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Abstract
In this paper, we consider a stochastic model for a frequency-agile CSMA protocol for
wireless networks where multiple orthogonal frequency channels are available. Even
when the possible interference on the different channels is described by different con-
flict graphs, we show that the network dynamics can be equivalently described as that
of a single-channel CSMA algorithm on an appropriate virtual network. Our focus is
on the asymptotic regime in which the network nodes try to activate aggressively in
order to achieve maximum throughput. Of particular interest is the scenario where the
number of available channels is not sufficient for all nodes of the network to be simul-
taneously active and the well-studied temporal starvation issues of the single-channel
CSMA dynamics persist. For most networks, we expect that a larger number of avail-
able channels should alleviate these temporal starvation issues. However, we prove
that the aggregate throughput is a non-increasing function of the number of available
channels. To investigate this trade-off that emerges between aggregate throughput and
temporal starvation phenomena, we propose an analytic framework to study the tran-
sient dynamics of multi-channel CSMA networks by means of first hitting times. Our
analysis further reveals that the mixing time of the activity process does not always
correctly characterize the temporal starvation in the multi-channel scenario and often
leads to pessimistic performance estimates.
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1 Introduction

The carrier-sensemultiple-access (CSMA) algorithm is a popular distributedmedium-
access control mechanism, various incarnations of which are currently implemented
in IEEE 802.11 WiFi networks. CSMA is a random-access algorithm, in the sense
that it relies on randomness to both avoid simultaneous transmissions and share the
medium in the most efficient way. Being intrinsically a randomized scheme, many
stochastic models have been developed in the literature to study its performance in
terms of throughput, stability, delay, and spatial fairness (see, for example, [27] and
references therein for a detailed overview).

It is well known that the delay performance of CSMA algorithms can be rather
poor and much worse than for other mechanisms, such as MaxWeight. One of the
root causes for these poor delay performances has been identified in the temporal
starvation phenomenon: Even in scenarios where all nodes have a good long-term
throughput, theymay individually experience long sequences of transmissions in rapid
succession, interspersed with extended periods of starvation. These starvation effects
are particularly pronounced when the nodes become more aggressive in trying to
activate, which is the regime in which the network should operate to achievemaximum
throughput.

Most of the literature focuses on single-channel CSMA algorithms, in which all
the transmissions occur on the same frequency. In this paper, we consider the natural
generalization in which multiple orthogonal frequency channels are available; various
variations of this multi-channel CSMA model have been studied in [1,2,4,5,20,22,
23]. Our ultimate goal is understanding whether temporal starvation effects can be
effectively mitigated by the usage of multiple channels, as suggested in [20].

In order to make a fair comparison, we do not assume that additional channels can
be added to the existing one, but rather that the total available wireless spectrum can
be divided into C non-overlapping channels with smaller capacity on which nearby
nodes can transmit without interfering with each other. In this way, at the cost of a
potentially lower throughput, the starvation effects in the network can be alleviated or
even eliminated and in thisway obtain substantial improvements in delay performance.
The aim of the present paper is to investigate this non-trivial trade-off, and for this
reason we analyze the aggregate throughput of multi-channel CSMA networks and
develop an analytic framework for quantifying temporal starvation effects for these
networks.

Temporal starvation in the context of multi-channel CSMA networks has been
mostly studied by means of mixing times [20]. The large majority of these results,
however, assumes either that the activation rate is very small or that there are enough
channels for all the nodes to be active simultaneously, so that existing results for multi-
colorGlauber dynamics can be exploited. The first crucial difference of our approach is
that we are mostly interested in the scenario in which the number of available channels
does not allow simultaneous activity of all the nodes. This creates complex network
dynamics in which nodes still compete for transmission, and phenomena like temporal
starvation and spatial unfairness persist.

Mixing times have often been successfully used to study performances of
single-channel CSMA-like algorithms [7,8,11,12,14–16,20,24,25,28]. However, in
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the present paper, instead of focusing on mixing times, inspired by [18], we study
temporal starvation by means of hitting times of the Markov process describ-
ing the CSMA dynamics, which, as we will show later, enable a more accurate
performance evaluation analysis than mixing times in the multi-channel sce-
nario.

We focus on the regime in which the activation rate grows large, in which the
CSMA dynamics favor the activity states with a maximum number of active nodes, to
which we will refer as dominant states. These activity states play a crucial role in our
analysis, since the timescales at which transitions between them occur are intimately
related to the magnitude of the temporal starvation effects.

Our contributions can be summarized as follows:

– We show that the multi-channel CSMA dynamics can be represented as single-
channel CSMA dynamics on an appropriate virtual network, even when the
possible interference on the different channels is described by different conflict
graphs. This equivalent representation allows us to immediately derive the station-
ary distribution of multi-channel CSMA dynamics and to prove its insensitivity to
back-off and transmission time distributions.

– We prove various properties of the asymptotic aggregate throughput and, in par-
ticular, that is a non-increasing function of the number C of available channels.

– We show how temporal starvation can be evaluated in the high-activation limit
by studying the expected transition times between the dominant activity states.
Furthermore, we characterize the timescale of temporal starvation phenomena in
terms of the structure of the state space of the Markov process describing the
CSMA dynamics.

– We analyze the mixing time of multi-channel CSMA dynamics using the same
framework built to study the transition times between dominant states. Our anal-
ysis suggests that in the high-activation regime the mixing time does not always
correctly characterize the temporal starvation timescale in multi-channel CSMA
networks, often leading to pessimistic performance estimates.

– By means of various counterexamples, we show that many desirable properties
and performance indices are not monotone in the number C of available channels,
revealing the difficulty of finding analytically the best trade-off between throughput
and temporal starvation effects.

The rest of the paper is organized as follows: The CSMA network models for both
the single-channel and multiple-channel case are described in Sect. 2. The equivalent
representation for multi-channel CSMA networks is presented in Sect. 3. In Sect. 4,
we introduce the notion of dominant activity states and derive the properties of the
aggregate throughput. We show in Sect. 5 how we characterize temporal starvation by
looking at asymptotic results for transition times between dominant states and relate
it to structural properties of the underlying state space. Section 6 is entirely devoted to
mixing times and to their relation with the worst temporal starvation timescale. Lastly,
in Sect. 7 we discuss some generalizations of our model and show how our framework
extends to them.
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2 Model description

In this section, we introduce the stochastic models that describe the dynamics of
random-access networks operating according to CSMA-like algorithms. We present
first the model for the case of the single-channel CSMA algorithm and later its gen-
eralization to the multi-channel scenario. The two models are presented separately
for notational convenience, especially since in the next section we will show how the
multi-channel model has an equivalent representation as single-channel model.

2.1 Single-channel CSMA network

Weconsider a network of transmitter–receiver pairs sharing awirelessmediumaccord-
ing to a CSMA-type algorithm. A node indicates potential data transmission between
a transmitter and a receiver.

Every node can be either active or inactive, depending on whether the data trans-
mission is ongoing or not. We assume that the network consists of N such nodes, so
that the network activity state can then be described by an N -dimensional vector x ,
where xi = 1 if node i is active and xi = 0 otherwise.

We assume that the network structure and interference conditions can be described
by means of an undirected finite graph G = (V , E), called the conflict graph, where
the set of vertices V = {1, . . . , N } represents the nodes of the network and the set
of edges E ⊆ V × V indicate which pairs of nodes cannot be active simultaneously.
Therefore, neighboring nodes in the conflict graph are prevented from simultaneous
activity by the carrier-sensing mechanism.

We focus on the scenario where nodes are saturated, whichmeans that nodes always
have packets available for transmission; this particularly relevant in high-load regimes.
The transmission times of node i are independent and exponentially distributed with
mean 1/μi . When the transmission of a packet is completed, node i deactivates (i.e.,
releases the medium) and starts a back-off period. The back-off periods of node i are
independent and exponentially distributed with mean 1/νi . At the end of each back-off
period, node i activates (i.e., starts the transmission of a new packet) if and only if all
its neighboring nodes in G are currently inactive.

Let X ⊆ {0, 1}N be the set of all feasible joint activity states of the network. Since
the interference is modeled by the conflict graphG, the setX consists of the incidence
vectors of all independent sets of the conflict graph G:

X :=
{
x ∈ {0, 1}N : xi x j = 0 ∀ (i, j) ∈ E

}
.

If we let X(t) ∈ X denote the network activity state at time t , then theCSMAdynamics
are described by a continuous-time Markov process {X(t)}t≥0 on the state space X
with transition rates between x, y ∈ X given by

q(x, y) :=

⎧⎪⎨
⎪⎩

νi if y = x + ei ∈ X ,

μi if y = x − ei ∈ X ,

0 otherwise,
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where ei ∈ {0, 1}N is the vector with all zeros except for a 1 in position i . The Markov
process {X(t)}t≥0 is reversible [6] and has a product-form stationary distribution

π(x) := Z−1
N∏
i=1

( νi

μi

)xi
, x ∈ X , (1)

where Z is the normalizing constant

Z :=
∑
x∈X

N∏
i=1

( νi

μi

)xi
.

Stationary distribution (1) is insensitive to the distributions of back-off periods and
transmission times, in the sense that it depends on these only through their averages
1/νi and 1/μi , as proved in [26]. Hence, (1) holds in fact for general back-off and
transmission time distributions.

2.2 Multi-channel CSMA network

In this paper, we consider a generalization of the saturated single-channel CSMA
model described in Sect. 2.1 where each node can sense the interference and transmit
on any of the C available channels, but at most on one at a time. We assume that for
every c = 1, . . . ,C all possible conflicts between nodes on channel c are described by
a conflict graph Gc = (V , Ec). Node i in the network has a different back-off timer
for each of the C available channels and we model these timers as C independent
Poissonian clocks, ticking at rates νi,1, . . . , νi,C . When the first of these C clocks
rings for an inactive node, the node senses the corresponding channel, say c, and starts
transmitting on it if and only if the neighboring nodes of i in Gc are not active on
the same channel. The transmission times of node i on channel c are independent and
exponentially distributed with mean 1/μi,c.

A network activity state is described by a vector x ∈ {0, 1, . . . ,C}N , where xi = 0
if node i is inactive and xi = c if node i is active on channel c, with 1 ≤ c ≤ C .
Let XC be the collection of feasible network activity states, which consists of all the
vectors x ∈ {0, 1, . . . ,C}N such that, for every c = 1, . . . ,C , two neighboring nodes
in Gc are not simultaneously active on channel c, i.e.,

XC := {x ∈ {0, 1, . . . ,C}N : ∀ c ∀ (i, j) ∈ Ec, xi x j = 0 or xi �= x j }. (2)

If the vector XC (t) ∈ XC describes the activity state of the network at time t , then
{XC (t)}t≥0 is a Markov process on the state space XC with transition rates between
x, y ∈ XC given by

qC (x, y) =

⎧⎪⎨
⎪⎩

νi,c if y = x + c · ei ∈ XC ,

μi,c if y = x − c · ei ∈ XC ,

0 otherwise.

(3)
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Later, we will briefly discuss a generalization of this multi-channel CSMA model in
which each node can possibly be simultaneously active on more than one channel and
discuss which of our results extend to this setting (see Sect. 7).

3 An equivalent representation for multi-channel CSMA networks

In this section, we argue that the evolution of a network using a multi-channel CSMA
algorithm can be equivalently described as a virtual network operating under the
single-channel CSMA algorithm on a modified conflict graph G∗.

Consider the undirected graph G∗ = (V ∗, E∗) with vertex set V ∗ := V ×
{1, . . . ,C}, where two nodes (i, c) and (i ′, c′) are adjacent if and only if

{
c �= c′,
i = i ′,

or

{
c = c′,
(i, i ′) ∈ Ec.

To avoid confusion with the original nodes, we refer to the nodes of G∗ as virtual
nodes. The activity state of the virtual network is then represented by a 0-1 vector of
length C · N and we denote by X ∗ ⊂ {0, 1}C ·N the set of admissible virtual activity
states on G∗.

Define the function V : X ∗ → XC that maps a virtual network state x ∈ X ∗ to the
network state V(x) ∈ XC such that, for every i = 1, . . . , N ,

V(x)i =
{
c if ∃ c s.t. x(i,c) = 1,

0 otherwise.

The function V is well defined, since for every c �= c′ the virtual nodes (i, c) and
(i, c′) are neighbors in G∗, and thus only one of them can be active. Furthermore, it
is easy to check that V is a bijection, from which the following lemma immediately
follows.

Lemma 1 The collection X ∗ of activity states on the virtual network G∗ is in one-
to-one correspondence with the collection XC of multi-channel activity states on G
introduced in (2).

Suppose further that the C · N virtual nodes in G∗ operate using the single-channel
CSMA algorithm described in Sect. 2.1, assuming that the virtual node (i, c) has back-
off periods that are exponentially distributedwithmean1/νi,c and transmission periods
that are exponentially distributed with mean 1/μi,c. The virtual network activity then
evolves as a continuous-time Markov process on X ∗, which we denote by {X̃(t)}t≥0.

It is easy to check that the transition rate between any two virtual network states
x, y ∈ X ∗ is the same as the transition rate given in (3) between the multi-channel
activity states V(x),V(x) ∈ XC . Hence, the processes {XC (t)}t≥0 and {X̃(t)}t≥0 are
two representations of the sameMarkovian dynamics, and if XC (0) = V(X̃(0)), then

XC (t)
d=V(X̃(t)), ∀ t ≥ 0.
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This equivalent representation can be used in combination with (1) to obtain the sta-
tionary distribution πC of the multi-channel activity process {XC (t)}t≥0, as illustrated
by the following proposition.

Proposition 1 The multi-channel network activity process {XC (t)}t≥0 has product-
form stationary distribution

πC (x) = Z−1
N∏
i=1

C∏
c=1

(
νi,c

μi,c

)1{xi=c}
, x ∈ XC , (4)

where Z is the appropriate normalizing constant.

We remark that multi-channel CSMA dynamics were already shown in [5] to have a
product-form distribution and, in the special case where the interference is described
by the same conflict graph on every channel E1 = · · · = EC , also in [23]. Our proof
approach based on this equivalent representation recovers the same result in the most
general case and immediately shows that the insensitivity property carries over to the
stationary distribution (4) of the multi-channel CSMA dynamics, which thus holds for
general back-off and transmission time distributions.

4 Dominant states and aggregate throughput

In this section,we studyhow the number of channelsC affects the performance in terms
of aggregate throughput. While increasing the number of channels evidently provides
greater transmission opportunities, the net impact on throughput performance is non-
obvious since the transmission capacity per channel is inversely proportional to the
number of channels.

Consider a multi-channel CSMA network as described in Sect. 2.2 and assume
further that each of these channels has capacity 1/C and that all the nodes have
homogeneous activation and transmission rates, namely

νi,c ≡ ν and μi,c ≡ μ ∀ c = 1, . . . ,C, ∀ i = 1, . . . , N .

Without loss of generality, we henceforth also assume that μ = 1. The stationary
distribution (4) of the activity process {XC (t)}t≥0 then reads

πC (x) = Z−1
N∏
i=1

ν1{xi �=0} = Z−1νa(x), x ∈ XC , (5)

where a(x) := ∑N
i=1 1{xi �=0} is the number a(x) of active nodes in x , regardless of

the channels they are active on. As (5) shows, when ν > 1, the stationary probability
of an activity state x ∈ XC increases with its cardinality in an exponential fashion.

Define A(C) to be the maximum number of active nodes in the conflict graph G
when C channels are available, i.e.,

A(C) := max
x∈XC

∑
i∈V

1{xi �=0} = max
x∈XC

a(x).
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In this regime, the stationary distribution (5) favors the activity states with a maximum
number of active nodes. We refer to such activity states as dominant (activity) states
and denote by DC their collection, i.e.,

DC := arg max
x∈XC

a(x) = {x ∈ XC : a(x) = A(C)}.

In the rest of the section,we assume further that the same conflict graphG = (V , E)

describes the interference on all C channels, allowing us to draw a parallel between
network activity states and colorings of the graph G.

In order to characterize the dominant states of a multi-channel CSMA network, we
need some further definitions. A vertex coloring of the graph G is a labeling of the
graph’s vertices with colors such that no two vertices sharing the same edge have the
same color. A (proper) C-coloring is a vertex coloring using at most C colors (see,
for example, [3,9]). The smallest number of colors needed to color a graph G is called
its chromatic number and is denoted by χ(G).

If C = 1, we are back in the single-channel scenario and the activity states are in
one-to-one correspondence with the independent sets of the graph G. In particular,
A(1) is equal to the cardinality α(G) of the maximum independent set on G, often
referred to as the independence number of the graph G.

ForC ≥ 2, we showed in Sect. 3 that themulti-channel activity onG is equivalent to
the single-channel activity on the virtual network G∗. Since we assumed E1 = . . . =
EC , the virtual network G∗ is the Cartesian product of G and the complete graph with
C nodes. In this scenario A(C) = α(G∗), where α(G∗) is the independence number
of the graph G∗, as proved in [3, Lemma 1].

If the number of available channels in a CSMA network is larger than or equal to
the chromatic number of the corresponding conflict graph, i.e., C ≥ χ(G), then every
proper C-coloring of the graph G corresponds to a dominant state for the network
dynamics and, in particular, A(C) = N .

If insteadC < χ(G), by the definition of the chromatic number, a properC-coloring
of the graph G does not exist and, in particular, there are no admissible activity states
where all nodes are active. All admissible activity states correspond to partial C-
colorings of the graph G. However, the problem of finding the maximum number of
nodes that can be active simultaneously in a general conflict graph G with C available
channels is non-trivial, since it is at least as hard as finding the maximum independent
sets of G∗.

Since nodes are saturated, the throughput θi (C) of node i is proportional to the
long-run fraction of time that node i is active and can be expressed as

θi (C) := 1

C

∑
x∈XC

πC (x)1{xi �=0}, (6)

where the constant 1/C accounts for the fact that each channel has capacity 1/C .
Being a function of the stationary distribution, the throughput is also insensitive to the
distributions of the back-off and transmission times.

We analyze the aggregate throughput Θ(C) of a multi-channel CSMA network
with C available channels in the asymptotic regime where the activation rate ν grows
large, defined as
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Θ(C) := lim
ν→∞

∑
i∈V

θi (C) = lim
ν→∞

∑
i∈V

1

C

∑
x∈XC

πC (x)1{xi �=0}.

Even if it may be infeasible to calculate A(C) for a given random-access network
using C channels, some conclusions for its aggregate throughput Θ(C) can still be
drawn, as illustrated by the following theorem.

Theorem 1 (Aggregate throughput) The following statements hold for the aggregate
throughput Θ(C) of a multi-channel CSMA network where the same conflict graph
G = (V , E) describes the interference on all C channels:

(i) Θ(C) = A(C)/C for every C ≥ 1;
(ii) Θ(C) = α(G) for every 1 ≤ C ≤ C∗(G), where C∗(G) is the number of disjoint

maximum independent sets of the graph G;
(iii) Θ(C) = N/C for every C ≥ χ(G);
(iv) Θ(C) is a non-increasing function of the number of channels C.

Proof Thedefinitionof a dominant state and (5) together yield that
∑

x∈DC
πC (x) → 1

as ν → ∞, and thus,

Θ(C) = lim
ν→∞

∑
i∈V

1

C

∑
x∈XC

πC (x)1{xi �=0}

= 1

C
lim

ν→∞
∑
x∈XC

πC (x)
∑
i∈V

1{xi �=0}

= A(C)

C
lim

ν→∞
∑
x∈DC

πC (x)

= A(C)

C
.

Asmentioned earlier, whenC ≥ χ(G) there exists a properC-coloring of the graphG,
whichmeans all nodes can be simultaneously active and thusA(C) = N . Furthermore,
it is easy to prove by induction thatA(C) = C ·α(G) for every C ≤ C∗(G). To prove
(iv), we will show that the following inequality holds:

A(C + 1)

C + 1
≤ A(C)

C
, ∀C ≥ 1.

The inequality trivially holds whenC ≥ χ(G), sinceA(C) = N . The proof in the case
C ≤ χ(G) readily follows by considering a (C + 1)-coloring that yields A(C + 1);
pick the color that is used the least and discolor the corresponding nodes, which are at
most �A(C+1)

C+1 �, obtaining a C-coloring withA(C + 1) − �A(C+1)
C+1 � ≥ C

C+1A(C + 1)
colored nodes.Using this newly obtainedC-coloring,we immediately get thatA(C) ≥
C

C+1A(C + 1). ��
In view of the fact thatΘ(C) is a non-increasing function of the number of channels

C , it seems that the network should be operated using a single channel, but this is also
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Fig. 1 Example of a network and its dominant states withC = 1 andC = 2 channels available, respectively

the scenario where temporal starvation phenomena and spatial unfairness are often
more pronounced.

Jain’s fairness index [13] is often used as a fairness measure in the context of
random-access algorithms, and we consider here its asymptotic counterpart J (C) in
the high-activation limit ν → ∞, i.e.,

J (C) := lim
ν→∞

(∑N
i=1 θi (C)

)2

N
∑N

i=1 θi (C)2
.

One may conjecture that a larger number of available channels should always reduce
the spatial unfairness in the network. This is indeed true for many conflict graphs, but
does not hold in general. Figure 1 shows a particular example of a network in which
by adding an additional channel, the spatial unfairness worsens as J (2) < J (1).

As far as temporal starvation is concerned, we expect that by exploiting more chan-
nels the temporal starvation effects canbemitigated.However,making this dependence
more explicit is a challenging task, since the structure of the conflict graph plays a
crucial role via the parametric familyDC of dominant activity states. In general, a non-
trivial trade-off emerges between the magnitude of temporal starvation effects and the
aggregate throughput that the network can achieve, and a balance can be found using
a number of channels in the range between 1 and χ(G).

5 Temporal starvation evaluation via transition times

In this section, we introduce a framework to study and quantify temporal starvation
effects in multi-channel CSMA networks in the high-activation regime ν → ∞.
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When the activation rate grows large, the network spends roughly the same fraction
of time in each dominant state. However, it takes a long time for the activity process to
move from one dominant state to the other, since such a transition involves the occur-
rence of rare events. Indeed, intuitively, the activity process must follow a transition
path through some activity states with fewer active nodes which are highly unlikely
in view of (5) and the time to reach such activity states is correspondingly long.

We study the transitions between dominant states in terms of first hitting times of
the activity process {XC (t)}t≥0. In the limit ν → ∞, the asymptotic behavior of the
transition time between any pair of dominant states can be characterized exactly on a
logarithmic scale by studying structural properties of the state space XC .

The main idea of our method is inspired by the concept of “traps” of the state space
introduced in the context of single-channel CSMA networks in [17,18]. Traps are
essentially subsets of activity states where the activity process remains for a long time
before leaving. By focusing on the asymptotic regime ν → ∞, we can restrict our
analysis only to the traps corresponding to dominant states and, moreover, characterize
the timescale of the transitions between themwithout the need of a detailed description
of the structure of these traps.

In this section, we consider the multi-channel CSMA dynamics with homogeneous
rates as in Sect. 4, but here we do not need to assume that the interference structure on
different channels is described by the same conflict graph G. Note that the assumption
of homogeneous rates across different nodes and channels is not crucial, and, in fact,
it can be relaxed, but to keep the exposition simple we do not present here the general
case and the interested reader is referred to Sect. 7, where we illustrate also other
generalizations of our model for which this framework is still valid.

Let τx,A(ν) := inf{t > 0 : XC (t) ∈ A} be the first hitting time of the subset
A ⊂ XC for the Markov process {XC (t)}t≥0 starting in x at t = 0. For any x, y ∈ XC ,
we say that ω ⊂ XC is a path from x to y in XC and denote it by ω : x → y, if
ω is a finite sequence of states ω1, . . . , ωn ∈ XC such that ω1 = x , ωn = y and
the CSMA dynamics allow the step from ωi to ωi+1 for every i = 1, . . . , n − 1.
The communication height between two states x, y ∈ XC is the minimum number of
nodes (with respect to that of any dominant state) that need to become simultaneously
inactive at some point along any path from x to y, i.e.,

Δ(x, y) := min
ω:x→y

max
z∈ω

(A(C) − a(z)). (7)

Both the notions of a path and communication height naturally extend to the case of
two subsets A, B ⊂ XC .

The communication height is a crucial quantity in our analysis since in the regime
ν → ∞ the most likely trajectories from x to y are precisely those that achieve the
min–max in (7). Indeed, all the other trajectories ω : x → y will visit at some point
an activity state with fewer active nodes which is thus correspondingly more rare in
view of (5). The communication height Δ(·, ·) defines an ultrametric on XC , since

1. Δ(x, y) ≥ 0 and equality holds if and only if x = y;
2. Δ(x, y) = Δ(y, x);
3. Δ(x, y) ≤ max{Δ(x, z),Δ(z, y)}.
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The second statement in property (1) holds since if x �= y at every step of the CSMA
dynamics, the number of active nodes must either increase or decrease by 1 and cannot
stay constant along any path from x to y and, hence, Δ(x, y) > 0.

For any a ∈ R
+, we denote by logν a the logarithm in base ν. Since most of

the results are in the limit ν → ∞, we will henceforth assume that ν > 1, so that
logν(·) is a strictly increasing function from R

+ to R. The next theorem shows that
the communication height Δ(s, D) between a dominant state s ∈ DC and a subset
D ⊆ DC\{s} completely characterizes on a logarithmic scale the expected transition
time from s to D in the limit ν → ∞.

Theorem 2 (Timescale of transitions between dominant states) For every dominant
state s ∈ DC and target subset D ⊆ DC\{s} of dominant states different from s, the
following asymptotic equality holds:

lim
ν→∞ logν Eτs,D(ν) = Δ(s, D) − 1.

The proof of this result is presented in Sect. 5.1. We now illustrate how Theorem 2
allows us to identify the longest timescale for which each node of the network starves.
For each node i ∈ V , let SC (i) := {s ∈ DC : si �= 0} be the subset of dominant states
in which node i is active. It is natural to study the temporal starvation only for the
nodes which are active in at least one dominant state, i.e., SC (i) �= ∅, and that are not
active in every dominant state, i.e., SC (i) �= DC . For every such node i , we define its
starvation index as

Υi (C) := max
s∈DC\SC (i)

min
s′∈SC (i)

Δ(s, s′). (8)

From property (1) of the communication heights, it immediately follows that Υi (C) ≥
1.We choose not to define the starvation index of the nodes i ∈ V such thatSC (i) = ∅,
since these nodes do not properly suffer from temporal starvation, since they perma-
nently starve in the limit ν → ∞, having asymptotically zero throughput. Similarly,
Υi (C) is not defined for any node i that is active in every dominant state of the net-
work, i.e., SC (i) = DC , since any such node i does not starve in view of the fact that∑

x∈XC
πC (x)1{xi �=0} → 1 as ν → ∞.

The starvation index Υi (C) captures the largest timescale at which node i suffers
from temporal starvation at stationarity in the high-activation regime ν → ∞. Indeed,
Υi (C) characterizes on a logarithmic scale how long it takes the activity process to
reach the subset SC (i) of dominant states where node i is active when starting in the
worst possible dominant state in DC\SC (i), as illustrated by the following identity:

lim
ν→∞ logν

(
max

s∈DC\SC (i)
Eτs,SC (i)(ν)

)
= Υi (C) − 1.

Lastly, we define the starvation index of the network as the worst starvation index of
its nodes, i.e.,

Υ (C) := max
i∈V :SC (i) �=∅,DC

Υi (C). (9)

The index Υ (C) is a non-increasing function of the number of available channels
for all networks of which we analyzed numerically the corresponding state spaces
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Fig. 2 Example of a network with the unique dominant state s(1) ∈ D1 (on the left) and two dominant
states s(2), s(3) ∈ D2 (in the middle and on the right). In particular, the dominant state s(2) is not a superset
of the dominant state s(1)

X1, . . . ,Xχ(G)−1. However, proving this claim analytically is challenging in view of
the intricate nature of the dominant states. Indeed, dominant states in DC+1 are not
necessarily obtained from dominant states inDC by activating a maximum number of
inactive nodes on the (C+1)-th channel, as illustrated for the network in Fig. 2. Hence,
there is no simple relation between the setsDC andDC+1 nor any other “monotonicity
property” that one could leverage. In particular, this means that the maximum in (9)
may have to possibly be taken over different and/or non-nested subsets of nodes when
increasing C .

5.1 Asymptotics for transition times between dominant states

This subsection is devoted to theproof ofTheorem2.Wefirst introduce theuniformized
discrete-time version of the activity process, whichwill allow us to use classical results
for expected hitting times of reversibleMarkov chains and their analogywith electrical
networks (see, for example, [10, Section 2.1] and references therein).

In this subsection, we will almost entirely suppress the subscript C for nota-
tional compactness, but the reader should keep in mind that the results hold for
general multi-channel CSMA dynamics as described in Sect. 2.2. We consider the
uniformized discrete-time version of the activity process {XC (t)}t≥0. In more detail,
we construct a discrete-time Markov chain {X̃(t)}t∈N starting from the continuous-
time Markov process {XC (t)}t≥0 by means of uniformization at rate qmax :=
maxx∈XC

∑
y �=x q(x, y) = CNν. The transition probabilities of this Markov chain

read

P(x, y) =

⎧⎪⎨
⎪⎩

1
CN ν−[a(x)−a(y)]+ if d(x, y) = 1,

0 if d(x, y) > 1,

1 − ∑
z∈X ,z �=x P(x, z) if x = y,

where d(x, y) is the distance function on X × X defined as

d(x, y) := |{i ∈ V : xi �= yi }| + |{i ∈ V : xi �= yi and xi yi �= 0}|.
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The quantity d(x, y) represents the minimum number of steps that the CSMA dynam-
ics need to go from state x to state y; the second term on the right-hand side accounts
for the fact that if a node is active on a channel c, the immediate activation on another
frequency c′ �= c is not allowed and requires first the node to become inactive.

This distance function onX reflects the main difference between the multi-channel
CSMA dynamics and the classical multi-color Glauber dynamics, in which a node
can change channel/color in a single step (see [19, Section IV.C] for more details).
The two corresponding state spaces, while still having the same states, have thus
fundamentally different structures and, in particular, there are many more possible
trajectories betweendominant states in the one corresponding to theGlauber dynamics.
This fact means that using Glauber dynamics to study temporal starvation phenomena
may lead to overly optimistic performance bounds.

It is easy to check that (5) is the stationary distribution also for the uniformized chain
{X̃(t)}t∈N. Let Tx,A(ν) := inf{t ∈ N : X̃(t) ∈ A} be the discrete-time counterpart of
the first hitting time τx,A(ν). These hitting times are closely related as

τx,A(ν)
d=

Tx,A(ν)∑
i=1

Ei (ν),

where {Ei (ν)}i∈N are i.i.d. exponential random variables withmean q−1
max = (CNν)−1.

In particular, it holds that

Eτx,A(ν) = (CNν)−1
ETx,A(ν). (10)

This equality shows that we can study the expected transition times between dominant
states in the discrete-time setting where the theory is richer and then immediately
translate them back for the continuous-time activity process {XC (t)}t≥0. We are now
ready to present the proof of the main result of this section.

Proof of Theorem 2 We first introduce the following notation to asymptotically com-
pare two functions f , g : R → R: We write f (ν) ≺ g(ν) if f (ν) = o(g(ν)),
f (ν) � g(ν) if f (ν) = O(g(ν)) as ν → ∞ and f (ν) � g(ν) if both f (ν) � g(ν)

and g(ν) � f (ν).
Furthermore, we will need some classical notions from the theory of reversible

Markov chains on finite state spaces. For every pair of states x, y ∈ X for which
P(x, y) �= 0, we define the resistance of the edge e = (x, y) as r(e) = r(x, y) =
(π(x) P(x, y))−1. For any state x ∈ X and subset A ⊂ X \ {x}, define then the
effective resistance R(x ↔ A) := π(x)−1

P(Tx,A < T+
x,x ) and the critical resistance

Ψ (x, A) := minω:x→A maxe∈ω r(e). As shown in [10, Proposition 2.2], effective
resistance and critical resistance of the same pair of states are intimately related,
namely there exists a constant k ≥ 1 independent of ν such that

1

k
Ψ (x, A) ≤ R(x ↔ A) ≤ k Ψ (x, A). (11)
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As illustrated in [10, Section 2.1], the following identity holds for the expected hitting
time of the target subset A starting from a state x /∈ A

ETx,A = π(x) R(x ↔ A)
∑
z∈X

π(z)

π(x)
P(Tz,x < Tz,A). (12)

Consider now the special case relevant for this theorem in which the starting state is
a dominant state, i.e., x = s ∈ DC , and the target subset D is such that D ⊆ DC\{x}.
From (5), it immediately follows that

π(s) � π(z) ∀ z ∈ X \ DC and π(s) � π(z) ∀ z ∈ DC .

Using this fact and identity (12), we deduce thatETs,D � π(s) R(s ↔ D) as ν → ∞.
In view of (11), it then follows that

ETs,D � π(s) Ψ (s, D), as ν → ∞,

and thus
lim

ν→∞ logν ETs,D = lim
ν→∞ logν π(s) Ψ (s, D). (13)

Consider the right-hand side of the latter identity. Using the definition of critical
resistance, it follows that

logν π(s)Ψ (s, D) = logν min
ω:s→D

max
e∈ω

π(s)r(e)

= logν min
ω:s→D

max
(x,y)∈ω

π(s)

π(x) P(x, y)

= min
ω:s→D

max
(x,y)∈ω

logν

CNνA(C)

νa(x)ν−[a(x)−a(y)]+

= logν CN + min
ω:s→D

max
(x,y)∈ω

A(C) − a(x) + [a(x) − a(y)]+

= logν CN + min
ω:s→D

max
(x,y)∈ω

A(C) − (a(x) ∧ a(y))

= logν CN + min
ω:s→D

max
x∈ω

A(C) − a(x)

= logν CN + Δ(s, D), (14)

where the third last passage above follows from the identity−a(x)+[a(x)−a(y)]+ =
−(a(x) ∧ a(y)), while the second last one is a consequence of the fact that we take
the maximum over all the configurations visited by the path ω, rather than the edges
crossed by the same.

Taking the limit in (14), we obtain limν→∞ logν π(s)Ψ (s, D) = Δ(s, D), which,
combined with identity (13), yields

lim
ν→∞ logν ETs,D(ν) = Δ(s, D).
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In view of (10), we have

lim
ν→∞ logν Eτs,D(ν) = lim

ν→∞ logν(CNν)−1
ETs,D(ν)

= lim
ν→∞ logν ETs,D(ν) + lim

ν→∞ logν(CNν)−1

= Δ(s, D) − 1,

and this concludes the proof. ��

6 Mixing time asymptotics for multi-channel CSMA networks

In this section, we turn attention to the long-run behavior of the Markov process
{XC (t)}t≥0 and in particular examine the rate of convergence to the stationary distri-
bution. We measure the rate of convergence in terms of the total variation distance
and the so-called mixing time, which describes the time required for the distance to
stationarity to become small.

The mixing time becomes particularly relevant when the network has two or more
dominant states which together attract the entire probability mass in the limit as ν →
∞. Indeed, in this case, the mixing time provides an indication of how long it takes the
activity process to reach a certain level of fairness among the dominant components.

For any fixed activation rate ν, the maximal distance over x ∈ XC , measured in
terms of total variation, between the distribution at time t of the activity process and
the stationary distribution πC is defined as

dt (ν) := max
x∈XC

‖Pt
ν (x, ·) − πC‖TV,

where Pt
ν (x, ·) is the distribution at time t of the Markov process {XC (t)}t≥0 started

at time 0 in x . The mixing time of the process {XC (t)}t≥0 is then defined as

tmix(ε, ν) := inf{t ≥ 0 : dt (ν) ≤ ε}.

The next result shows that the worst communication height between any two dom-
inant states provides a lower bound for the timescale at which the activity process
mixes.

Theorem 3 (Mixing time timescale) The mixing time of the multi-channel activity
process {XC (t)}t≥0 satisfies

lim
ν→∞ logν tmix(ε, ν) ≥ Γ (C) − 1, (15)

whereΓ (C) ≥ 1 is the worst communication height between a pair of dominant states,
i.e., Γ (C) := maxs,s′∈DC Δ(s, s′).

The proof of this theorem is based on a conductance argument that leverages the
bottlenecks of the state space XC and is presented later in Sect. 6.1.
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Fig. 3 The four dominant states
D1 = {s(1), s(2), s(3), s(4)} on a
network with C = 1 channels
available

Fig. 4 The four dominant states
D2 = {s(5), s(6), s(7), s(8)} on a
network with C = 2 channels
available

Table 1 The values of the
communication height Δ(·, ·)
between all pairs of dominant
states in D1 (on the left,
cf. Fig. 3) and in D2 (on the
right, cf. Fig. 4)

s(1) s(2) s(3) s(4) s(5) s(6) s(7) s(8)

s(1) 0 2 2 2 s(5) 0 1 3 3

s(2) 2 0 1 1 s(6) 1 0 3 3

s(3) 2 1 0 1 s(7) 3 3 0 1

s(4) 2 1 1 0 s(8) 3 3 1 0

The first consideration is that for some networks the mixing time worsens when
the number of available channels increases. Consider the network depicted in Figs. 3
and 4, which illustrate its dominant states for C = 1 and C = 2, respectively. For
such a network, it is easy to check that (15) holds with equality when C = 1 and to
compute that Γ (1) = 2, while Γ (2) = 3 (see Table 1).

We now compare this new exponent Γ (C) characterizing the mixing time in the
regime ν → ∞ with the starvation index Υ (C) introduced in Sect. 5. The inequality
Υi (C) ≤ Γ (C) holds for every node i ∈ V with SC (i) �= ∅ and SC (i) �= DC , since
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Υi (C) = max
s∈DC\SC (i)

min
s′∈SC (i)

Δ(s, s′) ≤ max
s,s′∈DC

Δ(s, s′) = Γ (C),

and trivially holds also for all the other nodes for which we set Υi (C) = 0, as Γ (C) ≥
1. Therefore, the starvation index of the network Υ (C) is also not larger than Γ (C),
i.e.,

Υ (C) ≤ Γ (C). (16)

These two indices can be equal, for instance in the case of a conflict graph with a grid
structure and an even number of nodes. As illustrated in [30], the CSMA dynamics
with C = 1 on this bipartite conflict graph have exactly two dominant states and each
node is active in only one of the two, and therefore Υ (1) = Γ (1).

However, for most conflict graphs and choices of the number C of available chan-
nels, inequality (16) is strict. The network presented in Fig. 4 is an example for which
Υ (2) < Γ (2). We already calculated earlier that Γ (2) = 3. As far as the starvation
index is concerned, the only two nodes v,w for which it is well defined are the two
topmost ones of each dominant state in Fig. 4, and again using Table 1, we can deduce
that Υv(2) = Υw(2) = 1, and, thus, Υ (2) = 1.

The fact that inequality (16) is often strict suggests that the mixing time may not
be the best metric to study temporal starvation, at least in the high-activation regime
ν → ∞, since it may yield a pessimistic performance assessment by overestimating
the duration of the starvation effects. Indeed, while it may take a long time for the
activity process {XC (t)}t≥0 to visit all the dominant states and thus “mix” on the state
space XC , the temporal starvation of the nodes often occurs at shorter timescales even
in the worst case, that is, the one captured by the network starvation index Υ (C).

We notice that determining precisely for which class of conflict graphs the strict
inequality Υ (C) < Γ (C) holds is probably a very difficult combinatorial problem,
whose solution is beyond the scope of this paper.

6.1 Asymptotic lower bound for themixing time

This subsection is entirely devoted to the proof of Theorem 3. The proof relies on a
classical conductance argument, which is often used in the literature to obtain lower
bounds for the mixing time of Markov chains with a finite state space (see [21, Theo-
rem 7.3]).

For any subset S ⊂ XC , the conductance of S is defined as

Φ(S) := Q(S, Sc)

πC (S)
,

where Q(S, Sc) is probability flow out of S, i.e.,

Q(S, Sc) :=
∑

x∈S,y∈Sc
πC (x) q(x, y).
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In order to bound the mixing time of the activity process {XC (t)}t≥0, we will make
use of the continuous-time counterpart of that theorem, which is summarized in the
following lemma (see [29, Lemma 7.1] for a proof).

Lemma 2 For any ε ∈ (0, 1/2),

tmix(ε, ν) ≥ 1/2 − ε

minS⊂XC :πC (S)≤1/2 Φ(S)
. (17)

To get a sharp bound for the conductance and hence a sharp lower bound for the
mixing time, we need to identify a subset S with low conductance. Let s, s′ ∈ DC be
two dominant states such that Δ(s, s′) = Γ (C) and consider the subset S of network
states that can be reached by the CSMA dynamics starting in s while keeping no less
that A(C) − Γ (C) + 1 nodes active, i.e.,

S = {x ∈ XC : Δ(s, x) < Γ (C)}.

Note that s ∈ S and s′ ∈ Sc, which implies that both subsets S and Sc have nonvan-
ishing stationary probabilities containing at least one dominant set each. Without loss
of generality, let us assume that πC (S) ≤ 1/2 for all ν sufficiently large.

By the construction of S, all states x ∈ S such that there exists y ∈ Sc such that
d(x, y) = 1 must have exactly A(C) − Γ (C) + 1 active nodes. Indeed, they clearly
cannot have fewer active nodes, otherwise Δ(s, x) ≥ Γ (C), and if they had strictly
more than A(C) − Γ (C) + 1, it would be impossible to exit in a single step from
S, since the CSMA dynamics prescribe the number of active nodes to increase or
decrease at most by one. In view of this fact, the probability flow of S can be rewritten
as

Q(S, Sc) =
∑

x∈S,y∈Sc
πC (x) q(x, y) = Z−1νA(C)−Γ (C)+1B(S),

where the quantity B(S) := |{(x, y) ∈ S × Sc : d(x, y) = 1}| counts the number of
possible way of exiting from S, which is independent of ν and depends only on the
structure of the state space XC . Then,

lim
ν→∞ logν Q(S, Sc) = lim

ν→∞ logν(Z
−1νA(C)−Γ (C)+1B(S))

= lim
ν→∞

(
logν(Z

−1νA(C)−Γ (C)+1) + logν B(S)
)

= lim
ν→∞ logν(Z

−1νA(C)−Γ (C)+1)

= A(C) − Γ (C) + 1 − A(C) = 1 − Γ (C).

Using the conductance of the subset S in (17) yields the lower bound tmix(ε, ν) ≥
(1/2 − ε)/Φ(S). Therefore,
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lim
ν→∞ logν tmix(ε, ν) ≥ lim

ν→∞ logν

1/2 − ε

Φ(S)

= − lim
ν→∞ logν Φ(S)

= lim
ν→∞ logν π(S) − logν Q(S, Sc)

= Γ (C) − 1,

and this concludes the proof of Theorem 3.

7 Model generalizations

In this section, we discuss some generalizations of our model and show to what extent
our results remain valid.

Our framework for transition and mixing times does allow for more general het-
erogeneous activation rates of the form νi,c = fi,c(ν), where fi,c(·) are nonnegative
real functions with a common scaling parameter ν. These more general rates can
be used to model interesting scenarios where nodes have preferred channels or fre-
quency channels with different features. Allowing for this more general parametric
family of activation rates does not affect the state space XC , but does change the
stationary distribution πC and, ultimately, the dominant states of the process. The
asymptotic results derived in Sects. 5 and 6 in the regime ν → ∞ still hold
for this more general setting. However, it is not enough to keep track only of the
number of active nodes and one needs to work with the more involved functions
ã(x) := ∑N

i=1
∑C

c=1 wi,c1{xi=c} and Ã(C) := maxx∈XC ã(x), where the weights
wi,c are defined as wi,c := limν→∞ logν fi,c(ν) (assuming that such limits exist and
are finite).

Another natural generalization of our model is the one where each node i ∈ V of
the network possibly has more than one radio interface and thus can simultaneously
transmit on ci channels, with 1 ≤ ci ≤ C , having an independent back-off timer for
each one of them. In this setting, there is no natural way to represent the multi-channel
dynamics as single-channel dynamics on a virtual network as we did in Sect. 3, but the
resulting Markov process still has a product-form stationary distribution, as proved
in [23]. Despite the fact that this assumption results in amuch larger and fundamentally
different state space, the asymptotic results for transition and mixing times proved in
Sects. 5 and 6 remain valid, after having opportunely modified the definition of the
functions a(x) andA(C). However, the identification of the dominant states becomes
more involved, especially in the case where a node cannot be active with different
radio interfaces on the same frequency channel.

As far as the results of Sect. 4 are concerned, none of the statements of Theorem 1
but the first one hold in general for the two aforementioned model extensions or in
the case where the interference on different channels is described by different conflict
graphs. Indeed, its proof used in a crucial way the equivalent description of a network
activity state as an (unweighted) partial C-coloring of the conflict graph, which is not
valid anymore in the more general settings described above.
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The only exception is the scenario in which every node has exactly C radio inter-
faces, each one dedicated to precisely one of the C frequency channels. The dynamics
on different channels become in this way decoupled and the network dynamics can
be described by means of C-dimensional Markov process, each component being an
independent single-channel CSMAMarkov process. It is easy to show that in this case
the aggregate throughputΘ(C) is constant inC , meaning that increasing the numberC
of available channels may alleviate the starvation effects without negatively affecting
the throughput.

8 Conclusions

In this paper, we investigate the performance of random-access networks in which C
non-overlapping channels are available for transmission. We consider a Markovian
model for the multi-channel network dynamics evolving according to a CSMA-like
algorithm, aiming to understand how the network throughput performance and star-
vation issues depend on the number of available channels.

The most relevant scenario for our analysis is the one where the number C of
available channels is not sufficient to allow all nodes to be active simultaneously, and
for this reason, temporal starvation phenomena persist. Focusing on the high-activation
regime, we show how the activity states with a maximum number of active nodes play
a crucial role in determining both the aggregate throughput and the temporal starvation
effects in the network.

We then characterize the asymptotic behavior of transition times between dominant
states by leveraging specific structural properties of the state space where the activity
process evolves. This analysis allows us to infer the precise timescales at which star-
vation phenomena occur in the network, paving the way for a detailed analysis of the
delay performance of multi-channel CSMA networks.

The same analytic framework that we develop for expected hitting times also yields
an asymptotic lower bound for the mixing time of the process, which we show tends
to overestimate the magnitude of the temporal starvation phenomena.
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