

Theorem III.4. Consider a network G consisting of two sub-
grids G1,G2 joined by two buses s and t, and the modified
network with the 2× 2 complete bipartite interface network.
Suppose the effective susceptances between buses s and t for
the two sub-grids G1,G2 is b

(e)
1 and b

(e)
2 respectively. If the

susceptances of the lines in the complete bipartite network
satisfies the following condition:

btt′ < min(b1, b2) or btt′ > max(b1, b2),

bss′ =
b1b2

btt′
, bst′ =

b2(b1 − btt′)

b2 − btt′
, bts′ =

b1(b2 − btt′)

b1 − btt′
,

then we have

K
(m)
e,ê =

{
Ke,ê, if the lines e, ê are in the same sub-grid,
0, if the lines e, ê are in different sub-grids.

Proof (sketch). This result can be proved using the fact that
the effective susceptance between buses (s, t) and (s′, t′)
remains the same if the conditions are satisfied.

D. Comments

Our theoretical analysis in this section focuses on non-
bridge line failures where post-contingency power injections
are assumed to remain constant. In practice, however, the
injections might change due to the real-time automatic
controls of the power grid. The situation is even more
complicated when islanding occurs for bridge line failures.
The detailed modeling is beyond the scope of this paper.
Nevertheless, the three interface networks are capable of
better localizing the impact of injection fluctuations, which
can be seen through a similar analysis of the PTDF.

Next, we consider the sensitivity factors PTDF and LODF
in this section, which are independent of the power injections
and transmission line capacities. These two factors are known
to only depend on the topological structure of the power grid.
Therefore, our analysis sheds light on how the power grid
can be optimized by possibly re-designing the network. There
are several practical issues to consider: how to optimally and
economically modify the existing grid, how to incorporate line
capacities and power injection patterns into the design, and
how to jointly optimize the topology and automatic control
algorithms. We leave these as future research directions.

IV. CASE STUDY

In this section, we evaluate the failure localization perfor-
mance of the three interface networks studied in the previous
section for the IEEE 118-bus test network. We start with the
DC model, and then extend it to the AC model.

A. Experimental Setup

We split the IEEE 118-bus test network network into two
sub-grids connected by four tie-lines as shown in Fig. 2. Note
that the sub-grids are not connected by the cut vertices as
in Fig. 1a. Therefore we modify the tie-lines connecting the
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(a) Series interfacing network
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(b) Parallel interfacing network
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(c) Complete bipartite network

Fig. 2. Two sub-grids are connected by 4 blue lines in the original IEEE 118-bus network. (a) Two dashed lines are switched off to create the series
interface network. (b) One purple line is added to create the parallel interface network. (c) Two purple lines are added to create the complete bipartite
network.

sub-grids to create interface networks as follows. For a series
interface network, we switch off the two dashed blue lines
and keep the two solid blue lines as in Fig. 2a. A parallel
interface network is built on top of the series network, where
we add the purple line as in Fig. 2b. The complete bipartite
interface network is achieved by connecting the end-points
of solid blue lines as the solid purple lines in Fig. 2c. We
then calculate the LODF as a metric to quantify the failure
impact for each interface network.

B. Experimental Results

a) DC Model: We start with evaluating failure local-
ization under the DC power flow model. The DC LODF is
well-defined and can be computed as (3b) if the tripped line
does not disconnect the network.

We first compare the failure localizability across the sub-
grids under various interface networks. Specifically, we
compute the LODF for all pairs of tripped lines e and
monitored lines ê in different sub-grids and demonstrate
the complementary cumulative distribution function (CCDF)
of the absolute LODF in Fig. 3a. Note that the x-axis is in
logarithmic scale and we set the LODF |Ke,ê| ≤ 10−8 as
zero. The vertical dashed line represents the theoretical bound
of the LODF for the complete bipartite network. We observe
that all three interface networks reduce the LODF across the
sub-grids. For the original 118-bus network, there are roughly
10% pairs of lines with the absolute LODF greater than 0.01,
while those cases are negligible (1%) with the series interface
network. As expected, adding a parallel interface network
on top of the series network further decreases the LODF.
The complete bipartite interface network achieves the best
localization performance, even though the susceptance does
not satisfy the rank-1 condition to completely localize the
failure within the sub-grid, i.e. bss′btt′ 6= bst′bts′ .

It is crucial to analyze the impact within the same sub-grid
where the line failure happens as well. In Fig. 3c, we show
the CCDF of the absolute LODF for the pairs of tripped line
and monitored line within the same sub-grid. We observe
that the distributions of LODF within the sub-grid for the
series, parallel and complete bipartite interface networks are
very similar, all lower than the original network. Therefore,
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(a) DC LODF for lines in different sub-grids.
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(b) AC LODF for lines in different sub-grids.
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(c) DC LODF for lines in the same sub-grid.
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(d) AC LODF for lines in the same sub-grid.

Fig. 3. The CCDF of LODF for monitored line e and tripped line ê under
DC (a,c) and AC (b,d) models. (a,b) e, ê are in different sub-grids. (c,d) e, ê
are in the same grid.



introducing the proposed interface networks properly will not
decrease the robustness for the sub-grids against failures.

We remark that the two sub-grids of IEEE 118-bus
network does not follow the definition of original network
in Section III: they are connected by four tie-lines instead
of only two buses. Nevertheless, the LODF for the mod-
ified networks with all three interface network decreases.
It suggests a broader range of applicability and stronger
failure localizability for the interface networks. This, however,
requires a proper selection on which transmission lines to
keep, and we leave it as a future direction to explore.

b) AC model: We further evaluate the localization
performance under AC model. Since there is no closed-
form expression for AC LODF, we calculate the LODF
directly using the definition. Specifically, we adopt the line
parameters and the nominal power injections from [25] as
the pre-contingency operating status. For every non-bridge
transmission line ê, we compute the post-contingency flow
with AC power flow equations when line ê trips, assuming
that the post-contingency injections remain the same. The
LODF is thus computed as Ke,ê = ∆fe

fê
, where ∆fe is the

flow change over line e and fê is the pre-contingency flow
over line ê.

The CCDF of LODF for all pairs of the monitored line
and the tripped line are shown in Fig. 3b and Fig. 3d. We
notice that the network in which the sub-grids are connected
by any of the three interface networks achieves higher
failure localizability similarly to the DC model. It should be
noted that the LODF is not zero for the complete bipartite
network under the AC model, even when the susceptances
are designed to satisfy the rank-1 condition. Nevertheless,
all interface networks reduce failure impact across sub-grids,
while maintaining similar robustness within the sub-grid.

V. CONCLUSION

In this paper, we propose three interface networks connect-
ing sub-grids to achieve stronger failure localization while
maintaining robust network connectivity. Both theoretical
analysis and case studies validate our proposed method. There
are a number of important directions for future exploration of
this topic. The most important and challenging extension is
to consider larger interface networks. In this paper, we have
considered 2×2 interface networks, but larger networks have
the potential to provide more robust connections between
sub-grids. However, it is difficult to ensure localization of
failures with larger interface networks, and characterizing the
LODF for larger networks is challenging without assuming
very specific topological properties.
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