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Abstract—This work proposes an approach for failure miti-
gation in power systems via corrective control named Optimal
Injection Adjustment (OIA). In contrast to classical approaches,
which focus on minimizing load loss, OIA aims to minimize
the post-contingency flow deviations by adjusting node power
injections in response to failures. We prove that the optimal
control actions obtained from OIA are localized around the
original failure. Specifically, at any given node an injection
adjustment is not required unless at least one of its neighboring
nodes closer to the failure already reached its adjustment limit.
Numerical simulations highlight that OIA achieves near-optimal
control costs despite using localized control actions.

I. INTRODUCTION

Reliability is a critical goal for power systems. Large-scale
blackouts, although rare, cause significant economic and social
impact. Typically, the start of a large-scale blackout is an
initial individual failure that triggers a cascade of failures.
To prevent such cascading failures, the power system is
required to operate under certain security criteria: preventive
security [1] criteria ensure that the power system remains safe
after a contingency without any additional control actions,
and corrective security [2] criteria provide post-contingency
control actions that ensure the system remains stable.

As the power grid becomes increasingly stressed by more
volatile demand fluctuations, improving the grid reliability is
crucial. Additionally, the rapid growth of renewable pene-
tration also poses challenges for grid reliability. Indeed, the
increased and strongly correlated uncertainty from renewable
energy sources makes preventive security less robust. To fully
account for such uncertainty, power systems that operate under
preventive security criteria are forced to have larger reserves
and thus incur higher costs. On the other hand, technology
advances with ubiquitous monitoring and control provide the
possibility of implementing corrective actions in response to
failures in real time [3].

Various corrective control policies have been proposed in
the literature, such as transmission system reconfiguration and
controlled system islanding, which involves line switching ac-
tions [4], [5], and generation rescheduling and load shedding,
which encompass the adjustment of operational set-points [6].
In this paper, we focus on corrective controls using power
injection adjustments, rather than topological approaches.

While existing corrective strategies exploit the flexibility of
controllable devices in response to contingencies, the control
actions for set-point adjustments are often designed using
heuristics, e.g., uniformly scaling down the injections [7],
which may result in a large amount of load loss. A va-
riety of optimization-based corrective control policies have

been proposed in [3], [8], [9], where the objective is to
minimize the cost of control actions while ensuring that
the post-contingency operating condition is safe. However,
those optimizations are usually solved in a centralized manner
and the structural properties of the solutions obtained are
not well understood. It is thus difficult to consider applying
these designs to large-scale networks, where fast and accurate
control actions are required.

In this paper, we propose a different approach for corrective
control that has strong structural properties. We refer to the
proposed policy as Optimal Injection Adjustment (OIA). Our
contribution is two-fold. We first theoretically prove that the
control resulting from OIA exhibits a local injection adjust-
ment pattern: at any given node an injection adjustment is not
required unless at least one of its neighboring nodes closer to
the contingency already reached its adjustment limit. Secondly,
we compare OIA with traditional optimization-based correc-
tive controls that focus on optimal load shedding (OLS) using
numerical experiments. These experiments highlight that OIA
achieves near-optimal control costs using localized control
actions. Specifically, OIA requires 80% fewer nodes to adjust
their operational set-points than traditional OLS, yet achieves
similar control costs. However, to achieve local response, OIA
sometimes pushes lines toward (or beyond) their capacity limit
and so we additionally consider a variation, named OIA-LL,
which imposes line limits explicitly in order to ensure that the
adjustments prescribed by OIA-LL do not overload any lines.
Our experiments highlight that OIA-LL provides nearly the
same benefits as OIA with respect to control costs and that
the injection adjustments, though less local than OIA, are still
significantly more localized than that under OLS.

The design of OIA paves the way for further study of local
corrective control policies. By exposing the topological pattern
of optimal corrective actions, our analytic results show that
it is possible to provide near-optimal corrective control using
local injection adjustments. Such a structural property is highly
desirable in large-scale power networks where distributed fast
control policies are preferred. Further, our numerical results
highlight the trade-off between the locality and control costs,
especially when it comes to enforcing line capacity limits.

II. MODEL

This paper studies how to design an injection response that
prevents a cascade following an initial contingency. To begin,
in this section we introduce the DC power flow model and
characterize how the flow redistribution happens after a failure.



A. DC Power Flow

We consider a power transmission network represented by
a connected directed graph G = (V, E), whose nodes V =
{1, 2, . . . , |V|} model network buses and edges E ⊂ V × V
model the transmission lines for which a fixed but arbitrary
direction has been assigned. We use the terms bus/node and
line/edge interchangeably and denote the line l ∈ E connecting
nodes i and j also as (i, j).

We adopt the widely used (linearized) DC power flow model
as an approximation for the non-linear and non-convex AC
power flow model in which the transmission lines are modeled
as purely reactive. Each line l = (i, j) is characterized by its
susceptance bl = bij > 0 and we define the susceptance matrix
as B = diag (bl, l ∈ E) ∈ R|E|×|E|. The network topology is
captured by the node-edge incidence matrix C ∈ R|V|×|E|
defined as follows: for every line l = (i, j), Cil = 1,
Cjl = −1, and we set to zero all other entries in the column
corresponding to that line. The graph Laplacian is the matrix
L = CBCT and we denote its pseudoinverse as L†.

Given the power injections and phase angles p,θ ∈ R|V|,
the branch flows f ∈ R|E| are obtained as the solution to the
following DC power flow equations:

p = Cf , (1a)
f = BCTθ. (1b)

It is known that there exists a unique branch flow solution
f = BCTL†p to the above power flow equations, provided
that the power injections are balanced (

∑
j∈G pj = 0) for the

graph G [10] . Using a classical result in circuit analysis [11],
it is easy to show that the branch flow solution of (1) is
also the unique optimal solution of the following quadratic
optimization problem:

min
f

fTB−1f (2a)

s.t. p = Cf . (2b)

The quadratic form fTB−1f =
∑

l∈E b
−1
l f2l that appears

as the objective function has been shown in [12] to be an
approximation for the power losses in the AC network. The
same quantity has also been studied in [13] and [14], where
it is referred to as network tension and is proven to be
monotonically increasing during any cascading failure process.
In [13] it has been shown that while an arbitrary load shedding
may increase the network tension, there exists a load shedding
configuration that can guarantee its reduction.

B. Power Redistribution After a Failure

Our goal is to understand how to respond to a failure. For
the sake of simplicity, we consider a single-line outage that
leaves the post-contingency network connected. Our results
can be extended to multiple line outages at the expense of
complexity of presentation.

The approach we use relies on the spectral representation
developed in [14]. To distinguish between pre- and post-
contingency quantities, we add a superscript (·)pre to those
referring to pre-contingency network. Specifically, we assume

the pre-contingency network Gpre = (Vpre, Epre) comprises
the same nodes, i.e., Vpre = V , and has exactly one more
transmission line, namely Epre = E ∪ {e}, i.e., line e = (s, t)
is outaged. We denote its pre-contingency flow as α :=
fpree = fpres,t ∈ R. Denote by f−e := (fl, l ∈ E \ {e}) ∈ R|E|
the vector of branch flows on the surviving lines. The post-
contingency deviations of ∆p = p − ppre, ∆θ = θ − θpre
and ∆f = f−e − f

pre
−e satisfy:

αes,t + ∆p = C∆f , (3a)
∆f = BCT ∆θ. (3b)

Equation (3) suggests that the system deviations can be equiva-
lently modeled by the DC power flow equations over the post-
contingency network with injections αes,t+∆p. The first term
αes,t characterizes the internal effect of redistributing the flow
of the outaged line e. The second term ∆p characterizes the
external effect of injection adjustments of either generations or
loads after the failure. Note that the power balancing condition∑

i ∆pi = 0 is implicitly required to satisfy (3a).

III. OPTIMAL INJECTION ADJUSTMENT

Given the model introduced in the previous section, we
can now discuss how to respond to the initial failure. Here,
we formulate an optimization problem that aims to minimize
the flow deviations by adjusting the node power injections in
response to line failures. The key to our approach is to focus on
the post-contingency injection adjustments ∆p, which capture
both generators and loads flexibility and are thus bounded
by generator capacity limits or load shedding allowance. For
any node i ∈ V we denote its injection adjustment and
corresponding constraints as

∆p
i
≤ ∆pi ≤ ∆pi.

For each injection adjustment ∆p satisfying the above con-
straints, the post-contingency flow deviations ∆f can then be
computed from (3).

We henceforth drop the notation ∆(·) for compactness, but
all the quantities p, f , and θ will still denote deviations from
their original values in the pre-contingency network.

We quantify the magnitude of the flow deviation on each
surviving line l by means of a non-negative “cost function”
cl(fl), which we take to be strictly monotonically increasing
with the absolute value of fl. Given such a family of cost
functions, we formulate the optimal injection adjustment
(OIA) problem, whose goal is to determine the injection
adjustments that minimize the cost of post-contingency flow
deviations. Formally, given a pre-contingency network Gpre
with a branch flow α on the line e = (s, t) ∈ Epre to be
tripped, the OIA(α,s,t) problem is formulated on the post-
contingency network G as follows:

min
f ,p,θ

∑
l∈E

cl(fl) (4a)

s.t. αes,t + p = Cf , (4b)
f = BCTθ (4c)
p ≤ p ≤ p. (4d)



We assume that the generators and loads in our model are
controllable and both components can either increase or de-
crease their injections. As a result, for every node i ∈ V , its
adjustment limit satisfies p

i
< 0 < pi.

To build intuition for the OIA problem, notice that ignoring
the constraint (4d) yields a trivial (unique) optimal solution
p∗ = −αes,t. This suggests that if the adjustments at the
end-points of the failed transmission line are allowed to be
large enough, i.e. max(p

t
,−ps) ≤ α ≤ min(pt,−ps), pre-

contingency branch flows of the grid can be restored.
Beyond this simple case, the OIA problem can prioritize

different system requirements by choosing appropriate cost
functions. For instance, cl(fl) = |fl| characterizes the total
post-contingency absolute flow deviations, which can be useful
to determine the capacity reserves for transmission lines.
Another possible cost function is cl(fl) = b−1l f2l . Note that
fl here indicates the flow deviation rather than the actual
value used in network tension. This quantity has been studied
in contingency analysis to quantify the severity of a line
failure [15]. It is shown that the average load loss and number
of outaged lines increase as this quantity increases. Thus,
adjusting post-contingency injections to minimize this cost
function can potentially improve grid stability against failures.

While not immediately clear, the OIA problem ensures
a local response to contingencies. In particular, we show
in the next section that the optimal solutions of the OIA
problem exhibit a local and progressive pattern. Specifically,
the optimal adjustments are localized around the failure in a
way that an injection adjustment is non-zero only if at least one
of its neighbors reaches the adjustment limit. This topological
pattern in the adjustments ensures that it is possible to design
local responses against failures while avoiding computational
challenges. This is particularly important when the system
requires fast timescale post-contingency corrective control
policies for reliability.

A drawback of the OIA problem introduced so far is that it
does not explicitly constrain post-contingency flows to satisfy
the line capacity limits. As a result there may be some lines
that are overloaded post-contingency. When this is a problem,
it can be remedied by including the constraints explicitly via

f ≤ f ≤ f , (5)

where f and f are the limits for post-contingency flow
deviations. We refer to the OIA with above line limits as
the optimal injection adjustment with line limits (OIA-LL)
problem. While our analytic results focus on OIA, we show
via case studies in Section V that OIA-LL achieves nearly the
same performance as OIA at the expense of some locality.

Finally, note that the OIA problem we consider is philosoph-
ically different than traditional corrective control policies, e.g.,
see [9], [16]. In these works, the focus is on the optimal load
shedding (OLS) problem whose objective is to minimize the
cost of load loss. Formally, a generalization of OLS can be

formulated as:

min
f ,p,θ

∑
i∈V

ci(pi) (6a)

s.t. αes,t + p = Cf , (6b)
f = BCTθ (6c)
p ≤ p ≤ p, (6d)

f ≤ f ≤ f , (6e)

where the objective is to explicitly minimize the cost of
injection adjustments ci(pi) (e.g. the loss of load, the cost
of generator ramping) while enforcing post-contingency flows
under line capacity as a constraint (6e). This is a generalization
of classical OLS because it allows loads to fluctuate both up
and down around the pre-contingency injection, instead of only
down. This generalization allows for a more fair comparison
between OLS and OIA.

In contrast to OLS, the OIA problem does not minimize
the cost of injection adjustments directly, but encodes the
adjustment limit into constraint (4d). Specifically, the tradi-
tional approaches tend to impose a larger adjustment limit
in (6d) in order to make the optimization feasible. On the
other hand, the OIA problem (4) is always feasible and one
can impose a more strict limit in (4d) so that a lower cost
for control actions is implicitly achieved. It should be noted,
however, that a strict injection adjustment limit may result in
unsafe post-contingency line flows. Therefore, the limit should
be designed carefully based on the system parameters and
application scenarios. As we will show in Section V through
numerical experiments, the OIA provides a near-optimal but
much more local injection adjustments in response to failures.
The overloaded lines are avoided with the OIA-LL method.

IV. ANALYSIS

The remainder of this paper studies the OIA and OIA-
LL problems and their benefits for contingency response.
In this section, we provide analytic results that characterize
the topological patterns of the optimal solutions to the OIA
problem. These patterns lead to possible local, distributed and
fast responses against failures.

We begin with the case where the post-contingency network
is a tree. In this case, for any choice of the cost functions,
the optimal solutions of the OIA problem have a distinctive
feature: the injection of any node is not adjusted unless its
preceding nodes toward the endpoints s and t of the outaged
line reach their adjustment limits. We prove that a similar
characterization holds for general post-contingency networks
(possibly including loops) if the cost function cl(fl) = b−1l f2l
is used. Recall that this cost prioritizes grid stability.

For ease of presentation, we assume the direction of pre-
contingency flow over the outage line e = (s, t) is from node
s toward node t, i.e. α > 0. All proofs in this section are
deferred to Appendix.

A. Tree Post-Contingency Network
We first analyze the optimal solutions of the OIA prob-

lem (4) in the case in which the post-contingency network G



is a tree. Our main result, Theorem 3, states that the optimal
injection adjustment at each node i can be determined by
checking whether the adjustment limit is reached by all the
preceding nodes (see Definition 1) along the paths connecting
node i toward nodes s and t.

Definition 1. Given two nodes i, j, consider a simple path
(i.e., without repeated nodes) P = [i = u0, u1, u2, . . . , ur =
j] connecting nodes i and j. We denote the node preceding
node j in the path P toward node i as uPi (j) := ur−1, and
denote the set of all nodes preceding node j along the path
P as UP

i (j) := {i = u0, u1, . . . , ur−1}. Moreover, we define
UP
i (i) = ∅.

Note that there exists a unique simple path for every pair
of nodes i and j when the post-contingency network is a
tree. Thus we omit the superscript (·)P in this subsection for
notation simplicity.

In order to build to the presentation of Theorem 3, we
develop a construction of the post-contingency flow deviations
f ∈ R|E|. In general, the power flow equation (1b) requires f
to lie in the column space of matrix BCT ; however, such
an image space is essentially R|E| as range(BCT ) = |E|
when the post-contingency network is a tree [17]. Therefore,
constraint (4c) in OIA problem is actually redundant for tree
networks, since for any arbitrary flow vector f ∈ R|E|, we can
always construct the corresponding phase angles θ and power
injections p such that the DC power flow equations (4c) and
(4b) naturally hold. In particular, we have θ = L†Cf and
p = Cf − αes,t.

This fact plays a critical role in the proof of the following
lemma, which characterizes the necessary conditions to deter-
mine the sign of optimal injection adjustment for every node
i other than nodes s or t.

Lemma 2. Assume that the cost function is strictly increasing
in absolute flow deviations and that the post-contingency
network is a tree. For node i 6= s, t and its preceding node
us(i) toward node s and preceding node ut(i) toward node t,
the optimal solutions p∗,f∗ of the optimization (4) satisfy:
• If p∗i > 0, then f∗ut(i),i

< 0, p∗ut(i)
= put(i);

• If p∗i < 0, then f∗us(i),i
> 0, p∗us(i)

= p
us(i)

.

Lemma 2 suggests that for any given node i other than nodes
s or t, if the optimal control is to increase its injection, then its
preceding node ut(i) toward node t must reach the maximal
adjustment limit. Moreover, the direction of corresponding
optimal flow deviation is from node i toward node ut(i).
Similarly, if the optimal control at node i is to decrease its
injection, then the preceding node us(i) toward node s reaches
the minimal adjustment limit with the flow deviation from
node us(i) toward node i.

Applying Lemma 2 repeatedly, one can show that if the
optimal injection adjustment at node i is non-zero, then there
must exist a path connecting node i to node s or t along which
the optimal injection adjustments of all the nodes reach their
limits. Moreover, the direction of optimal flow deviations are
determined based on the sign of p∗i . We formally characterize

this topological pattern in the following theorem, which is the
main result of this section.

Theorem 3. Assume the post-contingency network is a tree
and that the cost function is strictly increasing in absolute flow
deviations. For any optimal solutions p∗ of (4), the optimal
injection adjustment at node i 6= s, t satisfies:
(a) If there exists j ∈ Ut(i) with p∗j < pj , then p∗i ≤ 0;
(b) If there exists j ∈ Us(i) with p∗j > p

j
, then p∗i ≥ 0.

In particular, if there exist both j ∈ Ut(i) with p∗j < pj and
j′ ∈ Us(i) with p∗j′ > p

j′
, then p∗i = 0.

Theorem 3 illustrates that the optimal solution to (4) is to
progressively adjust the injections starting from nodes s and
t, which aligns with intuition. Specifically, the contingency
causes an excessive injection α at node s and a power deficit
−α at node t for the post-contingency system. To compensate
for such imbalances, the optimal response at every other
node depends on its preceding nodes toward the endpoints
of the failures. In particular, there is no incentive for a node
to adjust its injection when there is a preceding node that
does not reach its adjustment limit. Therefore, the injection
adjustments follow a progressive pattern from the endpoints
of the contingency. In fact, there is an (tight) upper bound
for the total absolute injection adjustments of all the nodes as
shown in the following lemma.

Lemma 4. Assume the post-contingency network is a tree and
that the cost function is strictly increasing in absolute flow
deviations. Then, every optimal solutions p∗ of (4) satisfies
the following inequalities: (i) p∗s < 0 and p∗t > 0; (ii)∑

i∈V |p∗i | ≤ 2α.

The next corollary follows immediately from combining The-
orem 3 and Lemma 4. It suggests that the progressive injection
adjustments are guaranteed to terminate so that the adjusted
nodes are localized around nodes s and t.

Corollary 5. Assume the post-contingency network is a tree
and that the cost function is strictly increasing in absolute
flow deviations. Then, for any optimal solutions p∗ of (4) the
optimal injection adjustment p∗i at node i 6= s, t satisfies the
following properties:
• If

∑
j∈Us(i)−pj ≥ α, then p∗i ≥ 0;

• If
∑

j∈Ut(i) pj ≥ α, then p∗i ≤ 0.
In particular, if both

∑
j∈Us(i)−pj ≥ α and

∑
j∈Ut(i) pj ≥ α

hold, then p∗i = 0.

B. General Post-Contingency Networks
The characterization proved in the case of tree networks

does not hold in general. However, we show here that the local-
ization properties observed in the case of tree networks extend
to general networks when the cost function cl(fl) = b−1l f2l
is adopted. Recall that the cost function c(f) = fTB−1f
is popular in the contingency literature, where it is usually
regarded as a metric to quantify the severity of a failure.

Loops complicate the behavior of general networks as there
may be multiple simple paths connecting nodes i and j.



For clarity, in this subsection we add back the superscript
(·)P for uPi (j) and UP

i (j) to indicate a specific simple path
P connecting node j towards node i. We now present the
main result of this section, which extends Theorem 3 to
general networks and characterizes the conditions to determine
post-contingency injection deviations. Moreover, if the post-
contingency injections for both endpoints of a transmission
line remain the same, the post-contingency flow is unchanged
as well, suggesting that flow deviations are localized along the
lines with adjusted injections.

Theorem 6. Assuming a connected post-contingecny network
and taking cl(fl) = b−1l f2l as cost function, the optimal
injection adjustment p∗i at node i 6= s, t for the optimal
solution p∗ of (4) satisfies the following properties:

(a) If for every simple path P connecting node i and t there
exists j ∈ UP

t (i) with p∗j < pj , then p∗i ≤ 0;
(b) If for every the simple path P connecting node i and s

there exists j ∈ UP
s (i) with p∗j > p

j
, then p∗i ≥ 0.

In addition, for line (i, j) ∈ E , if p
i
< p∗i < pi and p

j
< p∗j <

pj , then we have f∗i,j = 0.

Similarly to Corollary 5 in the case of a tree post-
contingency network, the optimal injection adjustments are
localized around the endpoints of the failure for general
networks as well. We formalize this in the following result.

Corollary 7. Assuming a connected post-contingecny network
and taking cl(fl) = b−1l f2l as cost function, the optimal
injection adjustment at any node i 6= s, t for the optimal
solution p∗ of (4) satisfies the following properties:

• If
∑

j∈UP
s (i)−pj ≥ α for all simple paths P connecting

node i toward node s, then p∗i ≥ 0;
• If

∑
j∈UP

t (i) pj ≥ α for all simple paths P connecting
node i toward node t, then p∗i ≤ 0.

An implicit, but important, component of the above results is
that the optimal injection adjustments are localized around the
line failure, which provides computational gains. Specifically,
define the following quantities for every node i 6= s, t:

ds(i) = min
P

∑
j∈UP

s (i)

−p
j

and dt(i) = min
P

∑
j∈UP

t (i)

pj .

These two quantities can be computed for every node in
the network using a variant of Dijkstra’s algorithm with
complexity O(n2). Corollary 7 suggests that for a single
line failure (s, t), the optimal injection adjustments will be
localized within a subset of nodes around node s and t of α,
i.e., for node i ∈ Vst(α) := {v ∈ V : ds(v) ≥ α, dt(v) ≥ α},
p∗i = 0. Moreover, for a line (i, j) with i, j ∈ Vst(α), f∗i,j = 0.
This localized pattern helps accelerate the computation of (4).
For instance, the size of set V\Vst(α) is usually much smaller
than the actual network size. Many variables in (4) can thus be
set as 0 and redundant constraints can be removed, allowing
for a faster and more local response against failures.

V. CASE STUDY

In this section, we use numerical simulations to evaluate the
performance of OIA and OIA-LL in response to failures in
the IEEE 118-bus test network and compare it with a classical
corrective control approach, OLS.

A. Setup

We simulate failure scenarios for the IEEE 118-bus test
network, using the system parameters and the pre-contingency
operating conditions described in [18]. We associate each
transmission line with a capacity that is 1.2 times the amount
of pre-contingency flow on that line. Considering individually
every transmission line whose removal does not disconnect the
network as the initial failure, we simulate the post-contingency
system state under three control policies (OIA, OIA-LL, and
OLS) and additionally contrast these with what happens when
no control is applied.

For OIA, we select cl(fl) = b−1l f2l as the cost function
since the post-contingency network is not a tree in general.
For every node i we set the adjustment limits proportionally
to its pre-contingency injection, namely

−β |pprei | ≤ pi ≤ β |p
pre
i | ,

with β > 0. In our simulations we choose β = 0.1, 0.3, 1.0
to represent various levels of the injection adjustment limit,
where a larger β captures a more lenient allowance. For its
variation OIA-LL that enforces line limits as well, we choose
β = 1.0 to guarantee its feasibility.

For the traditional corrective control OLS, recall that we
allow generations and loads to fluctuate around the pre-
contingency values for a fair comparison with OIA. We thus
use ci(pi) = |pi| as the cost function to penalize the total
post-contingency injection adjustments. Similarly to OIA-LL,
we choose β = 1.0 so that OLS is guaranteed to be feasible.

B. The performance of OIA

To illustrate the performance of OIA, we study the trade-off
between locality and injection adjustment as a function of the
post-contingency injection adjustment flexibility, captured by
the parameter β.

Figure 1 illustrates the failure mitigation performance of
OIA for different β’s. Specifically, we investigate the fraction
of transmission lines whose post-contingency flows exceed
line capacity and the relative injection adjustment to the pre-
contingency injections for every single-line failure. Figure 1
demonstrates the complementary cumulative distribution func-
tion (CCDF) for these two metrics. It is shown that, even
under a strict adjustment limit (small β), OIA outperforms
the baseline where no control is implemented in terms of pre-
venting overloaded lines. Moreover, transmission lines become
less likely to be overloaded as β increases. However, a more
lenient limit potentially leads to larger injection adjustments.

Figure 2 compares the localization performance for OIA
with various β’s. To quantify the locality, we compute the
fraction of nodes with adjusted injections and the radius (in
hops) for the subset of adjusted nodes to the endpoints of
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Figure 1. CCDF of the fraction of overloaded transmission lines (left) and
the relative injection adjustment (right).
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Figure 2. CCDF of the fraction of nodes with injection adjustment and the
radius (in hops) of the adjusted nodes to the endpoints of an initial failure.

initial failure. Clearly, a larger β achieves better localization
performance: fewer nodes that are closer to the contingency
are adjusted for failure mitigation.

To summarize, a larger β prevents lines being overloaded
and uses a more local response, at a possible cost of larger
amount of injection adjustments. It is thus crucial to carefully
tune the parameter β to prioritize different control objectives.

C. Comparing OIA and OLS

We now compare the performance of OIA and OIA-LL with
the more traditional approach OLS. For a fair comparison,
we fix β = 1.0 for OIA, to minimize the chance of over-
loaded lines. This results in fewer than 0.3% of lines being
overloaded with OIA on average. We also compare OIA with
its augmented version, OIA-LL, that directly enforces post-
contingency line flows and hence has no overloaded lines.

Figure 3 illustrates the comparison between OIA, OIA-LL
and OLS. Both OIA and OIA-LL achieve similar results in
terms of the relative injection adjustments and the fraction of
nodes with injection adjustment, while OIA-LL requires nodes
from a broader region to participate in the mitigation process.
Furthermore, OIA-LL leads to a larger portion of lines with
flow deviations than OIA. On the other hand, OLS achieves
smallest injection adjustments, but leads to largest amount of
nodes and transmission lines affected after failures.

Figure 4 shows the Pareto curve for OIA, demonstrating
the trade-off between the adjustment cost and the locality of
control actions. The curve is generated by simulating with
β > 0.3 for OIA so that the average number of overloaded
lines remains below 1%. For comparison, we demonstrate the
performance of OIA-LL and OLS as well. The key point
here is that OLS is far from the Pareto frontier of OIA,
thus highlighting that OIA achieves a better trade-off between
localizing responses and the size of injection adjustments.

0 50 100

# of adjusted lines (%)

0

0.2

0.4

0.6

0.8

1

C
C

D
F

0 50 100

# of adjusted nodes (%)

0

0.2

0.4

0.6

0.8

1

C
C

D
F

0 50 100

# of adjusted nodes (%)

0

0.2

0.4

0.6

0.8

1

C
C

D
F

0 5 10 15

Radius (hops) of adjusted nodes

0

0.2

0.4

0.6

0.8

1

C
C

D
F

Figure 3. Comparison of OIA, OIA-LL and OLS.
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Figure 4. Pareto curve of OIA, OIA-LL, and OLS trading off relative injection
adjustment (y-axis) and radius of adjusted nodes.

Enforcing line limits in OIA-LL means that it is also outside
the Pareto frontier of OIA, but control still remains local, at
the expense of a slightly larger control cost (note the scale of
the y-axis); which means that it is closer to the Pareto frontier
of OIA than OLS.

VI. CONCLUSIONS

In this paper, we have formulated a novel corrective control
policy that achieves near-optimal control costs using localized
control actions in response to failures. Both theoretical analysis
and case studies validate the properties and capabilities of the
proposed approach. This shows the feasibility of local correc-
tive control, and there are a number of important directions for
future exploration of this topic, e.g., (i) theoretical analysis
for the trade-off between the locality and control costs, (ii)
localized, distributed, and fast control policy design for large-
scale power networks, (iii) analytical comparisons between
the optimal injection adjustment and other corrective control
policies, and (iv) generalization and validation with the non-
linear AC power flow model.
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APPENDIX

Proof of Lemma 2. We prove only the first claim as the proof
of the second is analogous. Define p̂ := p∗ + αes,t which
satisfies the flow conservation rule p̂ = Cf∗. For sake of
contradiction, assume f∗ut(i),i

≥ 0. Since p̂i = p∗i > 0 and
f∗ut(i),i

≥ 0, there must exist a node v1 6= t with f∗i,v1 > 0
due to the flow conservation rule. If p̂v1 ≥ 0, we can further
find another node v2 6= t with flow directing from v1 to v2.
Such a construction can be repeated until p̂vk < 0 at node
vk. We remark that node vk always exists, otherwise the flow
conservation rule cannot be satisfied. In addition, p∗vk < 0
since vk 6= t and p̂vk < 0. Therefore, if f∗vt(i),i ≥ 0, we
can always find a simple path P = [i = v0, v1, v2, . . . , vk]
with all flows directed from i towards vk. Now, define
γ := min(p∗i ,min0≤l≤k−1 f

∗
vl,vl+1

,−p∗vk) > 0. Construct a
new flow f̃ by uniformly decreasing by γ the flows only along
the path P , i.e. f̃l = f∗l −γ for l ∈ P , and f̃l = f∗l otherwise.
Define p̃ = p∗−γei,vk . The tree structure guarantees that they

satisfy constraints (4c) and (4b). In addition, one can check
that p̃ also satisfy constraint (4d). However, the constructed
flow f̃ yields a strictly lower cost, contradicting the assump-
tion that p∗ is optimal. If p∗ut(i)

< put(i), we can similarly
define γ := min(p∗i ,−f∗ut(i),i

, put(i) − p∗ut(i)
) > 0, and let

p̃ = p∗−γei,ut(i). It can be checked that p̃ is feasible and that
the corresponding flow f̃ achieves lower cost, contradicting
the assumption that p∗ is optimal.

Proof of Lemma 4. (i) For the sake of contradiction, suppose
p∗s ≥ 0. For every other node i 6= s, we have s ∈ Us(i) and
p∗s > p

s
. Theorem 3 then implies that p∗i ≥ 0. Thus, we have∑

i∈V p
∗
i ≥ p∗s > 0, which contradicts the power balancing

condition. Therefore, p∗s ≤ 0. Similarly, we can show p∗t ≥ 0.
(ii) Define V+ = {i ∈ V : p∗i > 0} as the set of

nodes with positive injection deviations at optimum. The
claim that

∑
i∈V |p∗i | ≤ 2α is equivalent to

∑
i∈V+ p

∗
i ≤ α

since p∗ is balanced. For the sake of contradiction, assume∑
i∈V+ p

∗
i > α. It is easy to check that t ∈ V+ and s /∈ V+.

Let p̂ = p∗ + αes,t. Considering the set V+ as a group,
the flow conservation rule implies that there exists a line
(i, j1) ∈ E with i ∈ V+, j1 ∈ V \ V+ and f∗i,j1 > 0. If
p∗j1 = 0, one can further find another j2 ∈ V \ V+ with
(j1, j2) ∈ E and f∗j1j2 > 0. We can repeat this process and the
flow conservation rule guarantees that there must exist a path
P := [i, j1, j2, . . . , jk] such that p∗i > 0, p∗j1 , . . . , p

∗
jk−1

= 0,
and p∗jk < 0 with non-zero flows from node i towards node k.
Similarly to the proof of Lemma 2, we can uniformly reduce
the flow by γ := min(p∗i ,minl∈P f

∗
l ,−p∗jk) with feasible

injections p̃ = p∗ − γei,jk . This leads to a strictly smaller
objective, which contradicts the optimality of p∗.

Proof of Theorem 6. Along the lines of Lemma 2, we can
show that if p∗i > 0 and i 6= t, then there exists a path P
connecting node t and i such that f∗

uP
t (i),i

< 0 and p∗
uP
t (i)

=

puP
t (i). Applying this claim repeatedly yields Theorem 6(a)

and (b).
To prove such a claim, we follow a strategy similar to

that of Lemma 2. Define p̂ := p∗ + αes,t. For the sake
of contradiction, assume that f∗

uP
t (i),i

≥ 0 for every path
connecting t and i. Then, there must exist a simple path
P ′ = [i = v0, v1, v2, . . . , vk] such that t /∈ P ′, f∗vl,vl+1

> 0
for 0 ≤ l ≤ k − 1, and p̂v1 = · · · = p̂vk−1

= 0, p̂vk
<

0. Define γ := min(p∗i ,min0≤l≤k−1 fvl,v∗l+1
,−p∗vk) > 0.

Construct a new power injection vector p̃ = p∗ − γei,vk ,
which can be checked to satisfy the p ≤ p̃ ≤ p. We
further have p̃ + αes,t = Cf̃ , where f̃l := f∗l − γ for
l ∈ P ′ and f̃l := f∗l otherwise. Given that the corre-
sponding flow f ′ := BCTL†(p̃ + αes,t) minimizes (2),
we have f ′TB−1f ′ ≤ f̃TB−1f̃ < f∗TB−1f∗. Thus we
have constructed a feasible p̃ with a strictly lower objective,
which contradicts the assumption that p∗ is optimal. One can
similarly prove that p∗

uP
t (i)

= puP
t (i).

Finally, the last part of the theorem, which states that f∗i,j =
0 if p

i
< p∗i < pi and p

j
< p∗j < pj , can be proved from the

KKT conditions of problem (4).


