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Abstract

We consider the hard-core model on a finite square grid graph with stochastic Glauber
dynamics parametrized by the inverse temperature β. We investigate how the transition between
its two maximum-occupancy configurations takes place in the low-temperature regime β → ∞ in
the case of periodic boundary conditions. The hard-core constraints and the grid symmetry make
the structure of the critical configurations, also known as essential saddles, for this transition very
rich and complex. We provide a comprehensive geometrical characterization of the set of critical
configurations that are asymptotically visited with probability one. In particular, we develop
a novel isoperimetric inequality for hard-core configurations with a fixed number of particles
and we show how not only their size but also their shape determines the characterization of the
saddles.
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1 Introduction
We consider a stochastic model, known in the literature as hard-core lattice gas model [10, 31], where
particles have a non-negligible radius and therefore cannot overlap. Assuming a finite volume, the
hard-core constraints are modeled with a finite undirected graph Λ. More specifically, particles can
reside on the sites of Λ and edges connect the pairs of sites in Λ that cannot be simultaneously
occupied. In other words, any hard-core configuration is an independent set of Λ. In this paper, we
take Λ to be a square grid graph with periodic boundary conditions. The resulting hard-core particle
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configurations are then those whose occupied sites have all the corresponding four neighboring sites
empty, see Fig. 1 for an example of such configurations.

This interacting particle system evolves according to a stochastic dynamics which is fully charac-
terized by the Hamiltonian or energy function in (2.3) and is parametrized by the inverse temperature
β. In particular, the appearance and disappearance of particles are modeled via a Glauber-type
update Markov chain {Xt}t∈N with Metropolis transition probabilities induced by the Hamiltonian,
see (2.4) later for more details. The stochastic process is reversible with respect to the corresponding
Gibbs measure, cf. (2.2), which is then its equilibrium distribution.

In the low-temperature regime (i.e., β → ∞), the most likely states for this interacting particle
system, which we refer to as stable states, are those with a maximum number of particles, namely.
On the square grid graph Λ of even length, there are two stable states, corresponding to the two
chessboard-like patterns. When β grows large, it takes the system a very long time to move from one
stable state to the other since such a transition involves visiting intermediate configurations which are
very unlikely. Such transitions become thus rare events and this is a central issue in the framework
of metastability for interacting particle systems, which represents a thriving area in mathematical
physics that is full of challenges. As a consequence, the stochastic process takes also a very long time
to converge to stationarity, exhibiting so-called slow/torpid mixing [29, 43].

The asymptotic behavior of the first hitting times between the maximum-occupancy configurations
of this model in the low-temperature regime has been studied in [37]. In particular, the authors
showed how the order-of-magnitude of this first hitting time depends on the grid sizes and on the
boundary conditions by means of an extension of the setting in [35]. Instead of leveraging directly the
general strategy proposed in [35], which allows us to derive the asymptotic behavior of the transition
time together with a characterization of the critical configurations, the authors of [37] adopted a
novel combinatorial method to estimate the energy barrier between the two stable states of the model,
which is disentangled with respect to the description of the critical droplets.

The main motivation of the present paper is to fill this knowledge gap. Indeed, the geometrical
characterization of the essential gates is a relevant goal both from a probabilistic and a physical
point of view since it provides insightful details of the dynamical behavior of the system. This
represents a crucial point in describing the typical trajectories, namely, those typically followed by
the system during the transition from a stable state to the other. We remark that in several models
analyzed in the context of Freidlin-Wentzell Markov chains evolving under Glauber dynamics, the
essential gate was unique [1] but, in general, there may exist many minimal sets that are crossed with
high probability during the phase transition, either distinct or overlapping (see e.g. [5, 6] for this
description in the case of the conservative Kawasaki dynamics). Interestingly, this is what happens
also for our model despite it evolves under the non-conservative Glauber dynamics. Such a peculiar
feature rests on the hard-core constraints and on the specific symmetry of the system, i.e., we are
analyzing the tunneling transition between two stable states. Indeed, the fact that particles cannot
appear in any site and the starting and target configurations have the same energy forces the system
to visit many critical configurations before reaching the cycle of the target stable state. This is
indeed also what happens for the Ising and Potts model evolving with the Glauber dynamics when
there is no external magnetic field (see [12] for instance), while when the symmetry of the system is
broken, namely, an external magnetic field is present, the situation drastically changes. This different
behavior has a major impact on the geometrical structure of the essential gates, which indeed turns
out to be much richer than in the other cases and deserves a careful and detailed analysis.

In order to geometrically characterize the critical configurations, with each cluster of particles
we associate its contour, that is a union of edges on the dual graph of Λ. To this end, we provide
some results concerning the model-dependent isoperimetric inequality. In particular, we show that
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Figure 1: Example of a hard-core configuration on the 14 × 14 square grid with periodic boundary conditions.
On the left, the occupied sites in Vo (resp. in Ve) are highlighted in black (resp. in red). On the
right, we depict the same configuration using a different visual convention, in which we highlight
the odd clusters that the configuration has by drawing only the empty sites in Ve (in white), the
occupied sites in Vo (in black), and a black line around each odd cluster representing its contour.

for a fixed area the unique clusters that minimize the perimeter have a rhomboidal shape. However,
the energy landscape is much more complex as the periodic boundary conditions give rise to other
types of clusters with minimal perimeter for a given area, such as the configurations having a column
containing a fixed number of particles.

In this paper, we adopt the framework of the pathwise approach, introduced in [22], later developed
in [40, 41], and summarized in the monograph [42]. A modern version of this approach can be found
in [24, 25, 35, 37]. The pathwise approach has been widely adopted to the low-temperature behavior
of finite-volume models with single-spin-flip Glauber dynamics, e.g. [1, 2, 11–14, 23, 39, 44, 45], with
Kawasaki dynamics, e.g. [4–7, 32, 36], and with parallel dynamics, e.g. [26–28]. The more involved
infinite-volume limit at low temperature was studied via this approach in [3, 30, 32]. Another method
to study the metastability is the so-called potential-theoretic approach, initiated in [20] and later
summarized in the monograph [21] (see for instance [18, 19, 38] for the application of this approach
to specific models both in finite and infinite volume). Since these two approaches rely on different
definitions of metastable states, they are not completely equivalent. The situation is particularly
delicate for infinite-volume systems, irreversible systems, and degenerate systems, as discussed in [15,
24, 25]. More recent approaches are developed in [8, 9, 16, 17, 33, 34].

The paper is organized as follows. In Section 2, we provide a detailed model description and state
our main result regarding the geometric features of the critical configurations, Theorem 2.1. The rest
of the paper is then devoted to the proof of this result. First, Section 3 provides some preliminary
definitions and auxiliary results and then finally the proof of the main theorem is given in Section 4.
For the sake of clarity, the proofs of some auxiliary lemmas are deferred to a later section, namely
Section 5. Lastly, Section 6 concludes the paper and outlines some future work.
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2 Model description and main results
We consider the stochastic evolution of the hard-core model on finite two-dimensional square lattices.
More precisely, given an integer L ≥ 2 we consider the L × L square grid graph Λ = (V, E) with
periodic boundary conditions, which we will refer to as L × L toric grid graph. We denote by E the
edge set of the grid graph Λ and by V the collection of its N = L2 sites. We identify each site v ∈ Λ
by its coordinates (v1, v2), that is we take as set of sites V := {0, . . . , L − 1} × {0, . . . , L − 1}. In the
rest of the paper, we will assume that L is an even integer, which guarantees that Λ is a bipartite
graph, and that L ≥ 6, to avoid pathological trivial cases.

A particle configuration on Λ is described by associating a variable σ(v) ∈ {0, 1} to each site
v ∈ Λ, indicating the absence (0) or the presence (1) of a particle on that site. Let X ⊂ {0, 1}N be
the collection of hard-core configurations on Λ, i.e.,

X := {σ ∈ {0, 1}N | σ(v)σ(w) = 0, ∀ (v, w) ∈ E}, (2.1)

i.e., the particle configurations on Λ with no particles residing on neighboring sites.
A site of Λ is called even (respectively odd) if the sum of its two coordinates is even (respectively

odd) and we denote by Ve and Vo the collection of even sites and that of odd sites of Λ. Clearly
|Ve| = |Vo| = L2/2. We denote by e (o, respectively) the particle configuration on Λ with particles at
each site in Ve (Vo, respectively), i.e.,

e(v) :=
1 if v ∈ Ve,

0 if v ∈ Vo,
and o(v) :=

0 if v ∈ Ve,

1 if v ∈ Vo.

Both e and o are hard-core configurations thanks to the assumption that L is even.
Fig. 1 shows an example of a hard-core configuration. Throughout the paper, all figures are

drawn using the following conventions. They all depict hard-core configurations on a 14 × 14 grid
with periodic boundary conditions. The occupied (empty) sites in Vo (Ve, respectively) are shown in
black (white) and we draw a black line around each odd cluster representing its contour. We tacitly
assume that all the even (odd) sites outside the odd region are occupied (empty, respectively) but
they are not displayed to avoid cluttering the figures. See Section 3.1 for more precise definitions of
odd clusters and odd regions.

Consider the Gibbs measure on X given by

µβ(σ) := e−βH(σ)

Zβ,Λ
, σ ∈ X , (2.2)

where H is the Hamiltonian H : X → R that is taken to be proportional to the number of present
particles, namely

H(σ) := −
∑
v∈V

σ(v), (2.3)

with Zβ,Λ := ∑
σ∈X e−βH(σ) being the normalizing constant. The two hard-core configurations on the

L × L toric grid graph Λ introduced above have energy equal to

H(e) = H(o) = −L2

2 ,

which is the minimum value the Hamiltonian can take on X [37].
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We assume the interacting particle system described evolves according to stochastic Glauber-type
dynamics described by a single-step update Markov chain {Xβ

t }t∈N on X with transition probabilities
between any pair of configurations σ, σ′ ∈ X given by

Pβ(σ, σ′) :=
q(σ, σ′)e−β[H(σ′)−H(σ)]+ , if σ ̸= σ′,

1 − ∑
η ̸=σ Pβ(σ, η), if σ = σ′,

(2.4)

where [·]+ = max{·, 0} and q is the connectivity matrix that allows only single-step updates, i.e., for
every σ, σ′ ∈ X we set

q(σ, σ′) :=


1
N

, if |{v ∈ V : σ(v) ̸= σ′(v)}| = 1,

0, if |{v ∈ V : σ(v) ̸= σ′(v)}| > 1.

1 − ∑
η ̸=σ q(σ, η), if σ = σ′.

(2.5)

The resulting dynamics Pβ is reversible with respect to the Gibbs measure µβ given in (2.2). One
usually refers to the triplet (X , H, q) as energy landscape and to (2.4) as Metropolis transition
probabilities.

The connectivity matrix q given in (2.5) is irreducible, i.e., for any pair of configurations σ, σ′ ∈ X ,
σ ̸= σ′, there exists a finite sequence ω of configurations ω1, . . . , ωn ∈ X such that ω1 = σ, ωn = σ′

and q(ωi, ωi+1) > 0, for i = 1, . . . , n − 1. We will refer to such a sequence as a path from σ to σ′ and
denote it by ω : σ → σ′. Given a path ω = (ω1, . . . , ωn), we define its height Φω as

Φω := max
i=1,...,n

H(ωi). (2.6)

The communication energy between two configurations σ, σ′ ∈ X is the minimum value that has to
be reached by the energy in every path ω : σ → σ′, i.e.,

Φ(σ, σ′) := min
ω:σ→σ′

Φω = min
ω:σ→σ′

max
η∈ω

H(η). (2.7)

Let X s ⊂ X denote the set of global minima of the Hamiltonian H on X , to which we will refer
to as stable states. In [37] it has been proved that for the hard-core model on a finite L × L square
grid graph the following statements hold:

(i) There are exactly two stable states
X s = {e, o}; (2.8)

(ii) The communication energy between the two stable states is equal to

Φ(e, o) − H(e) = L + 1; (2.9)

(iii) The corresponding energy landscape has no deep wells, i.e.,

max
σ∈X

[Φ(σ, {e, o}) − H(σ)] ≤ L < Φ(e, o) − H(e). (2.10)
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2.1 Essential saddle characterization
Our results give insight into the way the transitions between e and o most likely occur in the
low–temperature regime. This is usually described by identifying the optimal paths, saddles, and
essential saddles that we define as follows.

• S(e, o) is the communication level set between e and o defined by

S(e, o) := {σ ∈ X | ∃ ω ∈ (e → o)opt, : σ ∈ ω and H(σ) = Φω = Φ(e, o)},

where (e → o)opt is the set of optimal paths from e to o realizing the minimax in Φ(e, o), i.e.,

(e → o)opt := {ω : e → o | Φω = Φ(e, o)}.

• The configurations in S(e, o) are called saddles. Given an optimal path ω ∈ (e → o)opt, we
define the set of its saddles S(ω) as S(ω) := {σ ∈ ω | H(σ) = Φω = Φ(e, o)}. A saddle
σ ∈ S(e, o) is called essential if either

(i) ∃ ω ∈ (e → o)opt such that S(ω) = {σ}, or
(ii) ∃ ω ∈ (e → o)opt such that σ ∈ S(ω) and S(ω′) ̸⊆ S(ω) \ {σ} ∀ ω′ ∈ (e → o)opt.

A saddle σ ∈ S(e, o) that is not essential is called unessential saddle or dead-end, i.e., for
any ω ∈ (e → o)opt such that ω ∩ {σ} ≠ ∅ we have that S(ω) \ {σ} ≠ ∅ and there exists
ω′ ∈ (e → o)opt such that S(ω′) ⊆ S(ω) \ {σ}.

• The essential gate G(e, o) ⊂ X is the collection of essential saddles for the transition e → o.

The aim of the present paper is to accurately identify the set G(e, o) of the essential saddles for the
transition from e to o for the Metropolis dynamics of the hard-core model on a L × L grid with
periodic boundary conditions. The set G(e, o) will be described as the union of six disjoint sets,
each characterized by configurations with specific geometrical features. While we refer the reader
to Section 4 for a precise definition of these sets (cf. Definitions 4.2–4.6), we provide here some
intuitive descriptions of the geometrical features of the configurations in these sets. We denote by

• Cir(e, o), Cgr(e, o), and Ccr(e, o) the collections of configurations with a unique cluster of
particles in odd sites of rhomboidal shape with exactly two adjacent even empty sites as in Fig. 2
and Fig. 3 (left). Roughly speaking, Cir(e, o) contains the configurations with (L

2 − 1)2 occupied
odd particles and L2 + 2 empty even sites; Cgr(e, o) (resp. Ccr(e, o)) contains the configurations
obtained from Cir(e, o) (resp. Cgr(e, o)) by removing some occupied even sites attached to the
rhombus and by growing along one (resp. the longest) side by adding some particles in the
nearest odd sites of the rhombus.

• Csb(e, o), Cmb(e, o), and Cib(e, o) the collections of configurations with a unique cluster of
particles in odd sites with at most two additional empty even sites as in Fig. 3 (right) and
in Fig. 4. In particular, Csb(e, o) contains the configurations with L

2 − 1 particles arranged in an
odd column with further two empty even sites; Cmb(e, o) contains the configurations obtained
from Csb(e, o) such that there is at least one column or row with L

2 particles arranged in odd
sites. Cib(e, o) contains the configurations obtained from Csb(e, o) without having column or
row with L

2 particles.

The following theorem characterizes the essential gate for the transition from e to o.
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Figure 2: An example of a configuration in Cir(e, o) (on the left) and one in Cgr(e, o) (on the right).

Figure 3: An example of a configuration in Ccr(e, o) (on the left) and one in Csb(e, o) (on the right).

Theorem 2.1 (Essential saddles). Define the set

C∗(e, o) := Cir(e, o) ∪ Cgr(e, o) ∪ Ccr(e, o) ∪ Csb(e, o) ∪ Cmb(e, o) ∪ Cib(e, o).

The essential saddles for the transition from e to o of the hard-core model on a L × L toric grid graph
Λ are all and only the configurations in C∗(e, o), i.e.,

G(e, o) = C∗(e, o).

Furthermore, the possible transitions at energy not higher than −L2

2 + L + 1 among the six subsets
forming C∗(e, o) are as detailed in Fig. 5.
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Figure 4: An example of a configuration in Cmb(e, o) (on the left) and one in Cib(e, o) (on the right).

Ce

e

Csb(e,o)

Cmb(e,o)

Cir(e,o) Cgr(e,o) Ccr(e,o)

Cib(e,o)

−L2

2

· · ·

−L2

2 + 2L− 1 −L2

2 + 2L+ 1

· · ·

−L+ 3 −L+ 5

· · ·

1 3

· · ·

L− 3

· · ·

L2

2 − 2L+ 1

· · ·

L2

2

Co

o

Figure 5: Schematic representation of the set of essential saddles, where we highlight with arrows between
the set pairs that communicate at energy not higher than −L2

2 + L + 1 and the initial cycles Ce
and Co, see Section 3. The vertical lines represent the partition of X in manifolds, see (4.1).

3 Definitions and auxiliary results
The main goal of this section is to introduce the notion of odd clusters, which are the basis of the
geometrical description of the configurations, and to inspect the relation between their shape and
perimeter.

In Section 3.1 we define a geometrical representation of clusters associated with the occupied
odd sites, and in Section 3.2 we introduce the notion of rhombi, which turns out to be crucial in the
description of the essential saddles. In Section 3.3 we present two algorithms that, combined together,
return a path whose last configuration has a rhomboidal shape and such that the energy along it
never increases. We will use them to deduce that there exists a downhill path from the configurations

8



without a rhomboidal cluster towards e or o.
Along the lines of [35, eq. (2.7)], we define Ce := {ζ ∈ X | Φ(ζ, e) < Φ(e, o)} to be the initial

cycle of e, that is the maximal cycle that includes e but does not include o, namely, it contains all
the configurations that can be reached by e by spending strictly less energy than the one needed for
the transition between e and o, i.e., the communication height Φ(e, o). The corresponding initial
cycle of o is defined analogously and denoted by Co.

Given a configuration σ ∈ X , denote by ∆H(σ) the energy difference with respect to either one
of the stable states, i.e.,

∆H(σ) := H(σ) − H(e). (3.1)

3.1 Odd clusters and regions
For any subset of sites S ⊆ V we define the complement of S as Sc := V \ S, the external boundary
∂+S as the subset of sites in Sc that are adjacent to a site in S, i.e.,

∂+S := {v ∈ Sc | ∃ w ∈ S : (v, w) ∈ E},

and ∇S as the subset of edges connecting the sites in S with those in ∂+S, i.e.,

∇S := {(v, w) ∈ E | v ∈ S, w ∈ ∂+S}.

A (connected) odd cluster C ⊆ V is a subset of sites that satisfies both the following conditions:

1. If an odd site v ∈ Vo belongs to C, then so do the four neighboring even sites, i.e., ∂+{v} ⊂ C;

2. C ∩Ve is connected as a sub-graph of the graph (Ve, E∗), with E∗ := {(v, w) ∈ Ve×Ve | d(v, w) =
2}, where d(·, ·) denotes the usual graph distance on Λ.

We denote by Co(Λ) the collection of the odd clusters on Λ.
Consider the dual graph Λ′ = (V ′, E ′) of the graph Λ, which is a discrete torus of the same size.

Given an odd cluster C, consider the edge set ∇C that disconnects C from its complement Cc. We
associate with ∇C the edge set γ(C) ⊂ E ′ on the dual graph Λ′ which consists of all the edges of Λ′

orthogonal to edges in ∇C. Such a set, to which we will refer as the contour of the cluster C, consists
of one or more piecewise linear closed curves and, by construction |γ(C)| = |∇C|. Leveraging this
fact, we define the perimeter P (C) of the odd cluster C as the total length of the contour γ(C), i.e.,

P (C) := |γ(C)|. (3.2)

As proved in [46], the perimeter of the odd cluster C satisfies the following identity:

P (C) = 4(|C ∩ Ve| − |C ∩ Vo|). (3.3)

We call area of an odd cluster C the number of odd occupied sites it comprises. We say that an odd
cluster is degenerate if it has area 0 and non–degenerate otherwise.

We introduce a mapping O : X → 2V that associates to a given hard-core configuration σ ∈ X
the subset O(σ) ⊆ V defined as

O(σ) := {v ∈ Vo | σ(v) = 1} ∪ {v ∈ Ve | σ(v) = 0}. (3.4)

In other words, O(σ) is the subset comprising all the occupied odd sites and the empty even sites of
the configuration σ. It is immediate to check that O is an injective mapping and we will refer to the
image O(σ) of a configuration σ as its odd region.
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Figure 6: Example of four different rhombi, namely R1,2, R4,2, R0,2 and R1,0 (in clockwise order from the
top-right corner).

The odd region O(σ) of a configuration σ ∈ X can be partitioned into its connected components,
say C1(σ), . . . , Cm(σ) ∈ Co(Λ), for some m ∈ N, which are, by definition, odd clusters, that is

O(σ) =
m⊔

i=1
Ci(σ). (3.5)

Using the partition (3.5) of the odd region O(σ) into odd clusters, the definitions of contour and
perimeter can be extended to the whole odd region in an obvious way, so that we can ultimately
define the contour γ(σ) of a configuration σ ∈ X as

γ(σ) :=
m⊔

i=1
γ(Ci(σ)), (3.6)

and its perimeter P (σ) as

P (σ) :=
m∑

i=1
P (Ci(σ)). (3.7)

As shown in [46], starting from (3.3), a double counting argument yields the following identity that
relates the perimeter P (σ) of a hard-core configuration σ ∈ X with its energy H(σ) (recall (3.1)-(3.2))

P (σ) = 4 ∆H(σ). (3.8)

Given a configuration σ ∈ X , we define the odd non-degenerate region Ond(σ) as a subset of O(σ)
containing only odd non-degenerate clusters. See Fig. 7 for an example of an odd region and an odd
non-degenerate region.
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Figure 7: Example of a configuration σ, in which the contour of the non-degenerate (degenerate) odd clusters
is highlighted in black (red, respectively). The contour γ(σ) of the configuration σ is of the odd
region O(σ) is the union of black lines (corresponding to Ond(σ)) and red lines.

3.2 Odd rhombi
Given an odd site η = (η1, η2) ∈ Vo and two positive integers ℓ1, ℓ2 ≤ L, the odd rhombus Rℓ1,ℓ2(η)
with reference site η and lengths ℓ1 and ℓ2 is the odd cluster defined as

Rℓ1,ℓ2(η) := Sℓ1,ℓ2(η) ∪ ∂+Sℓ1,ℓ2(η), (3.9)

where Sℓ1,ℓ2(η) ⊆ Vo is the subset of odd sites given by

Sℓ1,ℓ2(η) :=
⋃

0≤k≤ℓ1−1, 0≤j≤ℓ2−1
{(η1 + k + j, η2 + k − j)}

= {v = (v1, v2) ∈ V | ∃ k ∈ [[0, ℓ1]], j ∈ [[0, ℓ2]] : v1 = η1 + k + j, v2 = η2 + k − j}. (3.10)

In the latter definition, the coordinates sums and subtractions are taken modulo L. In the case
ℓ1ℓ2 = 0, we can take η ∈ Ve and define the degenerate rhombus Rℓ1,ℓ2(η) as the odd cluster

Rℓ1,ℓ2(η) =


⋃

0≤j≤ℓ2{(η1 + j, η2 − j)} if ℓ1 = 0 and ℓ2 ̸= 0,⋃
0≤k≤ℓ1{(η1 + k, η2 − k)} if ℓ1 ̸= 0 and ℓ2 = 0,

(η1, η2) if ℓ1 = ℓ2 = 0.

Note that, in this case, Rℓ1,ℓ2(η) is a subset of even sites. The area of Rℓ1,ℓ2(η) is the cardinality of
Sℓ1,ℓ2(η) in the non-degenerate case, whereas in the degenerate case is equal to zero. Some example of
rhombi and degenerate rhombi are shown in Fig. 6. We observe that the non-degenerate rhombus
Rℓ1,ℓ2 has ℓ1 diagonals of length ℓ2 and ℓ2 diagonals of length ℓ1 in the opposite direction, which we
will refer to as complete diagonals. We denote by Ro(Λ) ⊂ Co(Λ) the collection of all odd rhombi
on Λ including the degenerate ones. For every odd cluster C ∈ Co(Λ), we define the surrounding
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rhombus R(C) as the minimal rhombus (by inclusion) in Ro(Λ) such that C ⊆ R(C); see Fig. 8 for
an example.

Most of the results for odd rhombi that will be proved are translation-invariant, the reason why we
will often refer to the rhombus Rℓ1,ℓ2(η) simply as Rℓ1,ℓ2 , without explicitly specifying the reference
site η. The next two lemmas, Lemmas 3.1 and 3.2, concern properties of rhombi on a square L × L
grid with periodic boundary conditions. Their proofs, being involved but not particularly insightful,
are deferred to Appendix A.

Lemma 3.1 (Set of sites winds around the torus). Given η = (η1, η2) ∈ Vo and two non-negative
integers ℓ1, ℓ2 ≤ L such that ℓ1 ≤ ℓ2 and ℓ1 ≥ L/2, the following statements hold:

(i) If ℓ2 ≤ L − 2, then⋃
0≤k≤ℓ1

ℓ2+1≤j≤L−1

{(η1 + k + j − 1, η2 + k − j)} ∪
⋃

ℓ1+1≤k≤L−1
0≤j≤ℓ2

{(η1 + k + j − 1, η2 + k − j)}

⊆
⋃

0≤k≤ℓ1
0≤j≤ℓ2

{(η1 + k + j − 1, η2 + k − j)}.

(ii) If ℓ2 = L − 1, then⋃
ℓ1+1≤k≤L−1

0≤j≤L−1

{(η1 + k + j − 1, η2 + k − j)} ⊆
⋃

0≤k≤ℓ1
0≤j≤L−1

{(η1 + k + j − 1, η2 + k − j)} (3.11)

and ⋃
L/2≤k≤ℓ1−1

1≤j≤L−2

{(η1 + k + j, η2 + k − j)} ⊆
⋃

0≤k≤L/2−1
0≤j≤L−2

{(η1 + k + j, η2 + k − j)}. (3.12)

For any subset of sites A ⊆ V , we define the complement of A as the complementary set of A in
V , i.e., as V \ A.

Lemma 3.2 (Properties of rhombi). Given η ∈ Vo and two non negative integers ℓ1, ℓ2 ≤ L, the
following statements hold:

(i) If max{ℓ1, ℓ2} ≤ L − 2 and min{ℓ1, ℓ2} ≥ L/2, then the complement of the rhombus Rℓ1,ℓ2(η) is
a rhombus RL−ℓ1−1,L−ℓ2−1(η̂) for some η̂ ∈ Ve.

(ii) If max{ℓ1, ℓ2} = L − 1 and min{ℓ1, ℓ2} ≥ L/2, then the complement of the rhombus Rℓ1,ℓ2(η) is
the disjoint union of L − min{ℓ1, ℓ2} odd sites.

(iii) If max{ℓ1, ℓ2} = L and min{ℓ1, ℓ2} < L/2, then the rhombus Rℓ1,ℓ2(η) contains L ℓ1 odd sites
and L(ℓ1 + 1) even sites.

(iv) If max{ℓ1, ℓ2} = L and min{ℓ1, ℓ2} ≥ L/2, then the rhombus Rℓ1,ℓ2(η) coincides with V .

These two lemmas will now be used to prove the next proposition, which gives a formula for
the perimeter of a rhombus Rℓ1,ℓ2 . To this end, we will use the fact that a rhombus Rℓ1,ℓ2 and
its complement in Λ have the same boundary for any 0 ≤ ℓ1, ℓ2 ≤ L, and, in particular the same
perimeter. In addition, we will say that a rhombus Rℓ1,ℓ2 winds vertically (resp. horizontally) around
the torus if there exists a set of L

2 odd sites η1, ..., ηL/2 in Rℓ1,ℓ2 all on the same column (resp. row). If
the direction is not relevant, we will simply say that the rhombus winds around the torus.
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Proposition 3.3 (Formula for rhombus perimeter). Given a L × L toric grid graph Λ and any sizes
0 ≤ ℓ1, ℓ2 ≤ L, the perimeter of the rhombus Rℓ1,ℓ2 satisfies the following identity

P (Rℓ1,ℓ2) = 4 ×


ℓ1 + ℓ2 + 1 if min{ℓ1, ℓ2} < L/2 and max{ℓ1, ℓ2} < L,

2L − (ℓ1 + ℓ2 + 1) if min{ℓ1, ℓ2} ≥ L/2 and max{ℓ1, ℓ2} < L,

L if min{ℓ1, ℓ2} < L/2 and max{ℓ1, ℓ2} = L,

0 if min{ℓ1, ℓ2} ≥ L/2 and max{ℓ1, ℓ2} = L.

(3.13)

Proof. First of all, we identify which of the conditions in (3.13) imply that a rhombus winds around
the torus. Consider the rhombus Rℓ1,ℓ2(η) with η = (η1, η2) ∈ Vo. Let σ = (σ1, σ2) ∈ Sℓ1,ℓ2(η) be
such that σ2 = η2 and d(η1, σ1) is the maximal distance along that horizontal axis. Similarly, let
ξ = (ξ1, ξ2) ∈ Sℓ1,ℓ2(η) be such that d(η2, ξ2) is the maximal distance along the vertical axis. Recalling
(3.10), since σ2 = η2, we have that k = j for any k, j = 1, ..., ℓmin − 1, where ℓmin = min{ℓ1, ℓ2}. Thus,
we obtain

σ1 = η1 + k + j = η1 + 2(ℓmin − 1), (3.14)
where the last equality follows from the fact that the maximal distance along the horizontal axis is
precisely the distance between σ1 and η1. We note that if d(η1, σ1) < L − 2 then the rhombus does
not wind horizontally around the torus. Thus,

d(η1, σ1) = 2(ℓmin − 1) < L − 2 ⇐⇒ ℓmin <
L

2 . (3.15)

Now, let us consider the distance between η2 and ξ2. Let ℓmax = max{ℓ1, ℓ2}. In this case, if
d(η2, ξ2) ≤ L − 2 then the rhombus does not wind vertically around the torus. Thus, we have

d(η2, ξ2) = max
k,j

|η2 − (η2 − k + j)| = ℓmax − 1 ≤ L − 2. (3.16)

We conclude that if ℓmin < L
2 and ℓmax < L, then the rhombus does not wind around the torus and

the perimeter is the length of its external boundary. In view of (3.3), the claim follows. Otherwise,
there are three cases, which will be treated separately:

(a) ℓmin ≥ L
2 and ℓmax ≤ L − 2;

(b) ℓmin ≥ L
2 and ℓmax > L − 2;

(c) ℓmin < L
2 and ℓmax = L.

(a) Consider the complement of the rhombus Rℓ1,ℓ2(η) for some η. By virtue of Lemma 3.2(i), we
know that its complement in V is a rhombus with side lengths ℓ̃1 = L − ℓ1 − 1 and ℓ̃2 = L − ℓ1 − 1.
We claim that this complementary rhombus does not wind around the torus. By using the condition
ℓmin ≥ L

2 , we have that the maximal side length of the complementary rhombus is

max{ℓ̃1, ℓ̃2} = max{L − ℓ1 − 1, L − ℓ2 − 1} = L − ℓmin − 1 ≤ L − L

2 − 1 < L, (3.17)

that is, max{ℓ̃1, ℓ̃2} < L. Moreover, the minimal side length is

min{ℓ̃1, ℓ̃2} = min{L − ℓ1 − 1, L − ℓ2 − 1} = L − ℓmax − 1 ≤ L − ℓmin − 1 ≤ L − L

2 − 1, (3.18)

that is, min{ℓ̃1, ℓ̃2} < L
2 . Since the perimeter of the rhombus Rℓ1,ℓ2 is the same as that of RL−ℓ1−1,L−ℓ2−1,

the claim follows from (3.3).
(b) The claim follows from Lemma 3.2(ii)–(iii) and (3.3).
(c) The claim follows from Lemma 3.2(iv) and (3.3).
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Figure 8: Example of a odd cluster C (on the left) and its surrounding rhombus R(C) = R8,5 in red (on the
right). On the left, the red squares contain the antiknobs and the decreasing broken diagonals are
highlighted with blue rectangles. On the right, we highlight the decreasing shorter (resp. complete)
diagonals with blue (resp. green) rectangles.

We say that an odd cluster C is monotone when its perimeter coincides with that of its surrounding
rhombus R(C) if it does not wind around the torus, i.e., P (C) = P (R(C)). Otherwise, we say that
an odd cluster C is monotone when its perimeter coincides with that of a bridge, i.e., P (C) = 4L.
Note that it immediately follows that a monotone odd cluster C has no holes, i.e., empty odd sites
with the four even neighboring sites belonging to C. An empty odd site η /∈ C is an antiknob for
the cluster C if it has at least three neighboring even empty sites that belong to C. Fig. 8 (left)
highlights in red the antiknobs of a hard-core configuration.

Given an odd cluster C ∈ Co(Λ) and an integer k ≥ 1, we say that C displays an increasing
(resp. decreasing) diagonal broken in k sites if there exist a sequence of sites zi = (xi, yi) ∈ Vo \ C,
i = 1, ..., k, such that

• xi+1 = xi + 1 and yi+1 = yi + 1 (resp. xi+1 = xi + 1 and yi+1 = yi − 1) for any i = 1, ..., k − 1,
and

• the two odd sites (x1 − 1, y1 − 1) and (xk + 1, yk + 1) (resp. (x1 − 1, y1 + 1) and (xk + 1, yk − 1))
belong to the cluster C.

By construction of a broken diagonal, the two sites z1 and zk are always antiknobs. If it does not
matter if an increasing or decreasing diagonal is broken, we simply say that a diagonal is broken.
Broken diagonals are visualized in blue in Fig. 8 (left). Given an odd cluster C ∈ Co(Λ) and an
integer k ≥ 1, we say that C displays an increasing (resp. decreasing) shorter diagonal lacking in k
sites if there exist a sequence of sites zi = (xi, yi) ∈ (Vo ∩ R(C)) \ C, i = 1, ..., k, such that

• xi+1 = xi + 1 and yi+1 = yi + 1 (resp. xi+1 = xi + 1 and yi+1 = yi − 1) for any i = 1, ..., k − 1,
and

• the two odd sites (x1 − 1, y1 − 1) and (xk + 1, yk + 1) (resp. (x1 − 1, y1 + 1) and (xk + 1, yk − 1))
do not belong to R(C).

Fig. 8 (right) highlights the shorter diagonals in blue.
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3.3 Expanding an odd cluster: The filling algorithms
We now describe an iterative procedure that builds a path ω in X from a configuration σ with a
unique odd cluster to another configuration σ′ that (i) displays a rhombus, and (ii) whose energy
H(σ′) is equal to or lower than H(σ).

The path ω can be described as the concatenation of two paths, each obtained by means of
a specific filling algorithm. The reason behind this name is that, along the generated paths, any
incomplete diagonal in the odd cluster of the starting configuration is gradually filled by adding
particles in odd sites until a rhombus is obtained.

The two paths can be intuitively described as follows. The first path, denoted as ω̃, starts from
a configuration with at least one broken diagonal and, by filling one by one all broken diagonals
in lexicographic order, arrives at a configuration with no broken diagonal. Each broken diagonal is
progressively filled by removing a particle in the even site at distance 1 from a antiknob that lies
on that diagonal and adding a particle in the odd site where the antiknob is. The antiknobs on the
same diagonal are processed in lexicographic order. The second path, denoted as ω̄, starts from a
configuration with no broken diagonal (such as any ending configuration of the path ω̃) and arrives
at a configuration displaying an odd rhombus. The construction of this second path is similar to that
of the first path, but in this case the particles are added in odd sites to fill all the shorter diagonals.

The filling algorithms generating the two paths ω̃ and ω̄ are designed in such a way that the
maximum energy along the resulting path ω = ω̃ ∪ ω̄, i.e., Φω, is never larger than H(σ) + 1. More
specifically, the perimeter of the odd cluster either decreases or does not change along ω̃, whereas it
can increase and sequentially decrease by the same quantity along ω̄. Proposition 3.4, whose proof is
postponed to Section 5.1, specifies the requirement for the starting configuration and summarized the
properties of the path generated by the filling algorithm.

To formally define these two algorithms, we introduce the following notation. Given two configu-
rations σ, σ′ ∈ X and a subset of sites W ⊂ Λ, we write σ|W = σ′

|W if σ(v) = σ′(v) for every v ∈ W .
Given a configuration σ ∈ X , we let

• σ(v,0) be the configuration σ′ ∈ X such that σ′
|V \{v} = σ|V \{v} and σ′(v) = 0; and

• σ(v,1) be the configuration σ′ such that σ′
|V \{v} = σ|V \{v} and σ′(v) = 1.

In general, σ(v,1) might not be a hard-core configuration in X , since σ may already have a particle
residing in one of the four neighboring sites of v.

Algorithm 1 (resp. Algorithm 2) provide the detailed pseudocode for the filling algorithm that
yields ω̃ (resp. ω̄).

Proposition 3.4 (Odd cluster expansion via filling algorithms). Let σ, σ′ ∈ X be two hard-core
configurations on Λ, σ ̸= σ′, and R a rhombus such that

(i) There exists a connected odd cluster C ⊆ O(σ) such that R(C) = R;

(ii) σ|Λ\R = σ′
|Λ\R;

(iii) σ′
|R = o|R.

Then, there exists a path ω : σ → σ′ such that Φω − H(σ) ≤ 1. In addition, if C has at least one
broken diagonal then P (σ) > P (σ′), otherwise P (σ) = P (σ′).

We note that conditions (i), (ii), and (iii) mean that there is a unique odd cluster in σ different
from a rhombus, i.e., there exists at least one broken or shorter diagonal.
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Algorithm 1: Filling algorithm to build path ω̃

Input: a configuration σ ∈ X consisting of a unique odd cluster C with m ≥ 1 broken
diagonals such that the j-th is broken in kj sites for j = 1, ..., m

Output: ω̃ : σ → σ̃, with the configuration σ̃ ∈ X consisting of a unique odd cluster with no
broken diagonals

σ0 = σ;
for j = 1, ..., m do

σj = σj−1;
for i = 1, ..., kj do

Consider the i-th antiknob (in lexicographic order) of the j-th broken diagonal in C
and denote it by xj,i ∈ Vo

if xj,i has a neighboring occupied site x̃j,i ∈ Ve then
σ̃j,i = σ

(x̃j,i,0)
j ;

σj,i = σ̃
(xj,i,1)
j,i ;

else
σ̃j,i = σ

(xj,i,1)
j ;

σj,i = σ̃j,i;
end
σj+1 = σj,kj

;
ω̃j,i = (σj, σ̃j,1, σj,1, ..., σ̃j,i, σj,i);

end
ω̃j = ω̃j,kj

;
σj+1 = σj,kj

;
end
σ̃ = σm;
ω̃ is the concatenation of the paths ω̃1,..., ω̃m

Thanks to Proposition 3.4, we are able to characterize the configurations having minimal perimeter
for a fixed number of occupied odd sites. This finding is formalized in the following two results,
Proposition 3.6 and Corollary 3.7, whose proofs are deferred to Section 5.1.

To state the precise results, we first introduce the notion of bars as follows. We define a vertical
(resp. horizontal) bar B of length k as the union of the particles arranged in odd sites x1, ..., xk

belonging to the same column (resp. row) such that d(xi, xi+1) = 2 for any i = 1, ..., k − 1. In the case
of k = 1, we will refer to it as protuberance. If on the same column (resp. row) there are m disjoint
vertical (resp. horizontal) bars, each of them of length ki, we say that the total length of the bars
is k = k1 + ... + km. Similarly, we can define a diagonal bar and note that it can correspond to a
shorter or complete diagonal. If it does not matter if the bar is vertical, horizontal, or diagonal, we
simply refer to it as a bar. Finally, we will say that a bar B is attached to a cluster C when all the
particles belonging to B are at distance two from C. Note that in Fig. 8 (right) the shorter diagonals
of lengths three and one are diagonal bars. See Fig. 8 (left) for examples of vertical bars.

Lemma 3.5. For any n positive integer there exist two positive integers s and k, with 0 ≤ k < s,
such that either (i) n = s(s − 1) + k or (ii) n = s2 + k.

Proof. See the first part of [24, Lemma 6.17].

Proposition 3.6 (Perimeter-Minimal rhombi). Consider n ≤ L(L − 2) and let s, k be the unique
integers as in Lemma 3.5. The set of odd clusters with area n that have minimal perimeter contains
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Algorithm 2: Filling algorithm to build path ω̄

Input: a configuration σ ∈ X consists of a unique odd cluster C with no broken diagonal and
m ≥ 0 increasing shorter diagonals. The quantity kj is the difference between the
length of the shorter diagonal and the corresponding one of the surrounding rhombus
for j = 1, ..., m

Output: ω̄ : σ → σ̄, with the configuration σ̄ ∈ X having a unique odd cluster, which is a
rhombus

if m = 0 then
σ̄ = σ and ω̄ is trivial;

else
σ0 = σ;
for j = 1, ..., m do

σj = σj−1;
for i = 1, ..., kj do

Consider the i-th empty odd site (in lexicographic order) not belonging to the j-th
shorter diagonal in C but in the corresponding complete diagonal of the
surrounding rhombus and denote it by xj,i ∈ Vo

if xj,i has a neighboring occupied site x̄j,i ∈ Ve then
σ̄j,i = σ

(x̄j,i,0)
j ;

σj,i = σ̄
(xj,i,1)
j,1 ;

else
σ̄j,i = σ

(xj,i,1)
j ;

σj,i = σ̄j,i;
end
σj+1 = σj,kj

;
ω̄j,i = (σj, σ̄j,1, σj,1, ..., σ̄j,i, σj,i);

end
ω̄j = ω̄j,kj

;
σj+1 = σj,kj

;
end
σ̄ = σm;
Obtain ω̄ as the concatenation of the paths ω̄1,..., ω̄m

end

either a rhombus Rs,s−1 or Rs−1,s with a bar of length k attached to one of its longest sides if
n = s(s − 1) + k and a rhombus Rs,s with a bar of length k attached to one of its sides if n = s2 + k.

Corollary 3.7 (Minimal perimeter). Consider n ≤ L(L − 2) and let s, k be the unique integers as in
Lemma 3.5. The perimeter P of an odd cluster with area n satisfies the following inequalities:

(
P

4 − 1
)2

≥

4n if s < L/2,

2(L2 − 2n) if L/2 ≤ s < L.

In addition, for all s < L we have that

P ≥ 4(2
√

n + 1) (3.19)

and for s < L
2 the equality holds if and only if the odd cluster is the rhombus Rs,s.
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Lastly, in the next lemma, we derive an isoperimetric inequality assuming the total number of
odd and even occupied sites is fixed. To this end, we first define the real area of a configuration σ as

ñ(σ) = o(σ) + ẽ(σ), (3.20)

where o(σ) (resp. ẽ(σ)) denotes the number of occupied odd (resp. empty even) sites of the configuration
σ.

Lemma 3.8 (Perimeter-Minimal rhombi with fixed real area). Given 1 ≤ ℓ < L
2 , the unique odd

cluster with real area ñ = 2ℓ2 + 2ℓ + 1 and minimal perimeter is the rhombus Rℓ,ℓ. In particular, for
ñ = L2

2 − L + 1 this rhombus is RL
2 −1, L

2 −1.

We use this lemma to characterize the critical configurations having an odd cluster with a
rhomboidal shape that does not wind around the torus. Indeed, we identify the shape of the
protocritical configurations σ with minimal perimeter and fixed real area L2

2 − L + 1 such that
R(Ond(σ)) does not wind around the torus, and we show that if the trajectory visits another type of
configuration with such a real area, then the corresponding path would be not optimal. The proof is
given in Section 5.1.

4 Essential saddles: Proof of the main theorem
In this section, we first formally introduce in Section 4.1 the six sets appearing in the statement
of Theorem 2.1 and then prove the same theorem in in Section 4.2 by showing that the elements of
those six sets are all the essential saddles for the transition from e to o.

4.1 Preliminaries
We say that a configuration σ ∈ X has a odd (resp. even) vertical bridge if there exists a column
in which configuration σ perfectly agrees with o (resp. e). We define odd (resp. even) horizontal
bridge in an analogous way and we say that a configuration σ ∈ X has an odd (resp. even) cross if
it has both vertical and horizontal odd (resp. even) bridges (see Fig. 9). In addition, we say that
a configuration displays an odd (resp. even) vertical m-uple bridge, with m ≥ 2, if there exist m
contiguous columns in which the configuration perfectly agrees with o (resp. e). Similarly, we can
define an odd (resp. even) vertical m-uple bridge (see Fig. 10). We refer to [37] for more details.

The next lemma states that all configurations σ ∈ X with ∆H(σ) < L must belong to one of the
two initial cycles.

Lemma 4.1 (Configurations with ∆H < L belong to one of the initial cycles). If a configuration
σ ∈ X is such that ∆H(σ) < L, then there exists a path ω : σ → {e, o} with Φω ≤ H(σ) + 1. In
particular, either σ ∈ Ce or σ ∈ Co.

Proof. If ∆H(σ) < L, then there exists both a horizontal and a vertical bridge. Due to the hard-core
constraints, these L − 1 particles should all reside on sites of the same parity, hence σ has either an
even cross or an odd cross. Then, one can build using the reduction algorithm introduced in [37] a
path to either e or o, respectively, with the desired properties.
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Figure 9: Examples of configurations displaying an odd horizontal bridge (on the left) and an odd cross (on
the right).

Figure 10: Examples of configurations displaying an odd horizontal double (2-uple) bridge (on the left) and
an odd vertical triple (3-uple) bridge (on the right).

Definition 4.2. A hard-core configuration σ ∈ X on the L × L toric grid graph Λ belongs to Cir(e, o)
if the following conditions hold:

1. the odd region O(σ) contains only a non-degenerate cluster C and a degenerate rhombus
D ∈ {R1,0, R0,1} at distance two from C;

2. the cluster C is monotone;

3. C is a rhombus RL
2 −1, L

2 −1;

4. σ|Λ\(C∪D) = e|Λ\(C∪D).
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See Fig. 2 (left) for an example of configurations in Cir(e, o).

Definition 4.3. A hard-core configuration σ ∈ X on the L × L toric grid graph Λ belongs to Cgr(e, o)
(resp. Ccr(e, o)) if the following conditions hold:

1. the odd region O(σ) contains only a non-degenerate cluster C and a degenerate rhombus D = R0,0
at distance one from an antiknob;

2. the cluster C is monotone;

3. C is a rhombus RL
2 −1, L

2 −1 (resp. RL
2 −1, L

2
) with a single bar of length k, for k = 1, ..., L

2 − 1 (resp.
k = 1, ..., L

2 − 2), attached to one of its sides;

4. σ|Λ\(C∪D) = e|Λ\(C∪D).

See Fig. 2 (right) and Fig. 3 (left) for an example of configurations in Cgr(e, o) and Ccr(e, o),
respectively. Note that for any σ ∈ Cir(e, o) ∪ Cgr(e, o) the surrounding rhombus R(O(σ)) is RL

2 −1, L
2
,

while for any σ ∈ Ccr(e, o) the surrounding rhombus R(O(σ)) is RL
2 , L

2
.

Definition 4.4. A hard-core configuration σ ∈ X on the L × L toric grid graph Λ belongs to Csb(e, o)
if the following conditions hold:

1. the odd region O(σ) contains only a non-degenerate cluster C and a degenerate region D
consisting of two even sites at distance one from the same antiknob;

2. the cluster C is monotone;

3. C is a single column or row of length L
2 − 1;

4. σ|Λ\(C∪D) = e|Λ\(C∪D).

Note that the unique possibilities are that (i) D consists of two degenerate rhombi R0,0 as in Fig. 3
(right) or (ii) D ∈ {R0,1, R1,0} as in Fig. 11 (left).

Definition 4.5. A hard-core configuration σ ∈ X on the L × L toric grid graph Λ belongs to Cmb(e, o)
if the following conditions hold:

1. the odd region O(σ) contains only a non-degenerate cluster C and a degenerate rhombus D = R0,0
at distance one from an antiknob;

2. the cluster C is monotone;

3. C is composed either by:

– a odd (L − 3)-uple bridge, or
– an odd m-uple bridge, with 2 ≤ m < L − 3, together with disjoint bars attached to either

side of the m-uple bridge with total length k, with k = 0, ..., L
2 − 1, or

– an odd bridge, together with disjoint bars attached to the bridge with total length k, for
k = 0, ..., L

2 − 1, and C does not contain RL
2 −1, L

2
;

4. σ|Λ\(C∪D) = e|Λ\(C∪D).
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Figure 11: An example of a configuration in Csb(e, o) that communicates with Cib(e, o) and not with Cmb(e, o)
(on the left) and an example of a configuration in Cib(e, o) (on the right).

See Fig. 4 (left) for an example of a configuration in Cmb(e, o). Note that any configuration
σ ∈ Cmb(e, o) is such that R(O(σ)) winds around the torus. Thus, the assumption that the non-
degenerate cluster C is monotone implies that in condition 3 not every choice of the bars is allowed.
Indeed, in order for the cluster to be monotone, the bars on the right (resp. left) of the m-uple bridge
can be adjacent only to a longer (resp. shorter) bar in lexicographic order. This implies that all the
bridges are in contiguous rows or columns. Furthermore, the length of a bar is inversely proportional
to its distance from the nearest bar composing the bridge.

Definition 4.6. A hard-core configuration σ ∈ X on the L × L toric grid graph Λ belongs to Cib(e, o)
if the following conditions hold:

1. the odd region O(σ) contains only a non-degenerate cluster C and a degenerate rhombus D = R0,0
at distance one from an antiknob;

2. the cluster C is monotone and does not contain RL
2 −1, L

2 −1;

3. C is composed either by:

– one column (or row) B with L
2 − 1 particles in odd sites or

– two neighbouring columns (or row) B with L
2 − 1 particles in odd sites each;

In addition, in the other columns (or rows) there are k particles arranged in odd sites, for
k = 0, ..., L

2 − 1 − j, where j is the distance from B;

4. R(C) is not contained in RL
2 −1, L

2 −1;

5. σ|Λ\(C∪D) = e|Λ\(C∪D).

See Fig. 4 (right) and Fig. 11 (right) for examples of configurations in Cib(e, o).
Next, we provide several results investigating the main properties of the optimal paths connecting

e to o. To this end, we introduce the following partition in manifolds of the state space X : for
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every m = −L2

2 , ..., L2

2 we define the manifold as the subset of configurations where the difference
m(σ) := −e(σ) + o(σ) between odd and even occupied sites is equal to m ∈ N, i.e.,

Vm := {σ ∈ X | m(σ) = m}, (4.1)

where e(σ) := ∑
v∈Ve σ(v) (resp. o(σ) := ∑

v∈Vo σ(v)) is the number of the even (resp. odd) occupied
sites in σ.

Lemma 4.7. For any hard-core configuration σ ∈ X , the following properties hold:

(a) The only configurations accessible from σ with a single nontrivial step of the dynamics belong to
Vm(σ)−1 ∪ Vm(σ)+1. In particular, any path from e to o must intersect each manifold Vm at least
once for every m = −L2

2 , ..., L2

2 .

(b) The quantities m(σ) and ∆H(σ) always have the same parity, i.e., m(σ) ≡ ∆H(σ) (mod 2).

The proof of (a) is immediate by noticing that at every step of the dynamics either e(σ) or o(σ) can
change value and at most by ±1 and that of (b) follows from the fact that ∆H(σ) = −e(σ)−o(σ)+ L2

2
and that L is even.

A special role in our analysis will be played by the non-backtracking paths, i.e., those paths that
visit each manifold exactly once. Lemmas 4.8–4.10 below ensure the existence of an optimal path
connecting e to o and passing through the six sets that define C∗(e, o). In addition, Lemma 4.11 below
shows that some of the sets composing C∗(e, o) do not directly communicate. Later, in Section 4.2.2,
combining these lemmas, we will prove that the communication structure of these six sets at energy
not higher than H(e) + L + 1 is the one illustrated in Fig. 5. The proof of these lemmas is deferred
to Section 5.2.

Lemma 4.8. The following statements hold.

(i) For any configuration η ∈ Cir(e, o) there exists a non-backtracking optimal path ω : e → η such
that arg maxξ∈ω ∆H(ξ) = {η}.

(ii) For any configuration η ∈ Csb(e, o) there exists a non-backtracking path ω : e → η such that
arg maxξ∈ω ∆H(ξ) = {η}.

Lemma 4.9. The following statements hold.

(i) For any configuration η ∈ Cib(e, o) there exist a configurations η̄ ∈ Csb(e, o) and a non-
backtracking path ω : η̄ → η such that Φω − H(e) = ∆H(η) = L + 1 and arg maxξ∈ω H(ξ) ⊆
Csb(e, o) ∪ Cib(e, o).

(ii) For any configuration η ∈ Cgr(e, o) there exist a configuration η̄ ∈ Cir(e, o), a configuration
η̃ ∈ Cib(e, o) and two non-backtracking paths ω : η̄ → η, ω′ : η̃ → η such that

- Φω − H(e) = L + 1 and arg maxξ∈ω H(ξ) ⊆ Cgr(e, o) ∪ Cir(e, o);
- Φω′ − H(e) = L + 1 and arg maxξ∈ω′ H(ξ) ⊆ Cgr(e, o) ∪ Cib(e, o).

(iii) For any configuration η ∈ Cmb(e, o) there exist a configuration η̄ ∈ Csb(e, o), a configuration
η̃ ∈ Cib(e, o) and two non-backtracking paths ω : η̄ → η, ω′ : η̃ → η such that

- Φω − H(e) = L + 1 and arg maxξ∈ω H(ξ) ⊆ Cmb(e, o) ∪ Csb(e, o);
- Φω′ − H(e) = L + 1 and arg maxξ∈ω′ H(ξ) ⊆ Cmb(e, o) ∪ Cib(e, o).
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(iv) For any configuration η ∈ Ccr(e, o) there exist a configuration η̄ ∈ Cgr(e, o), a configuration
η̃ ∈ Cmb(e, o) and two non-backtracking paths ω : η̄ → η, ω′ : η̃ → η such that

- Φω − H(e) = L + 1 and arg maxξ∈ω H(ξ) ⊆ Ccr(e, o) ∪ Cgr(e, o);
- Φω′ − H(e) = L + 1 and arg maxξ∈ω′ H(ξ) ⊆ Ccr(e, o) ∪ Cmb(e, o).

Lemma 4.10. The following statements hold.

(i) For any configuration η ∈ Ccr(e, o) there exists a non-backtracking path ω : η → o such that
Φω − H(e) = L + 1 and arg maxξ∈ω H(ξ) ⊆ Ccr(e, o).

(ii) For any configuration η ∈ Cmb(e, o) there exists a non-backtracking path ω : η → o such that
Φω − H(e) = L + 1 and arg maxξ∈ω H(ξ) ⊆ Cmb(e, o).

Lemma 4.11. The following statements hold.

(i) For any configurations η ∈ Cir(e, o) and η′ ∈ Cib(e, o), there is no optimal path ω : η → η′ such
that arg maxξ∈ω ⊆ Cir(e, o) ∪ Cib(e, o).

(ii) For any configurations η ∈ Cib(e, o) and η′ ∈ Ccr(e, o), there is no optimal path ω : η → η′ such
that arg maxξ∈ω ⊆ Ccr(e, o) ∪ Cib(e, o).

(iii) For any configurations η ∈ Cir(e, o) and η′ ∈ Cmb(e, o), there is no optimal path ω : η → η′ such
that arg maxξ∈ω ⊆ Cir(e, o) ∪ Cmb(e, o).

(iv) For any configurations η ∈ Cgr(e, o) and η′ ∈ Cmb(e, o), there is no optimal path ω : η → η′ such
that arg maxξ∈ω ⊆ Cgr(e, o) ∪ Cmb(e, o).

4.2 Proof of Theorem 2.1
This section is entirely devoted to the proof of Theorem 2.1. More specifically, we prove that any
essential saddle belongs to the set C∗(e, o) in Section 4.2.1, we describe how the transitions between
essential gates can take place in Section 4.2.2, and we prove that all the saddles in C∗(e, o) are
essential in Section 4.2.3.

4.2.1 Every essential saddle belongs to C∗(e, o)

In this subsection, we will show that any essential saddle σ belongs to the subset C∗(e, o). This
readily follows from Proposition 4.12 below.

Proposition 4.12. Let σ be an essential saddle. Then, the following statements hold:

(i) If R(Ond(σ)) and R(O(σ)) do not wind around the torus, then σ ∈ Cir(e, o) ∪ Cgr(e, o).

(ii) If R(Ond(σ)) does not wind around the torus, R(O(σ)) does, and σ belongs to ω ∈ (e → o)opt

that crosses the set Cir(e, o) ∪ Cgr(e, o), then σ ∈ Ccr(e, o).

(iii) If R(Ond(σ)) does not wind around the torus, R(O(σ)) does, and σ belongs to ω ∈ (e → o)opt

that does not cross the set Cir(e, o) ∪ Cgr(e, o), then σ ∈ Csb(e, o) ∪ Cib(e, o).

(iv) If R(Ond(σ)) winds around the torus, then σ ∈ Cmb(e, o).
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We observe that these four cases (i)–(iv) listed in Proposition 4.12 cover all the possibilities and
thus form a partition of the set G(e, o) of essential saddles for the transitions e → o.

Before presenting the proof, note that given a configuration σ ∈ S(e, o), if we know on which
manifold Vm it lies, then the quantities e(σ) and o(σ) are uniquely determined and can be explicitly
calculated as

o(σ) = m

2 + L2

4 − L + 1
2 and e(σ) = −m

2 + L2

4 − L + 1
2 . (4.2)

This readily follows from the fact that ∆H(σ) = L+1 = −e(σ)−o(σ)+ L2

2 and that m = −e(σ)+o(σ).
Furthermore, since σ ∈ S(e, o), ∆H(σ) = L + 1 and m has to be an odd integer by Lemma 4.7(b).

To prove Proposition 4.12, we make use of an additional lemma (whose proof is deferred to
Section 5.3), which characterizes the intersection between any optimal path and a specific manifold,
namely Vm∗ with m∗ := 3 − L.

Lemma 4.13 (Geometrical properties of the saddles on the manifold Vm∗). Any non-backtracking
optimal path ω : e → o visits a configuration σ ∈ Vm∗ that satisfy one of the following properties:

(i) If both R(Ond(σ)) and R(O(σ)) do not wind around the torus, then σ ∈ Cir(e, o).

(ii) If R(Ond(σ)) does not wind around the torus but R(O(σ)) does, then σ ∈ Cib(e, o).

(iii) If both R(Ond(σ)) and R(O(σ)) wind around the torus, then σ ∈ Cmb(e, o).

Proof of Proposition 4.12.
Case (i). Let σ be an essential saddle such that R(Ond(σ)) and R(O(σ)) do not wind around the
torus. If σ ∈ Vm∗ , by Lemma 4.13(i) we know that σ ∈ Cir(e, o). Otherwise, we suppose that σ /∈ Vm∗ .
First, we observe that σ ̸∈ Vm with m < m∗, otherwise the saddle σ is not essential. Indeed, every
optimal path from e to o has to cross a configuration σ̄ ∈ Vm∗ in Cir(e, o) thanks to Lemma 4.13(i).
Thus, we can write a general optimal path ω = (e, ω1, ..., ωk, σ, ..., σ̄, ωk+1, ..., ωk+m, o) and we can
define the path ω′ = (e, ω̃1, ..., ω̃n, σ̄, ωk+1, ..., ωk+m, o), where arg maxξ∈{e,ω̃1,...,ω̃n,σ̄} H(ξ) = {σ̄}. This
path ω′ exists thanks to Lemma 4.8(i). Thus, we are left to analyze the case σ ∈ Vm with m > m∗.
We need to show that any essential saddle crossed afterward belongs to the set Cgr(e, o). By using
again Lemma 4.13, the path ω crosses a configuration σ ∈ Cir(e, o) to reach o. Starting from it, there
is a unique possible move to lower the energy towards o along the path ω, that is adding a particle in
the unique unblocked empty odd site. Afterward, the unique possible move is to remove a particle
from an even site. If this site is at a distance greater than one from an antiknob, then there is no
more allowed move. Otherwise, the resulting configuration belongs to the set Cgr(e, o). By iterating
this pair of moves until the shorter diagonal of the rhombus is completely filled, we obtain that all
the saddles that are crossed belong to Cgr(e, o). Moreover, from this point onwards, it is only possible
to remove a particle from an even site at distance one from the antiknob, obtaining a configuration in
Cgr(e, o) ∩ V1.
Case (ii). By assumption, the path ω crosses the set Cir(e, o) ∪ Cgr(e, o). Without loss of generality,
we may consider ω as a non-backtracking path. If this is not the case, we can apply the following
argument to the last configuration visited by the path in the manifold Vm∗ . In particular, in view of
the properties of the path ω shown in case (i), we know that the last configuration crossed in Cgr(e, o)
belongs to V1 and it is composed of a unique non-degenerate cluster RL

2 −1, L
2

with a degenerate cluster
R0,0 at distance one from the antiknob. Starting from it, there is a unique possible move to lower
the energy towards o along the path ω, that is adding a particle in the unique unblocked empty odd
site. Afterward, the unique possible move is to remove a particle from an even site. The resulting
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configuration is in Ccr(e, o). By iterating this pair of moves until the shorter diagonal of the rhombus
is completely filled, we obtain that all the saddles that are crossed belong to Ccr(e, o).
Case (iii). As in case (ii), we assume that the path ω is non-backtracking. By the assumption, the
path ω does not cross the set Cir(e, o) ∪ Cgr(e, o), thus for Lemma 4.13(ii) the path crosses the set
Cib(e, o), say in the configuration η̄. Let Vm̄ the first manifold containing a configuration in Cib(e, o).

Consider first the case in which the saddle σ is crossed by the path ω on the manifolds Vm,
with m̄ ≤ m < m∗. Since ω crosses the set Cib(e, o), we will show that the saddle σ belongs
to the set Csb(e, o) ∪ Cib(e, o). To this end, we need to consider the time-reversal of the path
ω = (e, ω1, ..., ωk, η̄, ..., o), where η̄ ∈ Cib(e, o). Starting from η̄, since ∆H(η̄) = L + 1, the energy of
the configuration ωk is less than that of η̄. Moreover, the unique possible move is adding a particle in
the unique empty even site at distance one from an antiknob. Then, the unique possible move from
ωk to ωk−1 is removing a particle from an occupied odd site. The configuration ωk−1 belongs to the
set Csb(e, o) if it contains at least one bridge, otherwise, it belongs to the set Cib(e, o). By iterating
this argument we obtain the desired claim.

Consider now the case in which the saddle σ is crossed by the path ω on the manifolds Vm,
with m > m∗. Since ω crosses the set Cib(e, o), we will show that the saddle σ belongs to the set
Csb(e, o) ∪ Cib(e, o). Note that the unique admissible moves are the following: add a particle in
the antiknob and then remove a particle from an even site at distance one from an antiknob. By
iterating this couple of moves we get that the resulting configuration belongs to the set Cib(e, o) since
R(Ond(σ)) does not wind around the torus.

It remains to consider the case σ ∈ Vm, with m < m̄. We will prove that any such σ is not
essential. Indeed, any non-backtracking optimal path crossing a configuration in Cib(e, o) has crossed
a configuration in Csb(e, o) before by using the same argument as in case (iii) of this proof for
m̄ ≤ m < m∗. Thus, we can write ω = (e, ω1, ..., ωk, σ, ..., σ̃, ..., σ̄, ωk+1, ..., ωk+m, o) and we define the
path ω′ = (e, ω′

1, ..., ω′
n, σ̃, ..., σ̄, ωk+1, ..., ωk+m, o), where σ̃ is a configuration in Csb(e, o), σ̄ ∈ Vm̄ is a

configuration in Cib(e, o) thanks to Lemma 4.13(ii) and arg maxξ∈{e,ω′
1,...,ω′

n,σ̃} H(ξ) = {σ̃}. This path
ω′ exists thanks to Lemma 4.8(ii) and this concludes case (iii).
Case (iv). By Lemma 4.13(iii), we know that any optimal path ω ∈ (e → o)opt crosses the manifold
Vm∗ in a configuration σ̄ belonging to the set Cmb(e, o).

If the essential saddle σ ∈ Vm∗ , then we deduce that σ ∈ Cmb(e, o).
Suppose now that the saddle σ belongs to the manifold Vm, with m > m∗. Starting from such a

saddle σ̄, there is a unique possible move to lower the energy towards o along the path ω, that is
add a particle in the unique unblocked empty odd site. Afterward, the unique possible move is to
remove a particle from an even site. If this site is at a distance greater than one from an antiknob,
then there is no more possible move to reach o in such a way the path ω is optimal. Otherwise, the
resulting configuration belongs to the set Cmb(e, o). Indeed, by construction, we deduce that the
resulting non-degenerate odd cluster is still monotone due to the properties of the bars attached to
each bridge. By iterating this pair of moves until there is a row or a column which is not a bridge, we
obtain that all the saddles that are crossed belong to Cmb(e, o). Finally, from this point onwards, it is
only possible to remove a particle from an even site at distance one from the antiknob, obtaining the
last configuration in Cmb(e, o). Afterward, the energy only decreases and therefore no more saddles
are crossed.

Suppose now that the saddle σ belongs to the manifold Vm, with m < m∗. Note that, starting
from such σ̄ ∈ Cmb(e, o), the unique admissible moves to get σ are the following: add a particle in the
unique empty even site at distance one from an antiknob and afterward remove a particle from an
occupied odd site. By iterating this couple of moves we get that the resulting configuration belongs
to the set Cmb(e, o) as long as R(Ond(σ)) winds around the torus, otherwise the saddle σ does not
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satisfy the properties in the statement.

4.2.2 Communications between essential gates

In this subsection, we show that the six subsets composing the set C∗(e, o) communicate as illustrated
in Fig. 5. The next proposition makes it precise.

Proposition 4.14. Any non-backtracking optimal path ω : e → o crosses the set C∗(e, o) in one of
the following ways:

(i) ω passes first through Cir(e, o), then through Cgr(e, o), and finally through Ccr(e, o);

(ii) ω passes first through Csb(e, o), then through Cib(e, o) and afterwards through Cgr(e, o)∪Cmb(e, o).
If ω passes Cgr(e, o), then it eventually has to visit Ccr(e, o), otherwise it does not have to;

(iii) ω passes first through Csb(e, o) and then through Cmb(e, o).

Proof. Consider a non-backtracking optimal path ω : e → o. If ω visits at least one essential saddle,
then we conclude by using Proposition 4.12. Thus, suppose that ω visits unessential saddles only,
say σ1, ..., σn. By definition of unessential saddle, we know that there exists another optimal path
ω′ : e → o such that S(ω′) ⊆ {σ1, ..., σn−1}, say S(ω′) ⊆ {σ1, ..., σm} with m ≤ n − 1. Iterating this
argument, we deduce that there exists an optimal path ω̄ : e → o such that S(ω̄) = {σ1} and this is
a contradiction with the assumption that σ1 is an unessential saddle. Thus, we conclude that any
optimal path ω : e → o visits the set C∗(e, o). It remains to prove that the entrance in C∗(e, o) occurs
in one of the ways described in (i)–(iii), which easily follows by combining Lemmas 4.8–4.11.

4.2.3 All the saddles in C∗(e, o) are essential

In this first part of the proof, we will prove that every σ ∈ C∗(e, o) is an essential saddle by constructing
a non-backtracking optimal path ω : e → o that visits σ.

Leveraging the fact that σ ∈ C∗(e, o), we construct the desired non-backtracking path ω as a
concatenation of two paths as follows. First, using a suitable concatenation of the paths described in
Lemmas 4.9–4.10, we can define a path ω1 that starts from the considered configuration σ to the
initial cycle Ce. We construct then another path ω2 that goes from σ to the target cycle Co as a
suitable concatenation of the paths described in Lemmas 4.8–4.9. The desired non-backtracking path
ω is the time-reversal of ω1 concatenated with ω2 and it is easy to show that it is also optimal.

Assume now by contradiction that σ is not essential, which means that there must exist another
optimal path ω′ ∈ (e → o)opt such that S(ω′) ⊂ S(ω) \ {σ}. Recall that by Lemma 4.7(a), such a
path ω′ that avoids σ still needs to visit the manifold Vm(σ) where σ lives at least once. Let η be any
such configuration in Vm(σ) ∩ ω′. We claim that such a configuration η must satisfy

∆H(η) ≡ 1 (mod 2).

This claim readily follows from Lemma 4.7(b) in combination with the facts that L is even and
∆H(σ) = L + 1 by construction.

If ∆H(η) ≥ L+3, then ω′ is not an optimal path, since Φω′ −H(e) ≥ L+3 > L+1 = Φ(e, o)−H(e).
On the other hand, if ∆H(η) ≤ L − 1, then from Lemma 4.1 it follows that η belongs to one of the

two initial cycles. Proposition 4.14 ensures that every non-backtracking optimal path crosses C∗(e, o)
in one of the three ways (i)–(iii) described therein, so that also the optimal path ω′ passing through η
has to visit C∗(e, o). Since, by assumption, the path ω′ has to avoid the saddle σ, we deduce that
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there exists another saddle η̃ obtained starting from η that does not belong to Vm(σ). In particular,
the two paths cross the set C∗(e, o) in three different ways according to Proposition 4.14(i)–(iii).
Thus, we deduce that S(ω′) ̸⊂ S(ω) \ {σ}.

Thus, in view of the parity of ∆H(η), we must have ∆H(η) = L + 1, but then η is a saddle and,
by construction, it did not belong to S(ω) and thus S(ω′) ̸⊂ S(ω) \ {σ}.

5 Proof of auxiliary results
In this section, we give the proof of some auxiliary results stated in Sections 3–4.

5.1 Results on the perimeter of an odd region
Proof of Proposition 3.4. The proof revolves around the simple idea that using the filling algorithms
introduced in Section 3.3 we can expand the odd cluster C (i.e., progressively increase the number of
the occupied odd sites in C) in such a way that R remains the surrounding rhombus and the energy
of all the configurations along such a path never exceeds H(σ) + 1. Since by assumption σ ̸= σ′, the
odd cluster C cannot coincide with R, in view of conditions (i), (ii), and (iii). Thus, C contains at
least a broken diagonal or a shorter diagonal than those of the surrounding rhombus.

We can define the desired path ω as the concatenation of the two paths returned by the filling
algorithms ω̃ and ω̄. If C has no broken diagonal, we take ω̃ empty. If C has no shorter diagonal,
then C has already the shape of a rhombus and therefore we take ω̄ empty. By the definition of these
two paths, the energy increases by one only if an even site has to be emptied, but all these moves
are followed by the addition of a particle in an antiknob. Therefore, the energy along the path ω
increases by at most one with respect to the starting configuration σ. This procedure ends when C
coincides with R, which implies that the resulting configuration is σ′.

To conclude the proof, we need to show the properties claimed for the perimeter of σ. If C contains
m ≥ 1 broken diagonals, we argue as follows. Since the cluster C is connected, all the empty odd
sites in which the diagonals are broken are antiknobs, i.e., they have n ∈ {3, 4} neighboring even
sites belonging to C, see Fig. 12. We distinguish the two following cases. If n = 3, then we first
need to remove a particle from the unique neighboring occupied even site, like the site v represented
in Fig. 12 on the left. After that move, when the particle is added in the antiknob the perimeter
does not change in view of (3.3), otherwise if n = 4 then the perimeter decreases (see Fig. 12 on the
right). This occurs also when we add a particle in the target antiknobs except the last antiknob to
obtain the complete diagonal, for which by construction we have that the perimeter decreases by 4.
By iterating this argument for every broken diagonal, we get

P (σ) ≥ P (σ̃) + 4m > P (σ̃).

If C does not contain any broken diagonal, we argue as follows. By construction, we deduce that
the first odd site we will fill, which is the nearest neighbor of the first shorter diagonal, has three
neighboring even sites belonging to C. Thus, we need to remove a particle from the unique occupied
neighboring even site and then, when the first particle is added in the unique possible antiknob, the
perimeter does not change thanks to (3.3). This occurs also when we iterate this argument.

Proof of Proposition 3.6. Given any n positive number, let C be an odd cluster with area n. If the
cluster C is not connected, by (3.3) it directly follows that C cannot minimize the perimeter of an
odd cluster with n particles. Indeed, when the cluster is not connected the cardinality of C ∩ Ve
decreases, while the cardinality of C ∩ Vo is fixed equal to n. Consider now a connected cluster C.
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v v

Figure 12: Example of a configuration σ as in the statement of Proposition 3.4 (on the left), where we
highlight in red the site containing the target antiknob, and the configuration obtained from σ by
filling it after removing a particle from the even site v (on the right), with highlighted in red the
site containing the next target antiknob.

First, we will show that the minimal perimeter is that of the surrounding rhombus. To this end, we
consider separately the following three cases:

1. there exists at least one broken diagonal. In this case, we have that P (C) > P (R(C)) by
applying Proposition 3.4.

2. there is no broken diagonal but there exists at least one shorter diagonal with respect to
those of the surrounding rhombus. In this case, we have that P (C) = P (R(C)) by applying
Proposition 3.4.

3. all the diagonals have the same length as those of the surrounding rhombus, namely, all the
diagonals are complete. In this case C = R(C), thus it is trivial that P (C) = P (R(C)).

Lastly, we need to show that the minimizing rhombus is either Rs−1,s or Rs,s−1 if n = s(s − 1) + k
and Rs,s if n = s2 + k. We argue by induction over n. If n = 1, then it is trivial that the rhombus
R1,1 minimizes the perimeter and n = 1 can be represented in the form s(s − 1) + k choosing s = 1
and k = 0. Suppose now n > 1 and that the claim holds true for any m < n. Suppose that n − 1 can
be written as s(s − 1) + k. In the other case, when n = s2 + k, we can argue in a similar way. If
n − 1 = s(s − 1) + k, with 0 ≤ k ≤ s − 2 (resp. k = s − 1), then either the rhombus Rs,s−1 or Rs−1,s

(resp. the rhombus Rs,s) minimizes the perimeter for an odd cluster with n particles. Indeed, in any
other case, the surrounding rhombus could be either Rs+1,s−1 or Rs−1,s+1, which has a strictly greater
perimeter in view of (3.13). Note that the assumption n ≤ L(L − 2) is needed to avoid rhombi with
a maximal side equal to L, because in view of (3.13) we would lose the uniqueness of the minimizing
configuration.

Proof of Corollary 3.7. We first consider the case in which the area n is of the form n = s(s − 1) + k.
If s < L/2, we have that the perimeter of the odd cluster is P = 4(2s + 1). Since the cluster is
contained in a rhombus Rs,s, we have that n ≤ s2 and, hence,

(
P
4 − 1

)2
≥ 4n. If L/2 ≤ s < L, then
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the perimeter of the odd cluster is P = 4(2L−2s−1). Since the cluster is contained in a rhombus Rs,s

and therefore the complement in V is a rhombus RL−s−1,L−s−1, we have that n ≥ L2

2 − (L − s − 1)2.
Hence (

P

4 − 1
)2

= 4(L − s − 1)2 ≥ 2(L2 − 2n).

Consider now the other case, when the area n is of the form n = s2 + k. If s < L/2 we have that
the perimeter of the odd cluster is P = 4(2s + 2). Since the cluster is contained in a rhombus either
Rs+1,s or Rs,s+1, we have that n ≤ s2 + s. Thus, it holds(

P

4 − 1
)2

= (2s + 1)2 = 4(s2 + s) + 1 ≥ 4n + 1.

If L/2 ≤ s < L, then the perimeter of the odd cluster is P = 4(2L − 2s − 2). Since the cluster is
contained in either a rhombus Rs+1,s or Rs,s+1 and therefore the complement in V is either a rhombus
RL−s−2,L−s−1 or RL−s−1,L−s−2, we have that n ≥ L2

2 − (L − s − 1)(L − s − 2). Hence,
(

P

4 − 1
)2

= (2L − 2s − 3)2 = 4(L − s − 1)(L − s − 2) + 1 ≥ 4
(

L2

2 − n
)

+ 1 = 2(L2 − 2n) + 1.

By using the condition n ≤ L(L − 2), inequality (3.19) directly follows.

Proof of Lemma 3.8. Let σ be a configuration with real area ñ = 2ℓ2 + 2ℓ + 1. First, we suppose that
the set of odd clusters in σ is composed only of j ≥ 2 non-degenerate clusters. Each of them has area
ni and perimeter pi for i = 1, ..., j. Suppose by contradiction that σ has minimal perimeter so that
the area of the configuration σ is nσ = ∑j

i=1 ni and its perimeter is pσ = 4(2√
nσ + 1). By (3.19), we

have pi ≥ 4(2√
ni + 1) for any i = 1, ..., j. Then we obtain that

pσ =
j∑

i=1
pi ≥

j∑
i=1

4(2√
ni + 1) ≥ 8

√√√√ j∑
i=1

ni + 4j ≥ 8


√√√√ j∑
i=1

ni + 1
 = 4(2√

nσ + 2), (5.1)

that is a contradiction.
Second, we suppose that the set of odd clusters in σ is composed of k ≥ 1 degenerate clusters and

of j ≥ 1 non-degenerate clusters. Each of these non-degenerate clusters has area ni and perimeter pi

for i = 1, ..., j, so that nσ = ∑j
i=1 ni. We denote by p̃i for i = 1, ..., k the perimeter of a degenerate

cluster. Suppose by contradiction that σ has minimal perimeter. By (3.19), we have pi ≥ 4(2√
ni + 1)

for any i = 1, ..., j and pσ = 4(2√
nσ + 1). Thus, we obtain

pσ =
j∑

i=1
pi+

k∑
i=1

p̃i ≥
j∑

i=1
4(2√

ni+1)+4k ≥ 8

√√√√ j∑
i=1

ni+4j+4k ≥ 8

√√√√ j∑
i=1

ni+4+4 = 4(2√
nσ +2), (5.2)

that is a contradiction. Thus, we obtain that k = 0 and j = 1. Since the real area ñ of the configuration
σ is fixed, then also the area nσ is fixed. Thus, given that σ contains only one non-degenerate cluster
with minimal perimeter and with fixed area, by Corollary 3.7 we obtain that the non-degenerate
cluster is the rhombus Rℓ,ℓ, which has precisely real area ñ.

5.2 Results on optimal reference paths
Proof of Lemma 4.8. We start by proving (i). The desired path ω = (e, ω1, ..., ωk(L), η) is obtained as
follows. Starting from e, define the configuration ω1 as that in which one particle is removed from
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an empty even site, say v1 ∈ Ve. Similarly, we define ω2 as the configuration in which a particle is
removed from a site v2 ∈ Ve such that d(v1, v2) = 2. Similarly, by removing particles in v3, v4 ∈ Ve
in such a way d(vi, vj) = 2 for any i, j = 1, ..., 4 and i ̸= j, we define the configurations ω3 and ω4.
Note that ∆H(ω4) = 4 < L + 1. Thus, we can define the configuration ω5 as that obtained from ω4
by adding a particle in the unique unblocked odd site, i.e., the one at distance one from vi for any
i = 1, ..., 4. See Fig. 13 on the left.

v5

Figure 13: Example of the configurations ω5 (on the left), ω7 (in the middle) and ω13 (on the right) visited
by the path described in the proof of Lemma 4.8(i).

We obtain that ∆H(ω5) = 3 < L + 1 and ω5 is composed of a unique non-degenerate odd cluster,
which is R1,1. To define the configuration ω6, we remove a particle from a site v5 ∈ Ve such that
d(vi, v5) = 2 for two indices i = 1, ..., 4. Similarly, we define ω7 in such a way there is an empty
odd site with all the neighboring even sites that are empty, see Fig. 13 in the middle. Note that
∆H(ω7) = 5 < L + 1. Then, we define ω8 by adding a particle in the unique unblocked odd site, so
that ∆H(ω8) = 4 < L + 1. Note that ω8 contains an odd cluster R1,2. By growing the odd cluster in
a spiral fashion, emptying the even sites that are strictly necessary, note that the configuration ω13
contains only the non-degenerate cluster R2,2 (see Fig. 13 on the right). Then, our path visits all the
configurations which have a unique non-degenerate odd cluster C such that C = Rℓ,ℓ and C = Rℓ,ℓ+1
for any 3 ≤ ℓ ≤ L

2 − 1 up to the configuration ωk(L)−1, whose unique non-degenerate odd cluster is
C = RL

2 −1, L
2 −1. Then, the configuration ωk(L) is defined by removing a particle from an even site w

at distance two from C. Finally, the configuration η is obtained by removing a particle from an even
site at distance two from C and from w. Since the procedure we defined is invariant by translation,
given a fixed configuration η ∈ Cir(e, o) is possible to choose the position of the odd clusters in such
a way the final configuration of the path we described coincides with the desired η. It remains to
show that arg maxξ∈ω H(ξ) = {η}. To this end, since ∆H(η) = L + 1 and therefore ∆H(ωk(L)) = L
and ∆H(ωk(L)−1) = L − 1, we need only to show that

max
ξ∈{e,ω1,...,ωk(L)−2}

H(ξ) < L + 1.

First, we will show that ∆H(η) = 3 + 2(ℓ − 1) by induction over the dimension ℓ = 1, ..., L
2 − 1 of

the rhombus Rℓ,ℓ composing the unique odd cluster of the configurations η visited by ω. We have
already proven the desired property in the case ℓ = 1. Suppose now that the claim holds for ℓ, with
1 ≤ ℓ ≤ L

2 − 2, thus we will prove that it holds also for ℓ + 1. To reach the configuration displaying the
rhombus Rℓ,ℓ+1 starting from Rℓ,ℓ, we need first to remove particles from two even sites by increasing
the energy by two. Then, we sequentially add a particle in an odd site and remove a particle in
an even site until the length of the shorter diagonal is ℓ − 1. Finally, the last move is the addition
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of a particle in an odd site without the need of removing any particle from an even site. Starting
from Rℓ,ℓ+1, to obtain Rℓ+1,ℓ+1 we follow the same sequence of moves. Thus, for a configuration η
containing as unique odd cluster a rhombus Rℓ+1,ℓ+1 we deduce that ∆H(η) = 3 + 2(ℓ − 1) + 2, which
proves our claim for ℓ + 1. Along the sequence of moves from Rℓ,ℓ to Rℓ+1,ℓ+1, the energy is at most
3 + 2(ℓ − 1) + 3, which is strictly less than L + 1 for ℓ ≤ L

2 − 1. Note that we do not to consider the
case ℓ = L

2 − 2, indeed the path ω stops before reaching the rhombus RL
2 −1, L

2
. This concludes the

proof of (i).
Now we prove (ii). The desired path ω = (e, ω1, ..., ωk(L), η) is obtained as follows. Starting from

e, define the configuration ω1 as that in which one particle is removed from an empty even site, say
v1 ∈ Ve. Similarly, we define ω2 as the configuration in which a particle is removed from a site v2 ∈ Ve
such that d(v1, v2) = 2. Similarly, by removing particles in v3, v4 ∈ Ve in such a way d(vi, vj) = 2 for
any i, j = 1, ..., 4 and i ̸= j, we define the configurations ω3 and ω4. Note that ∆H(ω4) = 4 < L + 1.
Thus, we can define the configuration ω5 as the one obtained from ω4 by adding a particle in the
unique unblocked odd site, i.e., the one at distance one from vi for any i = 1, ..., 4. We obtain that
∆H(ω5) = 3 < L + 1 and ω5 is composed of a unique non-degenerate odd cluster, which is R1,1,
see Fig. 14 on the left.

v5v6
v7

Figure 14: Example of the configurations ω5 (on the left), ω7 (in the middle) and ω9 (on the right) visited
by the path described in the proof of Lemma 4.8(ii).

Next, we describe four steps that are used in the following iteration. The first step is to define the
configuration ω6 by removing a particle from a site v5 ∈ Ve such that d(vi, v5) = 2 for two indices
i = 1, ..., 4. The second step is to remove a particle from a site v6 ∈ Ve in such a way there is
an empty odd site with two neighboring empty even sites and the other one is occupied. In this
way, we obtain the configuration ω7 (see Fig. 14 in the middle). The third step is to obtain the
configuration ω8 by removing the particle in the site v7 ∈ Ve such that d(v7, v5) = d(v7, v6) = 2. Note
that ∆H(ω8) = 6 < L + 1. Then, the last step is to define ω9 by adding a particle in the unique
unblocked odd site, so that ∆H(ω9) = 5 < L + 1 and the energy cost of these four steps is 2. Note
that ω9 is composed of a non-degenerate odd cluster with two odd particles along either the same
column or the same row, see Fig. 14 on the right.

From this point onwards, we iterate these four steps for other L
2 − 3 times, until we obtain the

configuration ωk(L)−1 in which either a column or a row contains L
2 − 1 odd particles. Note that

∆H(ωk(L)−1) = 5 + 2(L
2 − 3) = L − 1. Then, we repeat the first two steps described above and we

reach the configuration η ∈ Csb(e, o) with ∆H(η) = L + 1. It easy to check that arg maxξ∈ω = {η}.
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Indeed, we get
∆H(ωi) = ∆H(ωi−1) + 1 if 1 ≤ i ≤ 4,

∆H(ω2i−1) = ∆H(ω2i) − 1 if 3 ≤ i ≤ k(L)
2 ,

∆H(ω2i) = ∆H(ω2i−1) + 3 if 3 ≤ i ≤ k(L)
2 − 1,

∆H(ωk(L)) = ∆H(ωk(L)−1) + 2,

which concludes the proof of (ii).

Proof of Lemma 4.9. We start by proving (i). Take the path described in Lemma 4.8(ii) until it
visits for the first time a configuration in Csb(e, o) as in Fig. 11 on the left. Starting from such a
configuration, add a particle in the unique unblocked odd site. Then, remove a particle from an even
site at distance one from an antiknob and finally add a particle in the unique unblocked odd site.
Afterward, iterate the sequence of these two moves up to the target configuration η ∈ Cib(e, o). By
construction, the resulting path has the desired property.

Let us now focus on case (ii). Consider the path described in Lemma 4.8(i) until it visits for
the first time a configuration in Cir(e, o). Starting from such configuration, add a particle in the
antiknob, obtaining a configuration η′ that displays a unique non-degenerate odd cluster, which is a
rhombus RL

2 −1, L
2 −1 with a single protuberance. Starting from η′, consider the path returned filling

algorithm ω̄ up to the configuration η ∈ Cgr(e, o). The described path has the desired property thanks
to Proposition 3.4.

Consider now the concatenation of the paths described in Lemma 4.8(ii) and Lemma 4.9(i) until
it visits for the first time a configuration in Cib(e, o). Starting from such a configuration, by iterating
the pair of moves consisting in adding a particle in the unique unblocked odd site and removing
a particle at distance one from an antiknob, it is possible to obtain a configuration with a unique
non-degenerate cluster that contains RL

2 −1, L
2 −1. By construction, this resulting configuration is in

Cgr(e, o) and it is possible to iterate this couple of moves up to η. By construction, the resulting path
has the desired property.

Consider now case (iii). Take the path described in Lemma 4.8(ii) until it visits for the first time
the configuration in Csb(e, o) as in Fig. 3 on the right. Starting from such a configuration, add a
particle in the unique unblocked odd site. Then, remove a particle from an even site at distance one
from an antiknob and finally add a particle in the unique unblocked odd site. This configuration is in
Cmb(e, o). Afterward, iterate the sequence of these two moves up to the target configuration η. By
construction, the resulting path has the desired property.

Consider now the concatenation of the paths described in Lemma 4.8(ii) and Lemma 4.9(i) until
it visits for the first time a configuration in Cib(e, o). Starting from such configuration, with the same
procedure described above it is possible to reach the target configuration η ∈ Cmb(e, o) by visiting
only saddles in Cib(e, o) ∪ Cmb(e, o).

Let us now focus on case (iv). Consider the concatenation of the paths described in Lemma 4.8(i)
and Lemma 4.9(ii) until it visits for the first time a configuration in Cgr(e, o). Starting from such
configuration, add a particle in the antiknob, obtaining a configuration η′. Note that η′ is composed
of a unique non-degenerate odd cluster, which is a rhombus RL

2 −1, L
2 −1 with a single protuberance.

Starting from η′, consider the path returned by filling algorithm ω̄ up to the configuration η ∈ Ccr(e, o).
The described path has the desired property thanks to Proposition 3.4.

Consider now the concatenation of the paths described in Lemma 4.8(ii) and Lemma 4.9(iii) until
it visits for the first time a configuration in Cmb(e, o). Starting from such configuration, by iterating
the pair of moves consisting in adding a particle in the unique unblocked odd site and removing
a particle at distance one from an antiknob, it is possible to obtain a configuration with a unique
non-degenerate cluster that contains RL

2 −1, L
2
. By construction, this resulting configuration is in
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Ccr(e, o) and it is possible to iterate this couple of moves up to η. By construction, the resulting path
has the desired property.

Proof of Lemma 4.10. We start by proving (i). Arguing as in the proof of Lemma 4.9(ii) we can show
that there exists a path with the desired property that connects η to η̄ ∈ Ccr(e, o), where the unique
non-degenerate cluster of η̄ is RL

2 −1, L
2

with attached a bar of length L
2 − 2 and there is a degenerate

rhombus R0,0 at distance one from an antiknob. Since the configuration displays two antiknobs, it
is possible to sequentially add two particles in odd sites. Thus, by proceeding in this way the path
reaches o without visiting any other saddle and so the described path has the desired property.

Finally, consider case (ii). By arguing as in the proof of Lemma 4.9(iii)–(iv) we can show that there
exists a path with the desired property that connects η to η̄ ∈ Cgr(e, o) ∪ Cmb(e, o). If η̄ ∈ Cgr(e, o),
the claim follows by the previous argument. Otherwise, the configuration η̄ has two antiknobs after
arguing as above. In either cases, the described path has the desired property.

Proof of Lemma 4.11. Consider first case (i). By construction, every non-backtracking optimal path
from e to o that crosses a configuration in Cir(e, o) has to visit a configuration in Cgr(e, o). Indeed,
each move consists in adding a particle in an unblocked odd site or removing a particle from an even
site. Thus, it remains to consider backtracking optimal paths only. In order to visit a saddle in
Cib(e, o), a column (or row) with precisely L

2 − 1 particles arranged in odd sites needs to be created
along these paths. To proceed, since we are considering backtracking optimal paths, the unique
possibility is to visit a configuration in Csb(e, o) before reaching Cib(e, o). Thus, case (i) is concluded.

Consider now case (ii). The claim follows after noting that every configuration in Ccr(e, o) contains
one odd vertical (resp. horizontal) bridge B, where the two neighboring columns (resp. rows) to B
contains L

2 − 1 odd particles each. Thus, all the configurations in Ccr(e, o) differ from a configuration
in Cib(e, o) in at least two odd sites. Then, suppose to have η ∈ Cib(e, o) and η′ ∈ Ccr(e, o) such
that they differ in only two odd sites. Starting from η, if a bridge is created, then the resulting
configuration is in Cmb(e, o), while if the resulting configuration contains two neighboring columns (or
rows) with exactly L

2 − 1 particles in odd sites, then it belongs to Cgr(e, o). If the two configurations
differ in at least three sites, we argue as above.

Consider now case (iii). The claim follows after arguing as in case (i) and noting that, in order to
create a bridge, the path has to visit the set Csb(e, o). Lastly, in case (iv), the claim follows after
arguing as in case (iii).

5.3 Results on the saddles lying in the manifold Vm∗

Proof of Lemma 4.13. We analyze separately the three cases.
Case (i). Suppose by contradiction that there exists a non-backtracking path ω′ ∈ (e → o)opt that
crosses σ ∈ Vm∗ \ Cir(e, o) such that R(Ond(σ)) and R(O(σ)) do not wind around the torus. First,
since σ ∈ Vm∗ and ∆H(σ) ≤ L + 1, we gete(σ) ≥ L2

4 − 3
2 ,

o(σ) ≥ L2

4 − L + 3
2 .

(5.3)

Since o(σ) > 0 for any L, we deduce that σ cannot contain only degenerate clusters and therefore it
contains at least an odd non-degenerate cluster. Thus, one of the following cases occurs:

(1) O(σ) consists of at least two non-degenerate odd clusters;
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(2) O(σ) consists of a single non-degenerate odd cluster different from RL
2 −1, L

2 −1 and possibly some
degenerate clusters;

(3) O(σ) consists of a single non-degenerate odd rhombus equal to RL
2 −1, L

2 −1 and at least one
degenerate odd cluster R0,0 at distance greater than one from the non-degenerate one.

We consider the rhombus surrounding the odd non-degenerate region for all the above cases.
Due to the isoperimetric inequality of Lemma 3.8, this rhombus R has a perimeter P (R) greater
than or equal to P (RL

2 −1, L
2 −1), i.e., P (R) ≥ 4(L − 1). In particular, for cases (1) and (2) we have

P (R) > 4(L − 1) since O(σ) ̸= RL
2 −1, L

2 −1, and for case (3) we have P (R) = 4(L − 1). Let Pi denotes
the perimeter of the i-th cluster, with i = 1, ..., k. Note that P (σ) = ∑k

i=1 Pi. We let kd ≥ 0 (resp.
knd ≥ 1) the number of degenerate clusters R0,0 (resp. non-degenerate clusters) such that the total
number of clusters is k = kd + knd ≥ 1.
Subcase (1). In this case knd ≥ 2, so that k ≥ 2. Denote by ẽi (resp. oi) the number of empty even
sites (resp. occupied odd sites) of the i-th cluster. Using (3.3), (3.7) and (3.8), we obtain

∆H(σ) =
k∑

i=1
(ẽi − oi) =

kd∑
i=1

ẽi +
knd∑
i=1

(ẽi − oi) ≥ ẽd +
( knd∑

i=1
ẽi + 2(knd − 1) −

knd∑
i=1

oi

)

= ẽd +
( knd∑

i=1
ẽi −

knd∑
i=1

oi

)
+ 2(knd − 1) > ẽd + (L − 1) + 2(knd − 1)

≥ ẽd + L + 1,

(5.4)

where ẽd = ∑kd
i=1 ẽi, the first inequality follows from the fact that the difference between the perimeter

of two disjoint non-degenerate clusters and that of the cluster obtained by attaching the two is at
least two, and the last inequality follows from the isoperimetric inequality applied to the cluster
obtained by attaching the k clusters forming σ. Then, from inequalities (5.4) and ∆H(σ) ≤ L + 1, it
follows that ẽd < 0, which is a contradiction since ẽd ≥ 0.
Subcase (2). The unique non-degenerate odd cluster of σ has a shape different from a rhombus
RL

2 −1, L
2 −1 by assumption. In this case knd = 1 and kd ≥ 0, so that k = kd + 1. Thus, we obtain

∆H(σ) =
kd+1∑
i=1

(ẽi − oi) =
kd∑

i=1
ẽi + (ẽkd+1 − okd+1) > ẽd + L − 1, (5.5)

where ẽd = ∑kd
i=1 ẽi, the first equality follows from the fact that σ contains only one non-degenerate odd

cluster, and the last inequality follows from the isoperimetric inequality applied to the non-degenerate
cluster. Then by (5.5) and the fact that ∆H(σ) ≤ L + 1, we find ẽd ≤ 1 and so kd ≤ 1.

The configuration σ thus falls in one of the following three subcases:

(2a) the only non-degenerate odd cluster of σ is a rhombus Rℓ1,ℓ2 ̸= RL
2 −1, L

2 −1;

(2b) the non-degenerate odd cluster of σ is a cluster with m ≥ 1 empty odd sites corresponding to
some broken diagonal and q = 0 shorter diagonals;

(2c) the non-degenerate odd cluster of σ is a cluster with m ≥ 0 empty odd sites corresponding to
some broken diagonal and q ≥ 1 shorter diagonals.
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We can ignore the case m = 0 and q = 0 as it is the one corresponding to the rhombus RL
2 −1, L

2 −1.
Subcase (2a). This case is not admissible since, if Rℓ1,ℓ2 ̸= RL

2 −1, L
2 −1, we haveℓ1 + ℓ2 + 1 + kd = L + 1,

ℓ1 + ℓ2 + 1 > L − 1,

and this implies kd > 2, which is in contradiction with the assumption kd ≤ 1.
Subcase (2b). From the assumptions on σ, it follows thatℓ1 + ℓ2 + 1 + kd + m = L + 1,

ℓ1 + ℓ2 + 1 > L − 1.
(5.6)

These give that kd + m < 2, which, in view of the inequalities kd ≤ 1 and m ≥ 1, then imply that
kd = 0 and m = 1. Thus, we deduce thato(σ) = ℓ1ℓ2 − 1,

e(σ) = (ℓ1 + 1)(ℓ2 + 1),

so that ℓ1 + ℓ2 = L − 5 since σ ∈ Vm∗ , but this contradicts the condition ℓ1 + ℓ2 + 1 + kd + m = L + 1
in (5.6).

Subcase (2c). From the assumptions on σ, it follows thatℓ1 + ℓ2 + 1 + kd + m = L + 1,

2(ℓ1 + ℓ2 + 1) − q > 2(L − 1).
(5.7)

This implies that 2(kd + m) + q ≤ 3, so we distinguish three subcases: (2c-I) kd = m = 0 and
q ∈ {1, 2, 3}; (2c-II) kd = 1, m = 0 and q = 1; and (2c-III) kd = 0, m = 1 and q = 1. The other
subcases are not possible in view of the conditions kd ≤ 1, m ≥ 0, and q ≥ 1.

For subcase (2c-I), kd = m = 0 and q ∈ {1, 2, 3}. Thus, by letting s be the total number of empty
sites needed to be filled in order for the shorter diagonals to become complete, we deduce thato(σ) = ℓ1ℓ2 − s,

e(σ) = (ℓ1 + 1)(ℓ2 + 1) − s,

so that ℓ1 + ℓ2 = L − 4 since σ ∈ Vm∗ , but this contradicts identity ℓ1 + ℓ2 + 1 + kd + m = L + 1 in
(5.7). The claims for (2c-II) and (2c-III) follow by arguing as in (2c-I).

Subcase (3). First, note that kd ≤ 2, otherwise ∆H(σ) > L + 1 and therefore the path ω would
be not optimal.

If kd = 2, by using the non-backtracking property of the path ω, it follows that there is no possible
move to cross the next manifold towards o along an optimal path.

If kd = 1, then ∆H(σ) = L so that the energy along the path can increase by at most 1 to reach
o. The unique possible move is to remove a particle from an empty site, obtaining a configuration
with kd = 2. We can then prove the claim by arguing as in the case kd = 2.
Case (ii). Suppose by contradiction that there exists a non-backtracking path ω′ ∈ (e → o)opt that
crosses that crosses σ ∈ Vm∗ \ Cib(e, o) such that R(Ond(σ)) does not wind around the torus and
R(O(σ)) does. We observe that (5.3) holds for the configuration σ and, therefore, it contains at least
one odd non-degenerate cluster and it cannot contain only degenerate clusters. Thus, we consider the
following subcases:
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(1) O(σ) consists of at least two non-degenerate odd clusters;

(2) O(σ) consists of a single non-degenerate odd cluster different from RL
2 −1, L

2 −1 and possibly some
degenerate clusters;

(3) O(σ) consists of a single non-degenerate odd rhombus equal to RL
2 −1, L

2 −1 and at least one
degenerate odd cluster R0,0 at distance greater than one from the non-degenerate one.

Subcase (1). Suppose that σ contains k ≥ 2 non-degenerate clusters C1(σ), ..., Ck(σ). By
assumption all the rhombi surrounding Ci(σ) does not wind around the torus for any i = 1, ..., k, thus
we can argue as in case (i-2c-II) above.

Subcase (2). By arguing as in case (i-2) above, we deduce that this case is possible only when
R(Ond(σ)) does not wind around the torus and R(O(σ)) does, so that from (5.3) we deduce that
there exists only one column or row with less than L/2 particles, but this contradicts the fact that
σ /∈ Cib(e, o).

Subcase (3). By arguing as in case (i-3) above, we deduce that this case is not possible.
Case (iii). Suppose by contradiction that there exists a non-backtracking path ω′ ∈ (e → o)opt
that crosses that crosses σ ∈ Vm∗ \ Cmb(e, o) such that both R(Ond(σ)) and R(O(σ)) wind around
the torus. We observe that (5.3) holds for the configuration σ and therefore it contains at least one
odd non-degenerate cluster and it cannot contain only degenerate clusters. Thus, we consider the
following subcases:

(1) O(σ) consists of at least two non-degenerate odd clusters;

(2) O(σ) consists of a single non-degenerate odd cluster different from RL
2 −1, L

2 −1 and possibly some
degenerate clusters;

(3) O(σ) consists of a single non-degenerate odd rhombus equal to RL
2 −1, L

2 −1 and at least one
degenerate odd cluster R0,0 at distance greater than one from the non-degenerate one.

Subcase (1). Suppose that σ contains k ≥ 2 non-degenerate clusters C1(σ), ..., Ck(σ). If the
rhombus surrounding Ci(σ) does not wind around the torus for any i = 1, ..., k, we can argue as in
case (i-1) above. Otherwise, suppose that there exists an index i such that R(Ci(σ)) winds around
the torus. Thus, there exists at least one row or column that contains L

2 particles, say a column. Since
k ≥ 2, this implies that there exists a row containing two odd particles which belong to Ci(σ) and
another disjoint cluster. Thus, the energy difference contribution ∆H along this row or column is at
least two. In addition, all the other L rows or columns composing Ci(σ) have an energy contribution
of at least one. Thus, the total contribution is ∆H(σ) > 2 + L − 1 = L + 1, where the strict inequality
follows from k ≥ 2. This contradicts the assumption ∆H(σ) ≤ L + 1 and therefore this case is not
admissible.

Subcase (2). By arguing as in case (i-2) above, we deduce that this case is possible only when
both R(Ond(σ) and R(O(σ) wind around the torus, so that from (5.3) we deduce that there exists
at least one column or row with strictly less than L/2 particles, but this contradicts the fact that
σ /∈ Cmb(e, o).

Subcase (3). By arguing as in case (i-3) above, we deduce that this case is not possible.
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6 Conclusions and future work
This work concludes the analysis of the metastable behavior for the hard-core model on a square grid
graph with periodic boundary conditions initiated by [37]. In that paper, this interacting particle
system was shown to have two stable states and the energy barrier between them was already identified.
However, the argument carried out in that paper did not provide any geometrical insight into the
typical trajectories in the low-temperature regime and did not characterize the critical configurations.
The goal of this paper was precisely to fill this gap. More precisely, we provide the geometrical
description of all the essential saddles for this transition and we highlight how these communicate
with each other without exceeding the critical energy barrier.

The extension to other types of lattices naturally arises in this context. Indeed, in [45] the
authors investigate the same model on the triangular lattice studying the asymptotic behavior of
the transition times between stable states but without providing any information on the critical
configurations. The type of analysis carried out in this paper could be useful to tackle that problem,
even if it looks more challenging since there are three stable states and isoperimetric inequalities
are probably harder to derive. This will be the focus of future work. Another possible direction
could be the study of the metastable behavior of the hard-core model on square grid graphs but with
different boundary conditions or in the presence of some impurities. However, in this case, we expect
the transition between two stable states to most likely occur by heterogeneous nucleation starting
from the boundary, hence breaking the intrinsic symmetry and translation-invariance properties of
the critical configurations. On the other hand, we expect that the techniques and the machinery
developed in this paper to be useful to identify critical configurations also of other interacting particle
systems on finite square lattices with similar blocking effects, e.g., the Widom-Rowlinson model [44].

Appendix A
Proof of Lemma 3.1. We start by proving (i). Given 0 ≤ k∗

1 ≤ ℓ1 and ℓ2 + 1 ≤ j∗
1 ≤ L − 1, we want

to show that there exists 0 ≤ k∗
2 ≤ ℓ1 and 0 ≤ j∗

2 ≤ ℓ2 such thatk∗
1 + j∗

1 = k∗
2 + j∗

2 (mod L),
k∗

1 − j∗
1 = k∗

2 − j∗
2 (mod L).

(A.1)

The choice j∗
2 = j∗

1 + L/2 (mod L) and k∗
2 = k∗

1 + L/2 (mod L) implies the claim in (i), since the
chosen indices j∗

2 and k∗
2 satisfy (A.1) and they are modulo L such that

j∗
2 ≥ ℓ2 + 1 + L

2 ≥ 1,

j∗
2 ≤ L − 1 + L

2 ≤ ℓ2 − 1,

k∗
2 ≥ L

2 ,

k∗
2 ≤ ℓ1 + L

2 ≤ L
2 − 2 ≤ ℓ1 − 2.

By interchanging the role of k∗
1 and k∗

2 and arguing in the same way, the proof of (i) is concluded.
The two inclusions stated in (ii) can be proved by arguing in an analogous way.

Proof of Lemma 3.2. In this proof, all the sums will be tacitly assumed to be taken modulo L. Denote
η = (η1, η2) ∈ Vo. We analyze separately each case.
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Case (i). Considering Sℓ1,ℓ2(η) ⊂ Vo and ∂+Sℓ1,ℓ2(η) ⊂ Ve, we observe that

V \ Rℓ1,ℓ2(η) = V \ {Sℓ1,ℓ2(η) ∪ ∂+Sℓ1,ℓ2(η)}
= {Vo ∪ Ve} \ {Sℓ1,ℓ2(η) ∪ ∂+Sℓ1,ℓ2(η)}
= {Vo \ {Sℓ1,ℓ2(η) ∪ ∂+Sℓ1,ℓ2(η)}} ∪ {Ve \ {Sℓ1,ℓ2(η) ∪ ∂+Sℓ1,ℓ2(η)}}
= {Vo \ Sℓ1,ℓ2(η)} ∪ {Ve \ ∂+Sℓ1,ℓ2(η)}. (A.2)

Thus, we want to show that the two subsets are equal to Sl̂1,l̂2
(η̂) and ∂+Sl̂1,l̂2

(η̂) for some 0 ≤ l̂1, l̂2 ≤
L − 1 and η̂ ∈ Ve. In addition, we may write

Ve =
⋃

0≤k′, j′≤L−1
{(k′ + j′, k′ − j′)} (A.3)

and
∂+Sℓ1,ℓ2(η) =

⋃
0≤k≤ℓ1
0≤j≤ℓ2

{(η1 + k + j − 1, η2 + k − j)}. (A.4)

Thus, we have

Ve \ ∂+Sℓ1,ℓ2(η) =
⋃

0≤k′,j′≤L−1
{(k′ + j′ + η1 − 1, k′ − j′ + η2)} \

⋃
0≤k≤ℓ1
0≤j≤ℓ2

{(η1 + k + j − 1, η2 + k − j)}

=
⋃

ℓ1+1≤k̃≤L−1
ℓ2+1≤j̃≤L−1

{(k̃ + j̃ + η1 − 1, k̃ − j̃ + η2)}

=
⋃

0≤k̂≤L−ℓ1−2
0≤ĵ≤L−ℓ2−2

{(k̂ + ĵ + ℓ1 + ℓ2 + 2 + η1 − 1, k̂ − ĵ + ℓ1 − ℓ2 + η2}, (A.5)

where at the second equality we used Lemma 3.1(i) and at the last equality we used the change of
variables k̂ = k̃ − (ℓ1 +1) and ĵ = j̃ − (ℓ2 +1). Now, we consider η̂ = (ℓ1 + ℓ2 +1+η1, ℓ1 − ℓ2 +η2) ∈ Ve
and we obtain

Ve \ ∂+Sℓ1,ℓ2(η) =
⋃

0≤k̂≤L−ℓ1−2
0≤ĵ≤L−ℓ2−2

{(k̂ + ĵ + η̂1, k̂ − ĵ + η̂2)} (A.6)

Thus, we have Ve \ ∂+Sℓ1,ℓ2(η) = SL−ℓ1−1,L−ℓ2−1(η̂) ⊆ Ve. By arguing as above, we prove that
Vo \ Sℓ1,ℓ2(η) = ∂+SL−ℓ1−1,L−ℓ2−1(η̂) ⊆ Vo.
Case (ii). Without loss of generality we may assume ℓ1 = min{ℓ1, ℓ2}. For η = (η1, η2) ∈ Ve, by
using (A.3) and (3.11), we have

Ve =
⋃

0≤k≤ℓ1
0≤j≤L−1

{(k + j + η1, k − j + η2)} ∪
⋃

ℓ1+1≤k≤L−1
0≤j≤L−1

{(k + j + η1, k − j + η2)}

=
⋃

0≤k≤ℓ1
0≤j≤L−1

{(k + j + η1, k − j + η2)} = ∂+Sℓ1,L−1(η). (A.7)

Thus, it follows that all the even sites belong to the rhombus Rℓ1,ℓ2(η). In addition, by using (3.12)
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we obtain

Sℓ1,L−1(η) =
⋃

0≤k≤ℓ1−1
0≤j≤L−2

{(η1 + k′ + j′, η2 + k′ − j′)}

=
⋃

0≤k≤ L
2 −1

0≤j≤L−2

{(η1 + k + j, η2 + k − j)} ∪
⋃

L
2 ≤k≤ℓ1−1
0≤j≤L−2

{(η̂1 + k + j, η̂2 + k − j)}

=
⋃

0≤k≤ L
2 −1

0≤j≤L−2

{(η1 + k + j, η2 + k − j)} ∪
⋃

L/2≤k≤ℓ1−1
{(η̂1 + k, η̂2 + k)}. (A.8)

Thus, we deduce that the rhombus Rℓ1,L−1(η) contains L2/2 − L + ℓ1 odd sites, which implies that
its complement in V contains L − ℓ1 odd sites.
Case (iii). Without loss of generality we may assume ℓ1 = min{ℓ1, ℓ2}. In this case, after using the
same argument we have shown above, for some η̂ = (η̂1, η̂2) ∈ Vo we obtain that

Vo \ Sℓ1,L(η) =
⋃

ℓ1≤k≤ L
2 −1

0≤j≤L−1

{(η̂1 + k + j, η̂2 + k − j)} (A.9)

and
Ve \ ∂+Sℓ1,L(η) =

⋃
ℓ1+1≤k≤ L

2 −1
0≤j≤L−1

{(η̂1 + k + j − 1, η̂2 + k − j)}. (A.10)

This implies that the rhombus Rℓ1,L(η) contains L ℓ1 odd sites and L(ℓ1 + 1) even sites.
Case (iv). By arguing as above, we can show that the complement of the rhombus Rℓ1,ℓ2(η) in V
has no even and odd sites and therefore Rℓ1,ℓ2 ≡ V .
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