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Abstract We consider the multicomponent Widom—Rowlison with Metropolis dynamics,
which describes the evolution of a particle system where M different types of particles interact
subject to certain hard-core constraints. Focusing on the scenario where the spatial structure
is modeled by finite square lattices, we study the asymptotic behavior of this interacting
particle system in the low-temperature regime, analyzing the tunneling times between its
M maximum-occupancy configurations, and the mixing time of the corresponding Markov
chain. In particular, we develop a novel combinatorial method that, exploiting geometrical
properties of the Widom—Rowlinson configurations on finite square lattices, leads to the iden-
tification of the timescale at which transitions between maximum-occupancy configurations
occur and shows how this depends on the chosen boundary conditions and the square lattice
dimensions.
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1 Introduction

The Widom—Rowlinson model was originally introduced in the chemistry literature by [18]
as a continuum model of particles living in R? to study the vapor-liquid phase transition. In
this paper we are interested in the discrete-space variant that was first studied in [7] where the
spatial structure is approximated by a collection of sites, each of which cannot be occupied
by more than one particle. In [7] the authors model a lattice gas where two types of particles
interact: the Widom—Rowlinson model has in fact two equivalent standard formulations—
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one as a binary gas and the other as a single-species model of a dense (liquid) phase in
contact with a rarefied (gas) phase. In the binary gas formulation, the only interaction is
a hard-core exclusion between the two species of particles—call them A and B. If the B
particles are invisible, the resulting system of A particles yields the model for vapor-liquid
phase transitions introduced and discussed by Widom and Rowlinson [18].

The Widom-Rowlinson model has been proven to exhibit a phase transition both on Z¢
[7] and on the continuum [3,15]. On general graphs, however, its behavior is not always
monotonic [2].

Many variants of the Widom—Rowlison model have been studied in the literature. First
of all, the generalization to the case where there is only strong repulsion (and no hard-
core interaction) between unlike particles has been investigated both on 74 [7] and on the
continuum [8]. The existence of a phase transition has been established also in the case of
non-equal fugacities in [1]. More recently, the Windom—Rowlison model with asymmetric
hard-core exclusion diameters has been studied, both on the lattice [11] and on the continuum
[12]. The Widom—Rowlinson model and its properties have also been studied on different
discrete space structures, such as the Bethe lattice [9,17], other d-dimensional lattices [6],
and d-regular graphs [4].

The generalization to the scenario with a finite number of M particle types which we
consider in this paper has been introduced by Runnels and Lebowitz [16] under the name
multicomponent Widom—Rowlison model. In the discrete-space version of this model there
is nearest-neighbor hard-core exclusion between particles of different types. The multicom-
ponent Widom—Rowlison model has been studied also in the continuum and with many of
the variants described above for the case M = 2, see, e.g., [5,8,9,14,16].

In this paper we focus on the dynamics of the multicomponent Widom—Rowlison model
on a finite graph G. Assuming that the M particle types have all the same fugacity > > 1, the
evolution over time of this interacting particle system is described by a reversible single-site
update Metropolis Markov chain parametrized by the fugacity. More precisely, at every step
a site of G and a particle type are selected uniformly at random; if such a site is unoccupied,
then a particle of the chosen type is placed there with probability 1 if and only if all the
neighboring sites are not occupied by particles of different types; if instead the selected
site is occupied, the particle is removed with probability 1/X. This particle dynamics can be
equivalently described in terms of the inverse temperature § = log A so that the Markov chain
under consideration rewrites as a Freidlin—Wentzell Markov chain {X f }ten with stationary
distribution the Gibbs measure

__ L pHE
up(o) Zﬁ(G)e , 0 € X(G), (D
where X (G) is the collection of admissible Widom—Rowlinson configurations on G, the
Hamiltonian H : X(G) — Rassigns to each admissible configuration an energy proportional
to the number of particles it has (regardless of their type), i.e., H(oc) = —(Ni(o) + -+ +
Npy(0)), and Zg(A) is the normalizing partition function.

We are interested in particular in the low-temperature regime for the Widom—Rowlison
model in which the Gibbs measure (1) favors configurations with a large number of particles.
In particular, if the underlying graph is connected, there are exactly M maximum-occupancy
configurations, in which all the sites of G are occupied by particles of the same type. For large
value of the inverse temperature 3, these particle configurations become very “rigid”, in the
sense that it takes a long time for the Markov chain {X f }+en to move from one to another, as
these transitions involve the occurrence of rare events. Indeed, along any such a transition,
the interacting particle system must visit configurations with multiple particle types, which
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Low-Temperature Behavior of the Multicomponent... 3

become highly unlikely as 8 — oo in view of (1), since the total number of particles in these
mixed-activity configurations is smaller due to the fact that a layer of unoccupied sites that
must separate cluster of particles of different types.

In order to describe the low-temperature behavior of the Widom—Rowlison model, the main
objects of interest in this paper are the tunneling times, i.e., the first hitting times between
maximum-occupancy configurations, and the mixing time of the Markov chain {X fj }ren.

In the present paper we focus in particular on the case where the graph G is a finite square
lattice, which we denote by A. By studying the geometrical features of the Widom—Rowlison
configurations on this class of graphs, we describe the most likely way for the transitions
between maximum-occupancy configurations to occur by identifying the minimum energy
barrier I"(A) > 0along all the paths connecting them in the corresponding energy landscape.
Our analysis shows in particular how this minimum energy barrier I"(A) depends on the
square lattice A dimensions, as well as on the chosen boundary conditions.

This analysis of the structural properties of the energy landscape in combination with the
general framework for Metropolis Markov chains developed in [13] leads to our main result,
which is presented in the next section. In particular, we characterize the asymptotic behavior
for the tunneling times between maximum-occupancy configurations giving sharp bounds
in probability and proving that the order of magnitude of their expected values as well as
the mixing time are equal to I"(A) on a logarithmic scale. Furthermore, we prove that the
asymptotic exponentiality of the tunneling times scaled by their means as § — oo.

The low-temperature behavior of another interacting particle system, the hard-core model,
has already been studied using similar techniques on finite square lattices [13] and triangular
lattices [19]. This is not surprising, as these two models are intimately related, as shown in
[2, Sect.5]. Nonetheless, the analysis of multicomponent Widom—Rowlison can be reduced
to that of a three-dimensional lattice hard-core model only in some special cases. Further-
more, the low-temperature dynamics of the multicomponent Widom—Rowlison is less trivial
and more interesting than that of the hard-core model on finite square lattices and gives the
opportunity to push the existing theory. For instance, when M > 2 the asymptotic exponen-
tiality of the scaled tunneling times between any pair of maximum-occupancy configurations
does not follow from the standard theory developed in [13] and is in fact a peculiarity of
the Widom—Rowlinson model that relies on the intrinsic symmetries of its energy landscape.
We believe that some of the techniques developed to tackle the general M > 2 case using
endomorphisms and automorphisms of the state space X' (G) are interesting per se and may
be useful to study other interacting particle systems in statistical physics.

2 Model Description and Main Results

Consider a finite undirected graph G = (V, E), which models the spatial structure of the
finite volume where M types of particles dynamically interact subject to certain hard-core
constraints. The N vertices of the graph G represent all possible sites where particles can
reside. Particles can be of M > 2 types, and there is nearest-neighbor hard-core exclusion
between unlike particles. In other words, the hard-core constraints are modeled by the set E
of edges connecting the pairs of sites that cannot be occupied simultaneously by particles of
different types. We associate a variable o (v) € {0, 1, ..., M} to each site v € V, indicating
the absence (o (v) = 0) or the presence of a particle of type m (o (v) = m).

A Widom—Rowlison (WR) configuration on G is a particle configuration
cef{0,1,....M }N that does not violate the hard-core constraints between unlike parti-
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4 A. Zocca

cles in neighboring sites; we denote their collection by
X ={oe{0,1,..., M}N co@o(w)=0o0r o) =o(w) VY, w)e E}. (2)

In the special case where there only M = 2 particle types (say A and B), there is a more
compact representation for WR configurations: By associating a variable o (v) € {—1, 0, 1}
to each site v € V, indicating the absence (0) or the presence of a particle of type A (1) or
type B (—1) in that site, the collection of WR configurations on G rewrites as X = {0 €
{(—1,0, 1}V : o(v)o(w) #—1 Y(v,w) € E}.

The evolution of this interacting particle system is described by the Metropolis dynamics.
More specifically, we consider the single-site update Markov chain {X ,ﬂ }teN parametrized
by a positive parameter §, representing the inverse temperature, with Metropolis transition
probabilities between any pair of WR configurations o, 6’ € X given by

q(o, U/)e*ﬂ[H(G’)*H((T)V, ifo #o,

Pg(o,0) :=
p(@0) 1= Y20 Po. 1), ifo =o',

This choice of transition probabilities corresponds to the energy landscape (X, H, q) where
the state space X is given in (2), while

— the energy function or Hamiltonian H : X — R counts the number of particles, regard-
less of their type:

H(o) = — Z ]l{g(v);go} o€eX; 3)

veV

— the connectivity function ¢ : X x X — [0, 1] allows only single-site updates and
prescribes that a particle occupying a certain site cannot be replaced by a particle of the
other type in a single step, i.e., we define

T ifd(o,0') =1,
q(o,0") =10, ifd(o,0') > 1, )

1 _Zn;ﬁa q(O, 7]), if o :o‘/,

where d : X x X — N is a distance function on X defined as

d(0,6") =Y (Ligw)to'w) and o )0’ )=0) + 2 Lio ()0’ v) and o )0’ 20)) - (5)

veV

The second term appearing in the sum in the right-hand side of (5) guarantees that the
dynamics does not replace a particle with one of different type in a single step, requiring first
the corresponding site to be emptied.

The dynamics induced by this energy landscape can be described in words as follows. At
every step a site v € V and a type m are selected uniformly at random,; if the selected site v
is occupied, the particle therein is removed with probability e ~#; if instead the selected site
v is empty, then a particle of type m is created at v with probability 1 if and only if none of
the neighboring sites is occupied by particles of different types.

The Markov chain {X f }ten 1s aperiodic and irreducible on X, as well as reversible with
respect to the Gibbs measure associated to the Hamiltonian H, i.e.,

1
upg(o) := — e PHO) 5y,
Zp
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Low-Temperature Behavior of the Multicomponent... 5

where Zg 1= Y/ v ¢ P is the normalizing partition function. At low temperature (i.e.,
for large values of ) the Gibbs measure g concentrates around the set X'* of global minima
of the Hamiltonian H on X, to which we will henceforth refer as stable configurations.
Foreverym =1..., M, let s be the WR configurations on G in which all the sites are
occupied by particles of type m, i.e.,

s™@):=m, YveV.

It is easy to identify these M configurations as the stable configurations of the Widom—
Rowlison model on any connected graph G, as stated by the following lemma.

Lemma 1 (Stable configurations of Widom—Rownlison model) If G is a connected graph,
then the stable configurations of the Widom—Rowlison model with M particle types on G are

x5 = s, ... sy,

Proof Clearly H(s"™) = —N foreverym = 1,..., M and H(c) > —N for every o €
X. Suppose by contradiction that there exist a WR configuration o # sV, ... s such
that H(o) = —N. Trivially o cannot have any unoccupied site, otherwise H(o) > —N.
Furthermore, since in every pair of sites connected by an edge there must reside particles of
the same type, the connectedness of G implies that o = s for some m. O

In the rest of the paper we focus on the study of the Widom—Rowlison model on finite
square lattices. More specifically, given two integers K, L > 2, we take G to be the K x L
square lattice A either with periodic boundary conditions or with open boundary conditions.
Some examples of WR configurations with M = 3 types of particles on square lattices
are shown in Fig. 1, in which empty sites are displayed as white, while occupied sites are
displayed using colors, associating one color to each particle type. Furthermore, we will also
use particles’ color and type interchangeably.

Fig. 1 The three stable configurations s s@ s and other mixed-activity configurations of the Widom—
Rowlison model with M = 3 particle types on the 8 x 9 square lattice with periodic boundary conditions
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6 A. Zocca

Aiming to describe the low-temperature behavior of the Widom—Rowlison model on finite
square lattice, we study the Metropolis dynamics {X f }ten in this regime and characterize
the asymptotic behavior of this interacting particle system in terms of its tunneling times,
i.e., the first hitting times 7§ for the Markov chain {X ,ﬂ }en

o ::inf{teN:XﬁgeA|X€:a},

where both the initial and target states are stable configurations, i.e., 0 € X* and A C X*.

For any s, s’ € X*, we prove the existence of an exponent I"(A) > 0 for any finite square
lattice A that gives an asymptotic control in probability of the tunneling times 73, and rfl,s\ (s}
on a logarithmic scale as 8 — oo and characterizes the asymptotic order of magnitude of
the expected value.

The same exponent " (A) also describes the timescale at which the Markov chain { X f }eN
converges to stationarity in the low-temperature regime: we make this statement rigorous in
terms of the mixing time of the Markov chain {X f }ten, defined for every 0 < & < 1 as

5™ (e) = min{n > 0 max |[Pf (@, ) — up()lrv < e},

where ||u — (' |ITv = % Y sex (o) — ' (o)] is the total variation distance between any
pair of probability distributions &, i” on X. Lastly, we show that both the tunneling times
75 and r},q\ (s) scaled by their mean converges in distribution to an exponential unit-mean
random variable. All these findings are summarized in the following theorem, which is our
main result.

Theorem 1 (Low-temperature behavior of the Widom—Rowlinson model on finite square lat-
tices) Consider the Metropolis Markov chain { X ;3 }ten corresponding to the Widom—Rowlison
model with M types of particles on a K x L finite square lattice A and define

2K if A has periodic boundary conditions, K = L, and K + L > 6,
I'A) .= {min{2K,2L} + 1 if A has periodic boundary conditions, K # L, and K + L > 6, (6)
min{K, L} + 1 if A has open boundary conditions.

Then, for any s, s’ € X* the following statements hold:
(i) For every e > 0, ﬁlim P(eﬁ(r(m_s) < Tﬁ(x\{s} <1< e’s(r(A)'*'a)) =1
—00
1 1
ii) lim —logEtS = I'(A) = lim — logEt%s ()
(i) ﬁgsr;o Fi og ity (A) Jm B 08 KT s\ (s)
Tys
(if) o L Exp(l), as f — oo;
Tas\(s}
5 4
(iv) = — Exp(1), as f — oc.
Ezg

Furthermore,

(v) Forany 0 < ¢ < 1 the mixing time tg’i" (&) of the Markov chain {X,ﬂ}teN satisfies

: 1 mix _
ﬁleOO 5 log 15 (e) = I'(A).

The proof of this theorem relies on asymptotic results for tunneling and mixing times obtained
in [13] for any Metropolis Markov chains and on the study of structural properties of the
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Low-Temperature Behavior of the Multicomponent... 7

energy landscape (X, H, q) corresponding to the Widom—Rowlison model on A, which are
outlined in the next section.

As illustrated in (6), the exponent I"(A) depends both on the lattice dimensions and on
the chosen boundary conditions, and the reason behind this will become clear in Sects. 5 and
6, in which we analyze geometrical features of WR configurations on square lattices and
develop the combinatorial approach that lead to the identification of its value. The additional
assumption that K + L > 6 in the case of periodic boundary conditions is necessary to
leave out the three special cases (K, L) = (2, 2), (3, 2), (2, 3) in which our combinatorial
argument does not work. However, it is easy to prove analogous results for these three special
cases, in which the exponent I"(A) can be easily shown to take respectively the values 3, 4,
and 4.

We remark that from our analysis also yields similar results for a square lattice A with semi-
periodic boundary conditions (i.e., periodic in one direction and open in the other direction).
Indeed, by opportunely combining the results derived in Sects.5 and 6 for the two types of
boundary conditions, we can derive that for this class of graphs I"'(A) = min{K, 2L} + 1.
A similar argument has also been used for the hard-core model on finite square lattice with
semi-periodic boundary conditions in [13, Sect.5.3] and for this reason the details are here
omitted.

3 Analysis of the Energy Landscape

In this section we derive some structural properties of the energy landscapes of the Widom—
Rowlison model on square lattices and show how they can be used to prove our main result.
Such properties are summarized in Theorem 2 below, but we need first to introduce some
definitions and useful notation.

It is easy to check that the connectivity matrix g given in (4) is irreducible, i.e., for any
pair of configurations o, ¢’ € X, o # o', there exists a finite sequence w of configurations

i, ...,w, € X suchthat w; =0, w, =o' and g(w;, wj+1) > 0fori =1,...,n—1(.e.,
w; and w; 11 differ by an admissible single-site update). We refer to such a sequence as a path
from o to ¢’ and denote it as  : ¢ — o’. The height @, of a path w = (w1, ..., wy) is the

maximum value that the energy takes along o, i.e.,

D, = max H(w;).
i=1,...,n

The communication height between any pair of configurations o, ¢’ € X is defined as

®(0,0'):= min &, = min max H(w;),
w:0—0' w:o—o'i=l1,...,|lw

and this definition naturally extends to any pair disjoint non-empty subsets A, B C X as

®(A, B) := min
,o!

oeA

®(0,0).
B

€

As stated by the next theorem, we prove that the energy barrier @ (s, s') — H (s) between
any pair of stable configurations s, s’ € X* is equal to I"(A) and show that this is the highest
energy barrier in the whole energy landscape.
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3 A. Zocca

Theorem 2 (Energy landscape properties for the Widom—Rowlison model on finite square
lattices) Let (X, H, q) be the energy landscape corresponding to the Metropolis dynamics
of the Widom—Rowlison model with M types of particles on a K x L square lattice A and
recall the definition of I" (A) in (6). Then,

(1) @(s,8') — H(s) = I'(A) foreverys,s € X*, and

(i) @(0,X%) — H(o) < I'(A) Yo € X\X¥,

The proofs of these statements exploit geometrical features of the WR configurations and
therefore will be given separately for square lattices with periodic boundary conditions in
Sect. 5 and with open boundary conditions in Sect. 6.

We remark that the maximum energy barrier I”(A) of the energy landscape corresponding
to the multicomponent Widom—Rowlison model on square lattices does not depend on the
number M of particle types, which, indeed, has only an entropic effect (the cardinality of X’
obviously grows with the number of particle types).

The rest of the section is devoted to the derivation of our main result, Theorem 1. The
main idea of the proof is to use the structural properties of the energy landscape outlined
in Theorem 2 in combination with the model-independent theory for first hitting times and
mixing times developed for a general Metropolis Markov chain in [13] as a extension of the
classical pathwise approach [10]. Therefore, we first briefly summarize in the next proposition
a special case of the results derived in [13] that is relevant for the tunneling and mixing times.

Proposition 1 (Hitting and mixing times asymptotics [13]) Let (X, H, q) be an energy
landscape and {X ,ﬂ }teN the corresponding Metropolis Markov chain.

(i) Lets € X* be a stable configuration and define I'* := max,ex, n2s ®(1,8) — H(1).
Then, the definition of I'’* does not depend on the chosen configurations € X° and for
any) <e <1

1 .
l' 71 [mlx — I-v*
Jim_ 5 log 1 (e)

(i1) Assume that a non-empty subset A C X and a configuration o € X\ A are such that
the identity

P(o,A) — H(o) = max ®(n, A) — H() (7
neX\A
holds. Then, setting I' := @ (o, A) — H (o), we have that
1
Ve>0 lim IP’(eﬁ(F*g) <13 < e’g(F”)) =1, and lim —logEr] =T.
B—00 B—o B
(iii) Assume that a non-empty subset A C X and a configuration o € X\ A are such that

the inequality

®(0,A)—H(o)> max @, AU{c})—H(n) 3)
neX\A, n#o
holds. Then,

2
Erg
More precisely, there exist two functions ki (B) and ky(B) with limg_, k1(B) =0 =
limg_, oo k2(B) such that for any s > 0
o
‘IF’( rAU > s) —e*
Et}

4, Exp(1l), as B — oo.

<k (,B)e_(l_kz(ﬂ))s.
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Low-Temperature Behavior of the Multicomponent... 9

Condition (7) says that the energy barrier separating the initial configuration o from the
target subset A is maximum over the entire energy landscape. The authors in [13] refer to this
condition as “absence of deep cycles”, since it means that all other “valleys” of the energy
landscape (or more formally cycles, see definition in [10]) are not deeper than the one where
the Markov chain starts. On the other hand, condition (8) guarantees that for every n € X
the Markov chain {X tﬁ }ren started in n most likely reaches either o or the subset A on a time
scale strictly smaller than that at which the transition from o to A occurs in the limit 8 — oo.
We note that both conditions (7) and (8) are sufficient but not necessary for the corresponding
statements (ii) and (iii) to hold; we refer to [13] for a more elaborate discussion.

We have now all the ingredients to present the proof of our main result, Theorem 1, leaving
out however the proof of statement (iv), that is presented later, as it requires some additional
work.

Proof of Theorem 1(i)—(iii) and (v) Lets,s € X* be any two stable configurations. Theo-
rem 2(ii) yields

max @ (o, X°\(s)) ~ H(o) < I'(4) = (s, X'\[s)) ~ H(S),

and, therefore, condition (7) trivially holds for the pair (s, X*\{s}). Furthermore, taking into
account also Theorem 2(i), we get

rgli)s(¢>(a, s') — H(o) = max Ln:zz% ®(0,8) — H(o), Gen)}?\({s}tb(a, §) — H(O‘)] =TI(A)
= &(s,s') — H(s),

showing that condition (7) holds also for the pair (s, s’). Proposition 1(ii) then yields the
statements (i) and (ii) of Theorem 1 for both tunneling times rss, and ri,s\ s

‘We now turn to the proof of Theorem 1(iii): The asymptotic exponentiality of the rescaled
tunneling time Tf\ff\{s}/Etf’(f\{s} immediately follows from Proposition 1(iii) in view of the
fact that the inequality

(s, X5\[s}) — H(s) = I'(A) > max (o, X%) — H(o)

holds by virtue of Theorem 2(i) and (ii). Theorem 2(i) also implies that the exponent I"*
appearing in Proposition 1(i) is equal to 1" (A) and this concludes the proof of statement (v).
O

We now turn to the proof of the asymptotic exponentiality of 5 /Ezg in the case M > 2.
Indeed, if there are only M = 2 types of particles, Theorem 1(iv) trivially holds being

equivalent to Theorem 1(iii), in view of the fact that rss, 4 r}x - However, when M > 2, the
asymptotic exponentiality of the scaled tunneling time 7 /Ez$ does not follow immediately
from the model-independent results for first hitting times outlined in Proposition 1. Indeed,
in this scenario there more than two stable configurations, since |[X*| = M > 2, and any pair
s,s’ € X" does not satisfy condition (8) due to the presence of deep cycles (corresponding
to the other stable configurations in X\{s, s'}). Indeed, by virtue of Theorem 2(i)

T'(A) = ®(s,s) — H(s) # n;éaxlq)(o, {s,s8'}) — H(o) = I'(A).

The asymptotic exponentiality of the scaled tunneling time 3 /Ezj in the limit § — o0
is proved using a representation of the tunneling time 7 as a geometric random sum of

@ Springer



10 A. Zocca

i.1.d. random variables, stated in the following proposition, which exploits the intrinsic sym-
metry of the energy landscape (X, H, q) corresponding to the Widom—Rownlison model on
square lattices. A very similar approach has been also used in [19] to study the tunneling time
between any two stable configurations of the hard-core model on finite triangular lattices.

Proposition 2 (Tunneling time rss/ as geometric random sum) For every s € X and any

B > 0, the following properties hold for the Metropolis Markov chain { X ,ﬂ }teN corresponding
to the Widom—Rowlison model with M > 2 particle types on a square lattice A:

(a) The random variable X f s has a uniform distribution over X5\{s},
AS\(s}
(b) The random variable vas\ (s} does not depend on s;

(¢) The random variables 5, o, and X p s are independent.
A\(s) o\l

Furthermore, let {t};cn be a sequence of i.i.d. random variables with common distribution
d . . . . L7
T= rf\,s\{s} and Gy an independent geometric random variable with success probability

equal to py = (M — 1)1, ie,

|
P =n)=|(1- , > 1.
(Gm =n) < M—l) v_1 "2
Then, for any pairs, s’ € X* the following stochastic representation of the tunneling time g
holds

7]
8 4 Zr(i) )
s = ’

i=1

and, in particular, Etj, = I%M -Et}s\{s} =WM-1) -Et}y\{s}.

Proof Consider four particle types x, y, w,z € {1,..., M} such that x # w and y # z,
and the four corresponding stable configurations Xx,y, w,z € X*. Consider the following
automorphism & of the state space X that associates to each WR configuration o a new WR
configuration & (o) by replacing every particles of type x (y, w, z) with a particle of type y
(x, z, w, respectively). More formally, for any o € X and every v € A we define

X ifo(v) =y,
y if o (v) = x,
[E(@)]) = Jw ifo(v) =z,
z ifo(v) = w,

o(v) ifo(v) #x,y,w,z.

& is indeed an automorphism of the state space diagram, seen as a graph with vertex set X’ and
such that any pair of states o, 0’ € X is connected by an edge if and only if d(o, ) < 1 (see
definition (5)). By construction, the automorphism £ maps x to y and w to z simultaneously,
ie.,

Ex) =y, &X\{xh)=2"\{y}, and &W) =z (10)

Assume the Markov chain {X f }ren starts in x at time 0. Let {)? f }ren be the Markov chain
that mimics the moves of Xf via the automorphism &, i.e., set if = E(Xf) forevery t € N.
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Low-Temperature Behavior of the Multicomponent... 11

For notational compactness, we suppress in this proof the dependence on g of these two
Markov chains. Since & is an automorphism, for any pair of WR configurations o, o’ € X, any
transition of X . fromn = &(0) ton’ = &(o”) is feasible and occurs with the same probability
as the transition from o to o’. We have defined in this way a coupling between {X,};en and
{% +}1eN, Which are two copies of the same Markov chain describing the Metropolis dynamics
for the Widom—Rowlinson model on A. In view of (10), this coupling immediately implies
that the Markov chain { X}, started at x hits a stable configuration in X\ {x} precisely when
the Markov chain {)? ( }1en started at y = £(x) hits a configuration in X* \ {y}. Furthermore,
for every x, y, w,z € X* such that x # w and y # z, the following identity holds:

_ X _ _ §(x)
P(Xff\”\(x) =W, Tys\(x} = t) - ]P<§":(XT§(.\‘\(x)) =£&(w), Te(as\(x) = t)

- ]P’(Xrg(s\

Taking x =y and the limit 1 — oo in (11), we obtain that for every w, z € X*\{x}

IP’(X,x = w) = IP()N(Tx = z).
A5\ {x} XS\ {x}

Using the fact that {X/,};c and {i (}ten have the same statistical law, being two copies of
the same Metropolis Markov chain, it then follows that the random variable X S has a

— y
=% Ty <1). (11

uniform distribution over X*\{x}, that is property (a). In particular, for any s € X*\{x}

1 1
P(X X = S) = = .
T A\ {x)| ~ M1

(12)
By summing over w € X*\{x} in (11), we have that for every z € X*\{y} and every r > 0

Ptk =) =M =1 P(Xp, =2 thy) =1). (13)

Tas\(y)

By summing over z € X*\{y} in (13), we obtain that for every > 0

P(thom = 1) = P(thyy = 1), (14)

proving property (b). Substituting (14) into identity (13) and using (12), we deduce that every
y,z € X withy # z and for every t > 0,

— y _ _ y
P(ngcs\(y, =Z, Tys\ly) = t) - ]P)(Xr;(:\(y) = Z>P(TXS\{y} =< t),

that is property (c).

We now proceed with the derivation of the stochastic representation in (9) for the tunneling
time 'L’SS,. Let Gy be the random variable that counts the number of non-consecutive visits
to stable configurations in X*\{s’} until the configuration s’ is hit, counting as first visit
the configuration s where the Markov chain starts. Non-consecutive visits here means that
we count as actual visit to a stable configuration only the first one after the last visit to a
different stable configuration. Property (b) implies that the random time between these non-
consecutive visits does not depend on the last visited stable configuration. In view of property
(a), the random variable Gy is geometrically distributed with success probability equal to
pm =M -1 e,

1\
PGy =k)=(1— . 1.
(G = k) ( M_1> e k=
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12 A. Zocca

In particular, note that Gy, depends only on M and not on the inverse temperature 8. The
amount of time 5, s} it takes for the Metropolis Markov chain started in s € X ¥ to hit
any stable configuration in X*\{s} does not depend on s, by virtue of property (b). In view
of these considerations and using the independence property (c), we deduce (9). Lastly, the
identity Bt = (M — 1) - ]Er}s\{s} immediately follows from Wald’s identity, since both

random variables Gy and t}.y\ s} have finite expectation and EGy = p;,fl. O
We now conclude the proof of our main result using together the latter proposition and
the already proved Theorem 1(iii).

Proof of Theorem 1(iv) Denote by Ls (-) and Lffw\(s) () the Laplace transforms of the hitting

times 75 and r}s\ s> respectively. The stochastic representation (9) given in Proposition 2
implies that

L =G, ( S (t)) Vi>0.

where Gg,, (z) = E(z9), 7 € [0, 1], is the probability generating function of the random
variable Gjs. From Theorem 1(iii) it follows that for any stable configuration s € X*,

L gy Vi>0
r}‘;\(s)/Erj{S\(s}(t) — Ly(1), t >0,

where Y is a unit-mean exponential random variable. Using the fact that Ezj = Et%.,, -
EGu, we obtain

Los aey (1) = Gayy (Lo

S ey /EGH) ) =5 Gy (L (1/BGY)) V120,

and the continuity theorem for Laplace transforms yields that

S YD, as B — oo,
E‘Ess, EQM Z

where {Y };cn is a sequence of i.i.d. exponential random variables with unit mean. The
conclusion then follows by noticing that the geometric sum of i.i.d. exponential random
variables scaled by its mean is also exponentially distributed with unit mean. O

4 Geometrical Features of WR Configurations on Square Lattices

In this section we derive some geometrical properties of WR configurations on finite square
lattices, which are extensively used in Sects. 5 and 6 to analyze the energy landscape corre-
sponding to the Widom—Rowlinson model on the same graphs.

We first introduce some useful notation and results that are valid for every K x L square
lattice A with K, L > 2, regardless of the imposed boundary conditions. Denote by c;,
j = 0,...,L — 1, the j-th column of A, i.e., the collection of sites whose horizontal
coordinate is equal to j, and by r;,i =0, ..., K — 1, the i-th row of A, i.e., the collection
of sites whose vertical coordinate is equal to i, see Fig.2. When we do not need to specify a
precise row or column, we denote a generic column by ¢ and a generic row by r. We assign
the coordinates (j, i) to the vertex v that lies at the intersection of column c; and row 7;. In
addition, define the i-th horizontal stripe, withi = 1,..., K /2], as

S i=ri—2Uri-1,

@ Springer



Low-Temperature Behavior of the Multicomponent... 13

Fig. 2 Illustration of row, column and stripe notation on square lattice A with periodic boundary conditions

and the j-th vertical stripe, with j =1, ..., |L/2] as
Cj:=cj2Ucj1,

see Fig.2 for an illustration.
Given an WR configuration o € X', we define AH (o) as the number of the empty sites
that o has, namely

3
AH(o) := Z Liow)=0} DN- Z 1o (v)£0}- (15)

veA veA

Note that A H (o) can equivalently be seen as the energy difference between o and any stable
configurations € X*,since AH (o) = H (o) — H(s). We further define the energy difference
of a configuration 0 € X in row r and in column c respectively by

AH"(0):=L =Y Nigwzo. and AH(0):=K =Y Tiow0- (16)

ver vec

Clearly the energy difference (15) of a configuration o can be written as the sum of the energy
differences in every row (or in every column), i.e.,

K—1 L—1
AH(o) = Z AH'i (o) = Z AHC (o). (17)
i=0 j=0

We say that a WR configuration o € X displays:

— A vertical (horizontal) m-bridge in column (row) if all sites of that column (row) are
occupied by particles of type m;

— Avertical (horizontal) quasi m-bridge in column (row) if all sites but one of that column
(row) are occupied by particles of type m and the remaining site is unoccupied;

— A cross if it has both a vertical bridge and a horizontal bridge;

— A quasi-cross if it has both a vertical quasi-bridge and a horizontal quasi-bridge.

We will interchangeably refer to bridges, quasi-bridges, and crosses using either the par-
ticle type that characterizes them or the color that identifies that particle type. Furthermore,
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14 A. Zocca

(b) Two verﬁ&xl bridges (C) A bl;.rciki cross

(d) A vertical gray quasi-bridge (e) Two horizontal gray quasi- (f) A gray quasi-cross
bridges

Fig. 3 WR configurations with M = 3 types of particles displaying bridges and quasi-bridges on the 8 x 8
square lattice with periodic boundary conditions

we simply speak of bridges, quasi-bridges, and crosses if their color is not relevant. Some
examples are given in Fig. 3.

Lemma 2 (Geometrical features of bridges for WR configurations) The following properties
hold for a WR configuration on a square lattice A:

(i) Two bridges of different colors cannot be perpendicular to each other;
(ii) A bridge and quasi-bridge of different colors cannot be perpendicular to each other;
(iii) Two quasi-bridges of different colors and perpendicular to each other must meet in
their empty site;
(iv) A (quasi-)bridge can have another (quasi-)bridge in adjacent row/column only if they
are of the same color.

The proof of Lemma 2 is immediate by looking at the hard-core constraints between unlike
particles arising at the site in which the two bridges or quasi-bridges meet for statements
(i)—(iii) and at the neighboring sites belonging to adjacent rows/columns for statement (iv),
see for instance Fig. 3.

In view of Lemma 2(i), crosses consist of particles of a single type, but this does not have
to be the case for quasi-crosses and motivates the following definition. We call a quasi-cross
monochromatic if it consists of particles of the same type, and bichromatic otherwise, see
some examples in Fig.4. Lemma 2(iii) implies that the two quasi-bridges of a bichromatic
quasi-cross must intersect in their unique empty site.

The next two lemmas show that bridges are the unique particle displacements with zero
energy difference in a given row/column, regardless of the chosen boundary conditions. In
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Low-Temperature Behavior of the Multicomponent... 15

(a) A monochromatic (black) quasi- (b) A monochromatic (gray) quasi- (C) A bichromatic quasi-cross
cross cross

Fig. 4 Examples of WR configurations with M = 3 types of particles displaying quasi-crosses on the 8 x 8
square lattice with periodic boundary conditions

addition, only in the case of a square lattice A with periodic boundary conditions, we give
an equivalent characterization of quasi-bridges. Lemmas 3 and 4 are stated and proved only
for rows and horizontal (quasi-)bridges, since those for columns and vertical (quasi-)bridges
are analogous.

Lemma 3 (Bridges and quasi-bridges characterization on square lattices with periodic
boundary conditions) Let o € X be a WR configuration on a square lattice A with periodic
boundary conditions. Then,

(i) AH"(0) =0 <= o has a horizontal bridge in row r;
(ii) AH"(0) =1 <= o has a horizontal quasi-bridge in row r.

In particular, if o has no bridges nor quasi-bridges in row r, then AH" (o) > 2.

Proof The implications (i)<= and (ii)<= are immediate by definition of (quasi-)bridge
and (16). For the converse implications, is enough to observe that, in order to have parti-
cles of different types in the same row r, there should be at least two empty sites separating
the two (or more) clusters of alike particles from each other, due to the periodic boundary
conditions. If AH" (o) < 1, then all the particles residing in row r are of the same type and
their number is automatically determined by the value of the energy difference AH" (). O

Lemma 4 (Bridges characterization on square lattices with open boundary conditions) Let
o € X be a WR configuration on a square lattice A with open boundary conditions. Then,

AH"(0) =0 <= o has a horizontal bridge in row r.

Proof The implication < follows immediate from the definitions of bridge and energy dif-
ference on a row (16). Assume by contradiction that o does not have a horizontal bridge in
row r. If o has only particles of one type in row r and does not display a bridge there, then the
number of particle in row r must be strictly less than L, so by definition of energy difference
AH" (o) > 0, which is a contradiction. If instead o has particles of two or more types in
row r, there has to be at least one empty site separating the clusters created by particles of
the same type, and thus AH" (o) > 1, which is again a contradiction. O

Lastly, in the next lemma we present an easy combinatorial result showing that configura-
tions with energy below a certain threshold must have rows/columns with energy difference
smaller than or equal to one. This fact will be used several times in the next sections to show
that such low-energy configurations display bridges or quasi-bridges.
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16 A. Zocca

Lemma 5 (Low-energy configurations properties) Let 0 € X be a WR configuration on a
K x L square lattice A. The following statements hold:

(1) If AH(0) < 2K — 1, then there exists a row r such that AH" (o) < 1;
(i) If AH(0) < 2K — 2, then there exists a row r such that AH" () = 0 or two rows
ri, rp such that AH" (o) < 1 and AH™? (o) < 1;
(iii) If AH(0) < K — 1, then there exists a row r such that AH" (o) = 0.

Analogous statements hold for columns if the upper bounds for AH (o) in (i), (ii), and (iii)
are replaced by 2L — 1, 2L — 2, and L — 1, respectively.

Proof Claims (i) and (ii) follow almost immediately from identity (17), in which AH (o) is
rewritten as the sum of K non-negative integers, being the energy differences on each of the

K rows. To prove (i) note that if it was the case that AH"i (¢) > 2 foreveryi =0, ..., K,
then AH (o) > 2K, which is a contradiction. Statements (ii) and (iii) and those regarding
energy difference on columns can also be easily proven by contradiction. O

In the next two sections these geometrical features of WR configurations on square lattices
will be leveraged to prove Theorem 2. Even if the underlying ideas are similar, the two possible
boundary conditions for the square lattice A require different combinatorial arguments and,
for this reason, we present them separately, first the case of periodic boundary conditions in
Sect. 5 and then that of open boundary conditions in Sect. 6.

5 Proofs for Square Lattices with Periodic Boundary Conditions

This section is devoted to the analysis of the energy landscape of the Widom—Rowlison model
on K x L square lattice A with periodic boundary conditions, which leads to the proof of
the corresponding statements in Theorem 2.

The section is organized as follows. First, we present a lower bound for the communication
height between any pair s, s of stable configurations, see Proposition 3. We then introduce a
reduction algorithm, which is then used in Proposition 4 to build a reference path w* : s — §'.
The existence of such a path shows that the lower bound given in Proposition 3 is sharp and
concludes the proof of Theorem 2(i). We then use the reduction algorithm to construct a
path with prescribed height from every WR configuration o ¢ X* to one of the M stable
configurations proving in this way Theorem 2(ii).

Proposition 3 (Lowerbound for @ (s, ")) Consider the Widom—Rowlison model onthe K x L
square lattice A with periodic boundary conditions with (K, L) # (2,2), (2,3). The com-
munication height between any pair of stable configurations s, s' € X° in the corresponding
energy landscape satisfies
/ {21( ifK =L,
P(s,s)—H(s) = . . (18)
min{2K,2L}+1 ifK #L.
Proof Modulo relabeling particle types, we can assume without loss of generality thats = s(!)
and s’ = s® and associate the color gray to particle of type 1 and the color black to those
of type 2. Let é : X — X be the function that maps each configuration o € X into the
configuration £ (o) with the same empty sites and where all the particles that are not black
nor gray are replaced by gray particles, i.e., for every v € A set

- o) if o (v) € {0, 1, 2},
[5(@)]) := {1 ifo() e (3,.... M) (19)
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Low-Temperature Behavior of the Multicomponent... 17

The resulting configuration is clearly a WR configuration, i.e., §(o) € X, and has the same
energy as the original one, H(c) = H (é (0)), since they have the same number of particles.
Hence, every path @ : s — s of length n is mapped by é to a new path o := é (w) of the
same length from s to s and whose energy profile is identical to that of the original path, i.e.,

H() = HE(w) = Hw), Vi=1,....n,

and, in particular, @,, = @,,. This observation allow us to work for the purpose of this proof
asif M = 2.

Assuming without loss of generality that K < L, we need to show that in every path
w : s — § there is at least one configuration with energy difference greater than or equal to
min{2K + 1, 2L}. Take a path w = (wy, ..., w,) from s to s’. Without loss of generality, we
may assume that there are no void moves in w, i.e., at every step a particle is either added or
removed, so that H(w;+1) = H(w;) = 1 forevery 1 <i <n — 1.

If two WR configurations o, 0’ € X with d(o, 0’) = 1 (see Definition (5)) are such that
o does not display a black bridge in a certain row/column and o’ instead does, then o must
have a quasi-bridge in that row/column. Moreover in this case H (¢’') = H (o) — 1, since the
bridge is created by adding a black particle in the only empty site of that row/column.

Since s has no black bridges, while s’ does, at some point along the path @ of length n
there must be an index n* < n such that configuration w,+ that is the first to display a black
bridge (horizontal or vertical) or a black quasi-cross. Clearly n* > 2. We claim that

max{AH (wp+—1), AH(wp+—2)} = min{2K + 1,2L}.
We distinguish the following three cases:

(a) w,+ displays a black vertical bridge only;
(b) w,+ displays a black horizontal bridge only;
(c) wy~ displays a black quasi-cross.

Note that in case (c) we do not exclude the possibility that a black quasi-cross is created
simultaneously with a black bridge.

For case (a), let ¢* be the column where wj, displays the black vertical bridge. The previous
configuration wy+_1 along the path w differs from w,+ in exactly one site, say v’ € c¢*. By
construction, w,*—1(v") = 0 and w,+_; has a black vertical quasi-bridge in column c¢*. In
any row the configuration w,+_1 cannot display

— a horizontal black bridge or quasi-bridge, since otherwise the definition of n* would
be violated: w,+_; would have black bridge (quasi-cross, respectively) having a black
quasi-bridge in column c*;

— a horizontal gray bridge, which cannot coexist with the black vertical quasi-bridge, in
view of Lemma 2(ii);

— a horizontal gray quasi-bridge, since the black bridge in column ¢* could not be created
with a single-site update, as illustrated in Fig. 5.

Therefore, by Lemma 3 AH”"i (wy+—1) > 2 foreveryi =0, ..., K — 1 and hence
K—1
AH(@p—1) = ) AH" (@po1) = 2K.
i=0
If AH(wp+—1) > 2K + 1, then the proof is complete. Assume thus that AH (w,+—1) = 2K
and consider the configuration w,+_» preceding w,+_ in the path w. By construction, w,=_»
differs from w,+_ by a single-site update, and thus AH (w,+—2) = AH (wy+—1) £ 1.
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18 A. Zocca

Fig. 5 Three single-site updates are needed to create a black bridge in column ¢*, since all the three sites in
the dashed box must be updated

If AH (wp+—2) = AH(wy+—1) +1 = 2K + 1, the proof is complete. We now consider the
other case in which AH (w,x—7) = AH (wp+—1) — 1 = 2K — 1 and show that this leads to a
contradiction. By construction in this case configuration w,+_» has exactly one more particle
than configuration w,+_1. The site where such a particle is added cannot be v’, otherwise
the definition of n* would be violated. All the other sites in column ¢* are already occupied,
hence w,*_» is identical to w,+_1 in column c¢*. In particular, w,*_ has a black quasi-bridge
in column ¢* as well. The configuration w,=_» cannot have any horizontal bridge, since the
existence of a black bridge would contradict the definition of n* and that of a gray bridge
is impossible by Lemma 2(ii). Since AH (w,+—2) = 2K — 1, Lemma 5(i) implies that there
exists then at least one row, say r’, with AH" ' (wy+—2) < 1, which means that w,+_» has a
horizontal bridge or quasi-bridge in row r’ in view of Lemma 3. Such a horizontal (quasi-)
bridge cannot be black, otherwise w,+*_» would have a quasi-cross, violating the definition
of n*. By Lemma 2(iii) and the presence of a black quasi-bridge in column c*, a gray quasi-
bridge could exist only in the row containing site v’. However, in this case it would then
be impossible to obtain a black vertical bridge in only two single-site updates, since the
minimum number of steps required is three, as illustrated in Fig.5. Hence, we arrived to a
contradiction, concluding the proof of case (a).

For case (b) we can argue as in case (a), but interchanging the role of rows and columns,
and obtain that max{AH (w,*—1), AH (wy+—2)} > 2L + 1.

For case (c), let r* and ¢* be respectively the row and the column where the black quasi-
cross lies in configuration wy+ and let v* the site where they intersect. We distinguish two
scenarios: (c1) the quasi-cross has exactly one empty site, which has to be v*, and (c2) the
quasi-cross has exactly two empty sites both different from v*. Figure 6 illustrates these two
possible scenarios.

Consider scenario (cl) first. The previous configuration w,+_; along the path w differs
from w,+ in exactly one site, say v’. By definition of n*, configuration w,+_; does not display
a quasi-cross, so such a site v’ has to lie either in row r*, to which we refer as case (c1.i)
(see Fig.7), or in column ¢*, to which we refer as case (c1.ii) (see Fig. 7). Furthermore, note
that the quasi-cross present in w,= could only have been created by the addition of a black
particle, hence w,+—1(v') = 0 and w,+(v') = §' (V).

In case (c1.i) w,+_1 is such that v’ lies in row r*, as in Fig.7. Then AH™ (wp+_1) = 2,
since row r* has exactly two empty sites, and AH" (w,+—1) > 2 for all rows r # r*, since
none of them can display a black bridge or quasi-bridge (by definition of n*) and neither a
gray bridge or quasi-bridge (by Lemma 2). Hence,

@ Springer



Low-Temperature Behavior of the Multicomponent... 19

(a) wn- in case (cl) (b) wy,- in case (c2)

Fig. 6 Schematic representation of the two possible scenarios when the configuration w, displays a black
quasi-cross

(a) wp+—1 in scenario (cl.i) (b)wn*,l in scenario (cl.ii)

Fig. 7 Schematic representation of configuration w,*_| in case (cl)

K—1
AH(@p—1) = ) AH" (@y—1) = 2K.
i=0

If AH(w,+—1) = 2K + 1, then the proof of case (cl.i) is complete. Suppose instead that
AH (wy+—1) = 2K and consider the configuration w,*_» preceding w,+_; in the path w. By
construction, the configuration w,+_, differs from w,«_; by a single-site update and thus
AH (wpx—3) = AH(wy+—1) £ 1.

If AH(wpx—2) = AH(wp+—1) +1 = 2K + 1, the proof is concluded. We now consider
the other case, in which AH (w,x—2) = AH (w,+—1) — 1 = 2K — 1 and show that this leads
to a contradiction, concluding the proof of case (c1.i). By construction configuration wy+_»
has exactly one more particle than configuration w,+_1. By Lemma 5(i) configuration w+_»
must have at least one row, say r’, such that AH" (wpx—2) < 1.1In view of Lemma 3, w,;x_»
has then to display a bridge or a quasi-bridge in row r’, which leads to a contradiction, since
on this row wy+_» cannot have

— ablack horizontal bridge, by definition of n*;

— a black horizontal quasi-bridge, since otherwise w,+_» would have a quasi-cross in row
r" and column c*, violating the definition of n*;

— a gray horizontal bridge or quasi-bridge, due to the presence of the black vertical quasi-
bridge in column ¢* in view of Lemma 2.

In case (cl.ii) we can argue similarly to case (c1.i), by interchanging the role of rows and
columns, and obtain that max{AH (w,*_1), AH (wy+—2)} > 2L +1>2K + 1.
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(@) wn+—1 in scenario (c2.i) (b) wn-—1 in scenario (c2.ii) (€) wn-—1 in scenario (c2.iii)

Fig. 8 Schematic representation of the three possible scenarios in case (c2)

Fig. 9 Schematic representation of configuration w,,_1 in scenario (c2.i) with a quasi-bridge in column ¢’

Consider now case (c2). We distinguish three scenarios, illustrated in Fig. 8, depending
where the last particle (that creates the quasi-cross in configuration wj+) is added: (c2.i) in a
site v/ # v* in row r* or (c2.ii) in a site v" # v* in column ¢* or (¢2.iii) in the site v = v*.

In case (c2.i), let ¢’ be the column where site v’ lies. We first notice that configuration
wp+—1 cannot have a vertical gray bridge or quasi-bridge in column ¢/, since otherwise it
would not be possible to add a black particle in site v’ in a single step, see Fig. 8. Moreover
wy+—1 has no horizontal black quasi-bridges, since any of them would create, together with
column c¢*, a quasi-cross, violating the definition of n*.

Suppose first that w,+_; has a vertical black quasi-bridge in column ¢/, as in Fig.9, i.e.

AH (wpe_y) = 1. (20)

By virtue of Lemma 2, there cannot be any horizontal gray bridges or quasi-bridges. Further-
more, wy+_1 has no horizontal black quasi-bridges, which would create a quasi-cross together
with column ¢, violating again the definition of n*. In view of Lemma 3, AH" (wy+—1) > 2
for every row r and thus

AH (wp+—1) > 2K.

If AH (wp+—1) > 2K +1, then the proof is complete. Suppose instead that A H (wp,«—1) = 2K
and consider the configuration w,*_» preceding w,=_1 in the path w. By construction, w,*_»
differs from w,+_1 by a single-site update and thus AH (w,+—2) = AH (wy+—1) £ 1.

It AH(wp+—2) = AH(wy+—1) + 1 = 2K + 1, the proof is concluded. We now con-
sider the other case in which AH (w,x_7) = AH(wp+—1) — 1 = 2K — 1 and show that it
leads to a contradiction. Configuration w,*_ must have at least one row, say r’, such that
AH" /(wn*_z) < 1 by Lemma 5(i). In view of Lemma 3, w,*_5 has then to display a bridge
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(a) wp-—1 in sub-case (1) (b) wn-—1 in sub-case (2)

Fig. 11 Schematic representation of the sub-cases (1) and (2) of scenario (c2.i) when condition (22) is satisfied

or a quasi-bridge in row r'. If ¥’ = r*, then w,*_ would have a black quasi-cross or a black
bridge, violating the definition of n*. If ¥’ # r*, then we also obtain a contradiction, since
in row 7’ w,*_ cannot have

— ablack bridge, by definition of n*;

— a black quasi-bridge, since otherwise w,+_» would have a quasi-cross in row r’ and
column c¢*, violating the definition of n*;

— a gray bridge or quasi-bridge, due to the presence of a black quasi-bridge in column c¢*
and Lemma 2.

Suppose now that configuration w,+_; does not have a vertical black quasi-bridge in
column ¢’. By virtue of Lemma 3, AH® (w,+_1) > 2. We first consider the case where

AH (wpe—1) = 2, Q1)

so that AH®' (wp*) = 1, which means that w,+ has an additional quasi-cross, namely the one
lying in row r* and column ¢/, see Fig. 10. In this case, we can conclude the proof by looking
at this other quasi-cross and arguing as in sub-case (3) of scenario (c2.iii), which will be
presented later.

Therefore, in view of (20) and (21), we can assume

AH (wpr_1) > 3. (22)

We then distinguish three sub-cases, depending on whether w,+_1 has (1) no vertical
quasi-bridges (see Fig. 11) or (2) at least one gray vertical quasi-bridge and no black vertical
quasi-bridges (see Fig. 11) or (3) at least one black vertical quasi-bridge (see Fig. 12).
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Vertical black quasi-bridge in a col- Vertical black quasi-bridge in a col- Vertical black quasi-bridge in col-
umn different from ¢” with empty umn different from ¢” with empty umn ¢’
site aligned with that of ¢* site not aligned with that of ¢*

Fig. 12 Schematic representation of w,+_| in sub-case (3) of scenario (c2.i) when condition (22) is satisfied

In sub-case (1), w,+—1 has no vertical quasi-bridges except the one in column c¢*, so by
Lemma 3 AH(0,+—1) > 2 for every ¢ # c*. This fact and (22) yield

L—1
AH(op—1) = Y AHY (1) = 2L,
j=0

and the proof of sub-case (1) is completed.

In sub-case (2), w,+—1 can have only one vertical gray quasi-bridge and it must lie in
column ¢” by Lemma 2, see Fig.11. Lemma 3 gives AH < (wp+—1) = 1. All the columns
¢ # ¢*, ¢, ¢” do not display a vertical quasi-bridge, so AH(w,+—1) > 2 by Lemma 3.
These facts and (22) yield

L—1
AH(op—1) = Y  AHY (1) = 2L — 1.
j=0

If AH(w,+—1) > 2L, the proof is complete. Suppose instead that AH (wp+—1) = 2L — 1
and consider the configuration w,*_» preceding w,+_1 in the path w. By construction, w,*_»
differs from w,+_1 by a single-site update and thus AH (wp,+—»2) = AH (wu+—1) £ 1.

If AH(wp—2) = AH(wp+—1) + 1 = 2L, the proof of sub-case (2) is complete. We now
consider the other case where AH (w,+—2) = AH(wp+—1) — 1 = 2L — 2 and show that
this leads to a contradiction. In this case, by construction, configuration wy+_; has exactly
one more particle than configuration w,+_1. Such a particle cannot lie in site v’, otherwise
wp+—2 would have a quasi-cross, violating the definition of n*. Furthermore, using the fact
that AH (w,+—2) = 2L — 2 > 2K — 2 and combining Lemmas 3 and 5(ii), we obtain that
the configuration w,+_, must have at least two horizontal quasi-bridges or one horizontal
bridge, which cannot exist neither black or gray by Lemma 2 due to the presence of the black
quasi-bridge in column ¢* and the gray quasi-bridge in column ¢”. Hence, we obtained a
contradiction, completing the proof of sub-case (2).

Consider now sub-case (3), which is illustrated in Fig. 12. Since none of the rows can
display a bridge or a quasi-bridge without contradicting Lemma 2 or violating the definition
of n*, it follows from Lemma 3 that AH (w,+—1) > 2K.

If AH(wy+—1) > 2K + 1, the proof of the sub-case is complete. Consider now the
remaining case, namely AH (w,+—1) = 2K. Consider the configuration wy,+_» preceding
wy+—1 in the path w. By construction, the configuration w,=_, differs from w,«_; by a
single-site update and thus AH (wp+—2) = AH (wy+—1) £ 1.
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(a) wp-—1 in sub-case (1) (b) wn-—1 in sub-case (2)

Fig. 13 Schematic representation of the two sub-cases in scenario (c2.ii)

If AH(wy+—2) = AH(wy+—1) + 1 = 2K + 1, the proof of sub-case (3) is completed.
Consider now the other case where AH (w,x_3) = AH(wy+—1) — 1 = 2K — 1, so that
configuration w,*_; has exactly one more particle than configuration w,+_ (in a site which
cannot be v’). Lemma 5(i) yields that configuration w,+_, must have at least one row with
energy difference strictly less than 2 and thus must display a bridge or a quasi-bridge there, by
Lemma 3. Since w,=_3 has all the vertical black quasi-bridges that w,+_; has, it is impossible
for wy_» to display

— ablack horizontal bridge, by definition of n*;

— a black horizontal quasi-bridge, since otherwise it would create a quasi-cross together
with the vertical quasi-bridge in column c¢*, violating the definition of n*;

— a gray horizontal bridge by Lemma 2, due to the presence of the vertical black quasi-
bridge in column c*, see Fig. 12;

— agray horizontal quasi-bridge, as every row has either a black particle or two empty sites,
see Fig.12.

Hence, we obtained a contradiction, completing the proof of sub-case (3).

In scenario (c2.ii), the configuration w,«_ preceding w,+ along the path @ cannot have
any vertical quasi-bridge, since it would create a quasi-cross together with row r*. We dis-
tinguish two sub-cases, depending on whether w,+_1 has (1) no gray vertical quasi-bridges,
see Fig. 13a, or (2) at least one gray vertical quasi-bridge, see Fig. 13b.

Insub-case (1),by Lemma3 AH¢(w,+—1) > 2inevery column c and hence A H (wp+_1) >
2L.

In sub-case (2), it is clear that there can be only one gray vertical quasi-bridge, which
intersects row r* in the empty site different from v*. By looking at the energy difference
in columns and arguing similarly to the final part of sub-case (2) of scenario (c2.i), we can
conclude that

max{AH (wp+_1), AH(wp+_2)} > 2L.

Consider now scenario (c2.iii). By definition of n*, w,+_; does not have any black bridge
and by Lemma 3 it cannot have any gray bridge either. We distinguish three sub-cases,
depending on whether w,«_1 has (1) no vertical quasi-bridges, see Fig. 14a, (2) gray vertical
quasi-bridges, but no black vertical quasi-bridges, see Fig. 14b, or (3) black vertical quasi-
bridges, see Fig. 15.

Insub-case (1),by Lemma3 AH¢(w,+—1) > 2inevery column c and hence A H (wp+_1) >
2L. In sub-case (2), w,+—1 can have only one vertical gray quasi-bridge and it must lie in
column ¢’ by Lemma 2, see Fig. 14b. Lemma 3 gives AH ¢ (on*—1) = 1. All the columns
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(@) wn-—1 in sub-case (1) (b) wn-—1 in sub-case (2)

Fig. 14 Schematic representation of sub-cases (1) and (2) in scenario (c2.iii)

wp+—1 with the empty site of col- wy-_1 with the empty site of col- wy-_1 with the empty site of col-

umn ¢’ in row r* umn ¢’ aligned with that of column umn ¢ not in row r* and not

c* aligned with that of column ¢*

Fig. 15 Schematic representation of configuration wj,+_| in sub-case (3) of (c2.iii)

¢ # ¢’ do not display a vertical quasi-bridge, so AH(0,+—1) > 2 by Lemma 3. These facts
and (22) yield

L—1
AH(wpe—1) = Y  AH%(0p=—1) = 2L — 1.
j=0
If K < L, then AH(wpx—1) > 2L — 1 > 2K + 1 and the proof of sub-case (2) is

complete. If K = L and AH (w,+—1) > 2L, then the proof is also complete. Suppose instead
that K = L and AH(w,+—1) = 2L — 1 = 2K — 1 and consider the configuration wy+_;
preceding wy+_1 in the path w. By construction, w,+_» differs from w,+_; by a single-site
update and thus

AH(wp+—2) = AH(wy+—1) £ 1. (23)

Consider the case where AH (wp+_3) = AH(wp+—1) — 1 = 2K — 2, which means that
configuration w,+_; has exactly one more particle than configuration w,+_1. Lemmas 3 and
5(ii) together imply that the configuration wy,+_, must have at least two horizontal quasi-
bridges or one horizontal bridge, which cannot exists neither black or gray by Lemma 2 due
to the presence of the black quasi-bridge in column ¢* and the gray quasi-bridge in column
¢’. Hence, AH (wy+_3) # 2K — 1, and from the fact that AH (w,+—1) = 2K — 1 and (23) it
follows that AH (w,=—2) = 2K = 2L, which completes the proof of sub-case (2).

In sub-case (3), illustrated in Fig. 15, the presence of a vertical black quasi-bridge in
a column ¢” # ¢* means that there are no horizontal quasi-bridges in w,*_1. Indeed the
presence of a horizontal black quasi-bridge together with the quasi-bridge in column ¢”
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would create a quasi-cross, violating the definition of n*. Furthermore, it is impossible for
wp*—1 to have a horizontal gray quasi-bridge, since every row has either a black particle or
two empty sites, see Fig. 15. Since trivially w,+_; displays no bridges either, by applying
Lemma 3 to the rows, we get AH (w,+—1) > 2K.

If AH(wy+—1) > 2K + 1, then the proof of sub-case (3) is complete. Suppose instead
that AH (wy+—1) = 2K and consider the configuration wy,+_» preceding w,+_; in the path
. By construction, the configuration wy+_; differs from w,+_1 by a single-site update and
thus AH (wy+—2) = AH (wyx—1) £ 1.

If AH(wy+—2) = AH(wp+—1)+1 = 2K +1, then the proof of sub-case (3) is complete. We
now consider the other case where AH (wy,+—2) = AH (w,+—1) — 1 = 2K — 1 and show that
it leads to a contradiction. By Lemma 5(i) there exists a row r’ such that AH” ' (wpx—2) < 1.
On such a row w,+_» then has to display a bridge or a quasi-bridge, thanks to Lemma 3. This
leads to a contradiction, since w,«_» cannot have in row r’

— ablack bridge, by definition of n*;

— a black quasi-bridge, since otherwise wy,+_» would have a quasi-cross in row r’ and
column ¢”, violating the definition of n*;

— a gray bridge or quasi-bridge, since every row has either a black particle or two empty
sites, see Fig. 15.

This concludes the proof of sub-case (3) of scenario (c2.iii) and thus the proof of the propo-
sition. O

We describe now an iterative procedure, to which we will refer as reduction algorithm
that builds a path @ from a suitable initial WR configuration o to any of the M stable
configurations. Assume that the target stable configuration is b € X and that b is the
configurations with all sites occupied by particles of type b, to which we refer as black
particles.

The algorithm outputs a path in which black particles are progressively added column by
column to the original configuration ¢ removing all non-black particles when necessary. In
order to be able to start this procedure, we require that the initial configuration o is such that
all the sites in the first vertical stripe C are either empty or occupied by black particles, i.e.,

o() €{0,b} YvecC. (24)

The desired path w is constructed in such a way that the maximum energy achieved along the
path is H(o) + 1 and is built as the concatenation of L paths oD, ..., oY The intuition
is that for every j = 1,..., L along path /) the non-black particles are removed from
column ¢, and simultaneously black particles are progressively added on column c;.
More specifically, the path o) goes from oj to 0j41, where we define 0y = o and for
j=2,...,L+1

b ifve U a,
oj(v):=10 ifvecjando(v) #b, (25)
o (v) ifvec; anda(v)=borveUiL:j+1 Ci.
Clearly, due to the periodic boundary conditions, the column indices L and O should be
identified. It is easy to check that o741 = b. We now describe in detail how to construct
each of the paths ') for j = 1, ..., L. We build a path /) = (a)ij), . w;QH) of length

2K + 1 (but possibly with void moves), with ng) = o; and wéjgﬂ = o0j+1. We repeat

iteratively the following procedure for everyi =1, ...,2K:
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— Ifi =1 (mod 2), consider site v = (j + 1, (i — 1)/2):

~ Ifw” (v) € {0, b}, then set 0, (v) = 0’ (v);
- If a);J )(v) ¢ {0, b}, then remove the non-black particle in site v from configuration

@ with " (v) = 0 and thus

w;”’, obtaining in this way a new configuration w; B

H() = H@!) +1.

— Ifi =0 (mod 2), consider site v = (j,i/2 — 1):
— If o (v) = b, then set 0, () = 0 (v) = b;
- If a);j )(v) = 0, then add a black particle in site v, obtaining in this way a new

configuration wl.(i)l such that wfi)l(v) = b and H(w}fl) = H(wlgj)) — 1. This is
WR configuration because, by construction, there are no particles of different type
in any neighboring sites of v. In particular, the site at the right of v has possibly been

emptied at the previous step, if it was occupied by a non-black particle.

Note that there are no non-black particles in cp in configuration o by virtue of (24) and this
properties is inherited by all the configurations oy, ..., 0. As a consequence, in the last
path oD all steps corresponding to odd values of i are void. For every j = 1,..., L, the
configurations o; and o satisfy the inequality

H(oj+1) < H(oj),

since along the path /) connecting them the number of black particles added in column
c; is greater than or equal to the number of non-black particles removed in column ¢ .
Moreover,

D, < H(oj) + 1,

since along the path w/) every particle removal (if any) is always followed by a particle
addition. These two properties imply that the path w : ¢ — b created by concatenating
oW ... o) satisfies @, < H(o) + 1, and thus

®(0,b) — H(o) < 1.

Note that this procedure can be adapted to construct a path from ¢ € X with target any other
stable configuration, say s™M m=1,..., M, provided that the following condition holds:

o) € {0,m} YveC. (26)

that is o has only empty sites or particles of type m in the first vertical stripe.

We now show how the reduction algorithm can be used to build a reference path with
prescribed energy height between any pair of stable configurations. The maximum energy
barrier along such a reference path matches the right-hand side of inequality (18), proving
Theorem 2(i).

Proposition 4 (Reference path between stable WR configurations) Consider the K x L
square lattice A with periodic boundary conditions with (K, L) # (2,2), (2,3), (3, 2). For
every pair of stable configurations s, s’ € X* there exists a path @* : s — s in X such that

2K fK=1L,

Por —H(S) = {min{ZK, 2V 41 ifK £L.
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Proof In this proof we associate the color gray to the type of particles present in configuration
s and the color black to that present in configuration s’. Without loss of generality we may
assume that K < L. We then distinguish two cases, depending on whether (a) K = L and
(b) K < L. This distinction is necessary in order to obtain a reference path that yields a
matching upper bound for inequality (18).

Consider case (a) first. We will show that there exists a path w* : s — s such that
@« — H(s) =2K = 2L.If K = 2, »* is simply the path that gradually removes all the four
gray particles that s has and then add four black particles one by one; one can immediately
check that @+ — H(s) = 4 = 2K. We henceforth assume that K > 3. We construct the path
w* as concatenation of three paths, which we denote by w", ®® and »®, respectively.

We first build a path @ of length 4(K — 1) + 3 as follows. First remove in two steps
the gray particles in sites (0, 0) and (0, K — 1), obtaining configuration a)gl)
H (W) = H(s) + 2, as illustrated in Fig. 16.

Then, iteratively define configuration a)ﬂzi from a)ﬂzi_] fori =0,...,4(K —2)+3as
follows:

with energy

— If i = 0 (mod 4), then obtain configuration wfllJ:F

( | from a)ﬂ:i by removing the gray
particle in site (L — 1, [7]).

— Ifi = 1 (mod 4), then obtain configuration o) | from wglﬁi by removing the gray

: 4 —
particle in site (1, [7]).

— If i = 2 (mod 4), then obtain configuration “’4(11421‘7 | from wf&i by removing the gray

particle in site (0, L%J + 1).
— Ifi =3 (mod 4), then obtain configuration otV

; 4ti—1 rOmM a)fll_gi by adding a black particle
in site (0, 7 ]).

Note that the step corresponding to i = 4(K — 2) + 2 is void, since there is no particle in
site (0, K — 1) to be removed, having been removed at the second step of (). Denote by

o= wil(),(_]) 43 the configuration obtained by this procedure, which has energy difference

AH(oc")=H(o) — H(s) = 2K — 1.
The way the path o1 is built guarantees that

D, — H(s) = ma(); H(n) — H(s) =2K. 27)

new

If K = 3, the second path w® is not needed: Consider the configuration o”” obtained from

o’ by removing the gray particle in the site (1, K — 1) and thus H(¢”") = H(c') + 1. The
configuration o satisfies the initial condition (24), so we can use the reduction algorithm to
build the path @® from o to s’. The concatenation of w() and w® yields a path w* from
s to s’ such that

Do — H(s) = 6 = 2K.

Therefore, we can assume that K > 4. In this case, we build a path @@ of length
K (K —4)+4, which gradually enlarges column by column the quasi-bridge that configuration
o’ has until a “black diamond” is created, obtaining the configuration that we denote by o”,
see Fig. 16.

Itis easy to check that A H (¢”") = 2K —2. Furthermore, it is possible to build such a black
diamond starting from ¢’ by alternatively removing a (gray) particle and adding immediately
after a (black) particle, so that the path »® satisfies
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e "
W3y 0 = W36

(2)

Fig. 16 Some snapshots of the paths o and w® for the 8 x 8 square lattice A with periodic boundary
conditions

@, — H(o') = max H(n) — H(c') = 1. (28)
new®

Consider now configuration o”” obtained from o” by removing the gray particle in the site

(1, K —1) and thus H(c"") = H(c")+ 1. Having only black particles or empty sites in stripe

C1, the configuration o’ satisfies the initial condition (24) and thus the reduction algorithm

can be used to build a path »® from ¢’ to s’ such that

@3 — H(") = max Hmn) — H@W"”) =1. (29)

new
In view of (27)—(29), the path w* obtained by concatenating w1, ©® and »® satisfies

D+ — H(s) =max H(n) — H(s) = 2K.
new*
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2 (2 /
Wgc) “J18> s

Fig. 17 Some snapshots of the reference path w* : s — s’ for the 8 x 9 square lattice A with periodic
boundary conditions

In case (b), where K < L, we will show that there exists a path w* : s — s’ such that
@« — H(s) = 2K + 1. We construct such a path ™ as the concatenation of two shorter paths,
oD and ©@, where 0V : s — o* and 0@ : 6* — §'. The intermediate configuration
o™ € X is the one obtained from s removing all the particles residing in the first vertical
stripe C1 (see also Fig.17), i.e.,

. s(v) if v e A\Cy,
o (v) ==

0 ifveCy.
The path o) = (a)il) wéllgﬂ) with a)(]) = sand w;]IgH = o™ can be constructed as
follows. Fori =1, ..., 2K, at step i we remove from configuration a)( ) the particle in site

@

(L%J i-K-lg D), 1ncreasmg the energy by 1 and obtaining in this way configuration w; ;

Therefore the conﬁguratlon o* is such that H(c*) — H(s) = 2K and
@, = H(c*) = H(s) + 2K. (30)

The second path @ : 0* — s’ is then constructed by means of the reduction algorithm,
which can be used here since the configuration o * satisfies condition (24), having no particles
on the vertical stripe C;. The algorithm guarantees that

D0 = H(o™) + 1. 31

The concatenation of w) and @@ yields a path o* : s — §, that, by virtue of (30) and (31),
satisfies @« = H(s) + 2K + 1. O

The reduction algorithm is also the key ingredient in the proof Theorem 2(ii), which we
now present.
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Proof of Theorem 2(ii) Assume without loss of generality that K < L. We want to show that
for every WR configuration o ¢ X the following inequality holds

®(0, X°) — H(o) < 2K.

We distinguish two scenarios, depending on whether (a) o has a vertical m-bridge for some
m =1,..., M or(b)o hasno vertical bridges. In scenario (a) we will show that @ (o, smy —
H (o) < 1, while in scenario (b) we will prove that @ (o, b) — H(0) < 2K, where b € X* is
the stable configuration with only particles of type b (to which we henceforth refer as black
particles).

Consider scenario (a) first, and, without loss of generality, assume that o has a vertical m-
bridge on the first column cg. Due to the hard-core constraints between unlike particles, there
cannot be particles on column cy, unless they are of type m. Hence, o satisfies condition (26)
and is then a suitable initial configuration for the reduction algorithm with target state s,
Using this procedure, we obtain a path @ such that @ (o, s(’”)) — H(o) < 1, since at every
step where a particle of type different m is (possibly) removed, at the next step a particle of
type m is added in the neighboring site.

As far as scenario (b) is concerned, denote by g the number of non-black particles that
configuration ¢ has in the first vertical stripe. By construction ¢ has no vertical bridges and
thus

g <2K —2. 32)

Let o™ € X be the configuration obtained from o by removing all the g non-black particles
in the first vertical stripe, namely

) {o(v) if v e A\Cjorv e Crando(v) =b,

0 if v e Cy and o (v) # b.
Clearly H(c*) — H(c) = g. We construct a path o) = (w(l) M ) from ol = o
y =& p =@’ 00 1=
to w;]_i)_l = o™ as follows. Fori = 1, ..., g, at step i we remove the first non-black particle

(1

in lexicographic order residing in stripe C from configuration w; ’, obtaining in this way

a);_l'_)l, which is such that H(a)f_l'_)l) = H(wi(l)) + 1. Thus,

&, =H(")=H(o)+g. (33)
Note that the configuration o * satisfies condition (24), since it all sites in the first vertical stripe
C are either empty or occupied by black particles. Thus, o * is a suitable initial configuration
for the reduction algorithm, which returns a path ©® : 6* — b such that

(pw(z) < H(G*) + 1. (34)

The concatenation of paths w" and w® yields a new path  : o — b that, in view of (33)
and (34), satisfies inequality @, < H (o) + g + L. Therefore, using (32), we get

®(o,b) —H(o) <g+1 < 2K.

[m}

In both Propositions 3 and 4 we excluded the special cases (K, L) = (2, 2), (2, 3), (3. 2),
in which it can be checked “by hand” that the communication height between stable config-
urations is still the highest energy barrier of the entire energy landscape and that takes the
values 3, 4, and 4, respectively.
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6 Proofs for Square Lattices with Open Boundary Conditions

In this section we prove the structural properties outlined in Theorem 2 for the energy land-
scape corresponding to the Widom—Rowlison model on a square lattice A with open boundary
conditions. The proof approach is the same as that used in Sect.5 for square lattices with
periodic boundary conditions, but a few details and counting arguments need to be adjusted
appropriately, in view of the different structure that rows and columns have in this case, as
one notice by comparing Lemmas 3 and 4.

This section is organized as follows. We first prove a lower bound for the communication
height between any pair of stable configurations, see Proposition 5 below. We then introduce a
modified version of reduction algorithm introduce in Sect. 5 that leverages the open boundary
conditions and use it to exhibit a reference path between any pair of stable configurations
(Proposition 6) that attains the lower bound in Proposition 5, completing in this way the
proof of Theorem 2(i). Lastly, we use again the reduction algorithm to construct paths with
a prescribed energy height from every configuration o ¢ X to the subset X, proving
Theorem 2(ii).

Proposition 5 (Lowerboundfor @ (s, s)) Consider the Widom—Rowlison model onthe K x L
square lattice A with open boundary conditions. The communication height between any pair
of stable configurations s, s' € X* in the corresponding energy landscape satisfies

@(s,s') — H(s) > min{K, L} + 1.

Proof Similarly to what has been done in the proof of Proposition 3, also for this proof we
can work under the assumption that M = 2. Indeed, using the same endomorphism & of the
space space & introduced in (19), every WR configuration o with M particle types is mapped
to anew WR configuration & (o) that, while having only two types of particles, has the same
energy as the original configuration o. In particular, every path w : s — s’ is mapped to a
path £(w) : s — s with the same energy profile and height, since

HE)) = HE () = Hw). Yi=1,..n.

We henceforth assume that M = 2 and, modulo a relabeling of the particle types, we can
assume that s = s(1) and s’ = s® and associate the gray color to particles of type 1 and the
black color to those of type 2.

Furthermore, without loss of generality, we may assume that K < L. We need to show
that in every path  : s — §' there is at least one configuration with energy difference greater
than or equal to K + 1. Take a path = (wy, ..., ®,) and, without loss of generality, we
may assume that there are no void moves in w, i.e., at every step either a particle is added or
a particle is removed, so that H(w;+1) = H(w;) £ 1 forevery 1 <i < n — 1. Since s has
no black bridges, while s” does, at some point along the path w there must be a configuration
wy+ that is the first to display a black vertical bridge or a black horizontal bridge or both
simultaneously (i.e. a black cross). We claim that

max{AH (wp+—1), AH(wpx—2)} > min{K, L} + 1.
We distinguish the following three cases:

(a) w,+ displays a black vertical bridge only;
(b) w,+ displays a black horizontal bridge only;
(c) wy+ displays a black cross.
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These three cases cover all the possibilities, since the addition of a single particle cannot
create two parallel bridges simultaneously.

For case (a), we claim that the energy difference in every row is greater than or equal to
one. Suppose by contradiction that there exists a row r* such that A H ™ (wy+) = 0. Then, by
Lemma 4, w,= would have a bridge in row r*. Such a bridge cannot be black, since otherwise
wy,+ would have a black cross, and neither gray, which by Lemma 2 could not coexist with
the black vertical bridge that w,+ has, contradiction. Hence AH" (w,+) > 1 for every row r
and thus

K—1
AH(wp) = Y AH" (wpr) = K.
i=0
The previous configuration w,+_1 along the path w differs from w,= in exactly one site, say v*,
which is such that w,«_1 (v*) = 0 and w,+ (v*) = §'(v*). Hence AH (w,+—1) = AH (w,+)+1
and therefore

AH(wp+—1) > K + 1.

For case (b) we can argue as in case (a), but interchanging the role of rows and columns,
and obtain that

AH(wy+—1) > L+1>K +1.

For case (c), let r* and c¢* be respectively the row and the column where the black cross
lies in configuration w,+. The previous configuration w,=_; along the path  differs from
wy* in exactly one site, denoted by v*, which has to be the site where row * and column c*
intersect (otherwise configuration w,=_1 would have a black bridge, violating the definition
of n*). Furthermore, AHS (wy+—1) > 1, since wps—1 (v*) = 0 by construction. We claim
that the energy difference in every column ¢ # ¢* is also greater than or equal to one for
configuration wy+_1, namely

AH (wpr—1) > 1, Y # c*. (35)

These inequalities follow from Lemma 4 after noticing that in each of these L — 1 columns
configuration w,+_1 cannot display neither a black vertical bridge (by definition of n*), nor
a gray vertical bridge, since every column ¢ # c¢* has at least one black particle (at the
intersection with row r*). Summing the energy difference of all columns we get

L—1
AH(@p—1) = ) AH (@) = L. (36)
j=0

If AH(wy+—1) > L + 1, then the proof is complete. If instead AH (w,+—1) = L, consider
the configuration w,=_, preceding w,+_1 in the path w. By construction, the configuration
wy—p differs from w,=_1 by a single-site update and thus

AH(wpx—2) = AH(wp+—1) £ 1. 37

Consider the case where A H (w,+—3) = AH (wy+—1)—1 = L—1.ByLemma5 configuration
wp*—2 has at least one column ¢ with AH¢(w,*—2) = 0. By Lemma 4, wy,+_, must have a
bridge in this column, see Fig. 18. However it cannot be a black bridge, due to the definition
of n*, and neither a gray bridge, since it would not be possible to obtain a black bridge in
row ry (which wy+ has) with only two admissible single-site updates (at least five steps are
needed, as shown in Fig. 18).
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Fig. 18 The dashed line encloses the 5 sites that should be updated if configuration w,+ _, had a gray bridge
in column ¢

Therefore, it is not possible that AH (w,+—3) = AH(wy+—1) — 1, and combining (36)
and (37) yields

AH(wp+—3) = AH(wp+—1) +1 =L+ 1.
m}

We now briefly illustrate how the reduction algorithm presented in Sect.5 should be
adjusted when A is a square lattice with open boundary conditions. Assume that we want to
build a path from a WR configuration ¢ € X to a target stable configuration, say b € X,
consisting of particles of type b to which we simply refer as black particles. The underlying
idea is the same as that of the reduction algorithm presented in Sect.5 for square lattices
with periodic boundary conditions: The procedure yields a path in which black particles are
progressively added column by column to the original configuration o removing all non-black
particles when necessary.

In order to be able to start this procedure, a suitable initial configuration o for this iter-
ative procedure needs to satisfy a condition weaker than (24), thanks to the open boundary
conditions of A: Indeed, we require only that the configuration o has all the sites in the first
column ¢ either empty or occupied by black particles, i.e.,

o(v) € {0,b} Vv ec. (38)

The algorithm we are about to describe uses in a crucial way the open boundary conditions
of A and, in particular, the fact that all the sites in the first column ¢ have no left neighboring
sites. For this reason, the procedure yields a path with a lower energy height than in the case
of a square lattice with periodic boundary conditions.

The path @ : o — b is built as the concatenation of L paths oV, ..., ™). Path 0/}

goes from o to 0, where we define oy := o and, for j =2,..., L + 1,

b ifve U,

oj(v) =10 ifvecj_yando(v) #D,

o) ifvec;jando@) =borve U c;.
Itcanbe checked thatindeed oy 1 = b.For j =1, ..., L the path o) = (a)g'/), e, wéz_i_l)
consist of 2K 4 1 moves (some of them possibly void), with wi” =oj and nglgﬂ =0j41.
We repeat iteratively the following procedure forevery i =1, ..., 2K:

— Ifi =1 (mod 2), consider site v = (j, (i — 1)/2).
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~ Ifw!” (v) € {0, b}, then set 0, () = w” (v).
- If a)i(j )(v) ¢ {0, b}, then remove the non-black particle in site v from configuration
)

;" , obtaining in this way a new configuration 0 with H (a)(j ) )=H (wfj )) + 1.

i+1 i+1
— Ifi =0 (mod 2), consider site v = (j — 1,i/2 — 1).

w

— I (v) = b, then set ), (v) = w” (v) = b.

- If a)i(j )(v) = 0, then add a black particle in site v, obtaining in this way a new

configuration ), such that w”, (v) = b and thus H(0}?)) = H(w!’) — 1. The
new configuration does not violated the WR constraints, since, by construction, all the
neighboring sites of v are either empty or occupied by black particles. In particular,

the site at the right of v has possibly been emptied in the previous step.

Note that for the last path () all steps corresponding to odd values of i are void, since there
is no column ¢y .

In words, the reduction algorithm alternately removes a non-black particle (if any) and adds
ablack particle, progressively column by column. Forevery j = 1, ..., L, the configurations
oj and 0 satisfy

H(ojt1) < H(o)),

Indeed, by looking at the way the path @) connecting them is defined, the number of black
particles added in column c;_; is greater than or equal to the number of gray particles
removed in column c ;. Moreover,

D, < H(oj) + 1,

since along the path (/) every particle removal (if any) is always followed by a particle
addition. The latter two inequalities imply that the path  : ¢ — b created by concatenating
oD, oD satisfies

P, = H(o) +1,

which shows that @ (o, b) — H(o) < 1.

We remark that, with a few minor tweaks, we can define a similar reduction algorithm
that builds a path w from a configuration o to the stable configuration s such that @, <
H (o) + 1, provided that the initial configuration has either empty sites or particles of type
m on the first column, i.e.,

o) € {0,m} Vv ecp. 39)

The next proposition uses the reduction algorithm to exhibit a reference path between any
pair of stable configurations s, s’ € X* with a prescribed energy height.

Proposition 6 (Reference path between stable WR configurations) Consider the energy
landscape corresponding to the Metropolis dynamics of the Widom—Rowlinson model on
a square lattice A with open boundary conditions. Then, for any pair of stable configura-
tions s, s’ € X* there exists a path w* : s — §' in X such that

D+ — H(s) = min{K, L} + 1.

Proof Without loss of generality, we may assume K < L and show that there exists a path
*

@* : s — § such that @+ — H(s) = K + 1. We describe just briefly how the reference
path w* is constructed, since it is very similar to the one given in case (b) of the proof of
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s’

Fig. 19 Some snapshots of the reference path from s to s’ for the 8 x 8 square lattice with open boundary
conditions

Proposition 4. Figure 19 shows some snapshots of the reference path for a 8 x 8 square lattice
using again the convention that the particles types in s and s’ are colored in gray and black,
respectively. The path »* is the concatenation of two shorter paths, ®") and w®, where
o s - o*and w® : 0* — §, where o* is the WR configuration that differs from s
only by having all sites of the leftmost column ¢y empty, i.e.,

. {s(v) if v e A\co,
o (v) = .
0 if v € ¢p.
The path »'! consists of K steps, at each of which we remove the first gray particle in cg in
lexicographic order from the previous configuration. The last configuration is precisely o *,
which has energy H(0*) = H(s) + K, and, trivially, @,1) = H(s) + K. The second path
o : o* — § is then constructed by means of the reduction algorithm, which can be used
since configuration o * is a suitable initial configuration for it, satisfying condition (38). The
algorithm guarantees that @, = H(0*) + 1 and thus the concatenation of the two paths
oD and 0@ yields a path w* with @« = H(s) + K + 1. O

Proof of Theorem 2(i)—(ii) For the Widom—Rowlison model on a square lattice A with open
boundary conditions, statement (i) is an immediate consequence of the lower bound for the
communication height between stable configurations given in Proposition 5 and the matching
upper bound given by the reference path exhibited in Proposition 6.

We now prove statement (ii) using once more the reduction algorithm described earlier
in this section. The goal is to show that for every configuration o ¢ X* the inequality
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@ (0, X*) — H(o) < min{K, L} holds. Since we may assume, without loss of generality,
that K < L, it is enough to prove that

D0, X)—H() <K, Vo ¢,

We distinguish two cases, depending on whether (a) o has a vertical m-bridge on the first
column cqp for some m =1, ..., M or (b) o has no vertical bridge on cg.

In case (a), o has only particles of type m on column cp and, as such, is a suitable
starting configuration for the reduction algorithm with target state s, since condition (39)
is satisfied. Hence, we can build a path w : 0 — s gsuch that @, < H(o) + 1, showing
that in this case @ (0, s™) — H(o) < 1.

Consider now case (b). Since there is no vertical bridge on the first column ¢, Lemma 4
implies that o has at most K — 1 particles on cp; denote by g their number. In this case
we create a path w from o to any stable configuration s € X* as the concatenation of two
shorter paths, oD and 0@, where oV : 60 - o*, @ : 6* — s and the intermediate
WR configuration o* is the one obtained from o by removing the particles residing in the
leftmost column ¢, i.e.,

* o(v) if v € A\co,
o (v) ;= .
0 if v € ¢p.
The path @ can be easily defined by progressively removing all g particles in column
co, increasing the energy by 1 at each step. Therefore, the configuration o* is such that
H(o*) — H(o) = g and the following inequality holds:

&, <H(*)=H(©o)+g.

The path 0® : 6* — s is then constructed by means of the reduction algorithm described
earlier, using o * as initial configuration (condition (39) is satisfied for any m) and s as target
configuration. This procedure guarantees that

@w(z) < H(O'*) + 1.

The concatenation of the two paths @) and w® then gives a path w : o — s that satisfies
the inequality @, < H(o) + g + 1 and, since g < K by construction, we obtain
@(0,X') —H(o) < P(o,s) —H(o) =g+ 1=<K. o
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