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Abstract-We consider a stylized stochastic model for a 
wireless CSMA network. Experimental results in prior studies 
indicate that the model provides remarkably accurate throughput 
estimates for IEEE 802.11 systems. In particular, the model offers 
an explanation for the severe spatial unfairness in throughputs 
observed in such networks with asymmetric interference condi­
tions. Even in symmetric scenarios, however, it may take a long 
time for the activity process to move between dominant states, 
giving rise to potential starvation issues. 

In order to gain insight in the transient throughput character­
istics and associated starvation effects, we examine in the present 
paper the behavior of the transition time between dominant 
activity states. We focus on partite interference graphs, and 
establish how the magnitude of the transition time scales with the 
activation rate and the sizes of the various network components. 
We also prove that in several cases the scaled transition time 
has an asymptotically exponential distribution as the activation 
rate grows large, and point out interesting connections with 
related exponentiality results for rare events and meta-stability 
phenomena in statistical physics. In addition, we investigate the 
convergence rate to equilibrium of the activity process in terms 
of mixing times. 

Index Terms-CSMA networks, throughput starvation, inter­
ference graph, asymptotic exponentiality, mixing time, conduc­
tance. 

I .  INTRODUCTION AND MOTIVATION 

We consider a stylized model for a network of nodes sharing 
a wireless medium according to a CSMA-type protocol. The 
network is described by an undirected graph (V, E) where the 
set of vertices V represents the various nodes of the network 
and the set of edges E � V x V indicates which pairs of 
nodes interfere. In other words, nodes that are neighbors in the 
interference graph are prevented from simultaneous activity, 
and thus the independent sets correspond to the feasible joint 
activity states. A node is said to be blocked whenever the 
node itself or any of its neighbors is active, and unblocked 
otherwise. Each node activates (starts a transmission) at an 
exponential rate v whenever it is unblocked. The transmis­
sion durations of nodes are independent and exponentially 
distributed with unit mean. 

This research was financiaUy supported by The Netherlands Organization 
for Scientific Research (NWO) in the framework of the TOP-GO program 
and by an ERC Starting Grant. 

Let [2* � { O , I} v be the collection of incidence vectors 
of the independent sets of the interference graph (V, E), and 
let X; E [2* denote the joint activity state at time t, with 
its i-th element indicating whether or not node i is active at 
time t. Then (X; )t>o is a reversible Markov process [1] with 
stationary distribution 

vllxllt 
7rx(v) = lim IP'{X; = x} = L Ilylh' x E [2*, (1) t-+oo yEO* v 

with I lx l ll = LiEV Xi the number of active nodes in state x. 
The above model has a long history [ 2] -[ 4] .  It was rediscov­

ered in the context of IEEE 802.11 systems in [5] ,  and further 
developed in that setting in [6] ,  [7] . While the modeling of the 
IEEE 802.11 back-off mechanism is less detailed than in the 
model of Bianchi [8] ,  the general interference graph offers 
greater versatility and covers a broad range of topologies .  
Experimental results in [9] demonstrate that the model, while 
idealized, provides remarkably accurate throughput estimates 
for actual IEEE 802. 11 systems. It is also worth observing 
that the model amounts to a special instance of a loss network 
[10] , [11] , and that the stationary distribution corresponds 
to the Gibbs measure of the hard-core model in statistical 
physics [12] ,  [13] . 

An activity state in [2* is called dominant if it corresponds to 
an independent set of maximum size maxxEO* I lx l ll. It follows 
from the stationary distribution (1) that only the dominant 
states retain probability mass as v -7 00. This causes a severe 
problem, called spatial unfairness, when some nodes belong to 
fewer maximum-size independent sets than others as a result 
of asymmetric interference conditions [14] , and receive far 
lower or even zero throughputs .  

Even in symmetric scenarios where the long-term through­
puts are equal, however, potential starvation issues can occur, 
since it may take a long time for the activity process to move 
between dominant states .  Consider for example an interference 
graph where the nodes can be partitioned into two independent 
sets of maximum size. The activity process will spend roughly 
half of the time in each of the two associated dominant 
states as v -7 00. Since each of the nodes is active in 
one of the dominant states, they will all receive equal long­
term throughputs, so spatial unfairness is not an issue in 
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the long run. Yet, another source of severe unfairness arises 
as v -+ 00, because it will take an extremely long time 
for the activity process to move from one dominant state to 
the other (resembling meta-stability phenomena in statistical 
physics [15] , [16] ) .  As a result, each node will experience long 
sequences of transmissions in rapid succession, interspersed 
with extended periods of starvation. 

In order to gain insight in the above issue, we explore in 
the present paper the behavior of the Markov process (X; )t>o 
in a scenario with a complete K-partite interference graph 
(V, E). By this we mean that the nodes can be partitioned into 
K disjoint sets called components, such that two nodes block 
each other, if and only if they belong to different components. 
The key contributions of the present paper may be summarized 
as follows: 

(i) We examine the asymptotic behavior (as v -+ (0) of 
the transition time between various activity states, exploiting 
classical results for absorption times in birth-and-death pro­
cesses [l7] -[19] and a representation of the transition time as 
a geometric random sum. 

(ii) We establish that the magnitude of the transition time 
scales as 8 (v;3-1 ) , reflecting how 'rigid' the dominant activity 
pattern is as function of the activation rate v and the expo­
nent (3, which is completely determined by the sizes of the 
various components . 

(iii) We prove that in several cases the scaled transition time 
has an asymptotically exponential distribution and compare it 
with related exponentiality results for rare events [ 20] -[25] .  

(iv) We investigate the rate of convergence o f  the activity 
process to the equilibrium distribution, and demonstrate that 
the mixing time is of the same order as the escape time of the 
second-largest component. 

The remainder of the paper is organized as follows.  In Sec­
tion II we present a model description and some preliminary 
results . In Section III we examine the asymptotic behavior of 
the transition time in the case of a bipartite graph. Section IV 
describes the extension of the results to arbitrary partite 
graphs . In Section V we investigate the rate of convergence to 
equilibrium in terms of mixing times .  Section VI concludes 
with some remarks and a review of further extensions . 

II .  MODEL DES CRIPTION AND PRELIMINARY RESULTS 

Consider the Markov process (X; )t>o as described in the 
introduction with a complete K-partite interference graph 
(V, E). Thus the nodes in V can be partitioned into K disjoint 
sets called components, such that two nodes are connected 
by an edge in E, if and only if they belong to different 
components. In view of the symmetry, all the states with the 
same number of active nodes in a given component can be 
aggregated, and we only need to keep track of the number 
of active nodes, if any, and the component they belong to. 
This state aggregation yields an equivalent Markov process 
(Xt k,:o on a star-shaped state space n with K branches 
which emanate from a common root node and correspond 
to the components of the interference graph. Specifically, 
n = { O}U{ ( k , l ) : 1:S: l:S: Lk , 1:S: k:S: K}, where the center 

state 0 indicates that none of the nodes is active and state ( k ,  l )  
corresponds to the situation where l nodes are active in the k­
th component, denoted by Ck , with Lk denoting the size of Ck 
(see Figure 1) . Notice that n can be alternative described as 
{ O}UU �= l Ck· The transition rates of the process (Xt k,:o are 
given by q( O ,  ( k ,  1 ) )  = Lk V , q( ( k ,  l ) ,  ( k ,  l + 1 ) )  = (Lk - l )v, 
I = 1 ,  . . .  , Lk - 1 ,  q( ( k ,  1 ) , 0 )  = 1 ,  and q( ( k ,  l ) ,  ( k ,  1 - 1 ) )  = l , 
I = 2 , . . .  , Lk , k = 1 ,  . . .  , K. 

C2 

Fig. 1 .  Example of the state space 0 with K = 4. 
The stationary distribution of the process (Xt k::o reads 

Denote by 

T(k,h) ,(k2 , 12) ( V ) = inf{ t > 0 : Xt = ( k2' l2 ) IXo = ( k l' ld} 
the first-passage time of state ( k2' 12 ) starting in ( k1' h ) ,  which 
we also refer to as the transition time from state ( k l' h )  to state 
( k2' l2 ) .  In the next sections we will analyze the asymptotic 
behavior of the transition time as v -+ 00. As discussed in 
the introduction, the transition time provides useful insight in 
transient throughput characteristics and starvation effects in 
wireless CSMA networks . 

In preparation for the asymptotic analysis of general scenar­
ios, we first present a few results for the case where the two 
states ( k l' h )  and ( k2' l2 )  belong to the same component, i .e .  
k l = k2 and h > h. The presence of the other components is 

not relevant then for the transition time, and hence we focus 
on the case of just a single component (K = 1) , and drop 
the component index for now. When K = 1 ,  the process 
(Xt )t>o evolves as an elementary birth-and-death process on 
the state space {L, L - 1 ,  . . .  , 1 , 0} ,  so that we can exploit 
several classical results for such processes. 

A. Asymptotic growth rate 

We first state how the expectation of the transItIOn time 
Tt, , 12 (v) scales as v -+ 00. Here and throughout the paper we 
write f(v) rv g(v) to indicate that limv-+oo f(v)jg(v) = 1 as 
v -+ 00 for any two real-valued functions fO and gO. 
Proposition D.l. For L ?: h > l2 ?: 0, 

lET; ( )  l2! (L - l2 - I)! L- 12 -1 l, , 12 V rv L! 
v , v -+ 00. 

Proof First observe that lETt, , 12 (v) = L:�t
1 lETl, l -1 (v), 

so we can exploit a general result for birth-and-death pro-
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cesses [18] , which in the present case says that, for 0 < l � L, 
lETl,I-1 ( V )  = t L�=I :';((�? Now (2) implies that 7fn (v) = 
O( 7f L ( V ) )  as v --+ 00 for all n = l , . . .  , L - 1 ,  so that 

lET. ( )  rv � 7f L (v) _ (L - l)!( l  - I)! L-I 1, 1 -1 v 1 7f / ( V ) - L! 
v ,  v --+ 00. 

Thus lETl,l- l ( V )  = o(lETl2 +lh) as v --+ 00 for all l = h, · · · , 
12 ,  and hence lETl,,/2 ( V ) rv lETl2 +l,/2 ( V ) as v --+ 00. • 

In order to gain insight in starvation effects , we are partic­
ularly interested in the time for the activity process to reach 
the center state 0, referred to as escape time, because at such 
points in time nodes in other components have an opportunity 
to activate. Proposition 11. 1 shows that 

1 L 1 lETz"o ( V ) rv 

I/ - , v --+ 00. (3 ) 

Hence, the escape time grows as a power of v, where the 
exponent corresponds to the component size minus one, and 
is asymptotically not influenced by the starting state h .  

B. Asymptotic exponentiality 

Having obtained the asymptotic growth rate, we now turn 
attention to the distribution of the scaled escape time, and show 
that it has an asymptotically exponential distribution. We will 
leverage the following well-known result for birth-and-death 
processes, which is commonly attributed to Keilson [19] or 
Karlin and McGregor [17] . 

Theorem 11.2. Consider a birth-and-death process with gen­
erator matrix Q on the state space { O , . . .  , d} started at 
state d .  Assume that 0 is an absorbing state, and that the 
other birth rates {Adt�f and death rates {t.idf= l are positive. 
Then the absorption time in state 0 is distributed as the sum 
of d independent exponential random variables whose rate 
parameters are the d nonzero eigenvalues of -Q. 

Let Q (v) be the generator matrix of the birth-and-death 
process (Xt )t>o on the state space {L, L - 1 ,  . . .  , 1 , O} , with 
o an absorbing state. Let 0 < CX1 ( V )  < CX2 ( V ) < . . .  < CX L ( V ) 
denote the non-zero eigenvalues of - Q (v) . The property 
that the eigenvalues { CXi (v)} t= 1 are distinct, real and strictly 
positive, is well-known [26] ,  see also the proof of Lemma 11.3 .  

Applying Theorem 11. 2, we  obtain that 
L 

TL,O ( V ) � L Y;(v) , 
i= l 

(4) 

where Y1 ( V ) ,  . . .  , YL (v) are independent exponentially dis­
tributed random variables with lEY; (v) = 1/ CXi (v) . 

Intuitively, the eigenvalue CX1 (v) will become really small 
as v --+ 00, and so the mean escape time lETL,O ( V )  will be 
dominated by lEY1 (v) I/ CX1 ( V ) .  Combining (3 ) and (4) 
suggests that 

1 L CX1 ( V )  rv 

lETL,o (v) 
rv 

V L-1' V --+ 00. 

Indeed, we can make this precise with the following result 
for the growth rates of the eigenvalues as v --+ 00 and their 
relation to the mean escape time lETL,o (v) . The proof of 

the result is presented in Appendix A, and exploits detailed 
information about the growth rates of the eigenvalues obtained 
via symmetrization and the Gershgorin circle theorem. 

Lemma 11.3. 

lim CXi ( V )  . lETL,o (v) = { 1 ,  
v----+oo 00, 

i = 1, 
i = 2 , . . .  , L. 

The above lemma shows that the smallest eigenvalue CX1 (v) 
becomes dominant as v --+ 00, but also proves the asymptotic 
exponentiality of the escape time. Indeed (4) means that the 
Laplace transform of the scaled escape time is 

L 
S -l 

LTL,O(V) /IETL,O(V) (S ) = ]] ( 1 + CXi ( V )  . lETL,o ( V ) ) . 

Lenuna 11.3 then implies that 
1 

lim LTL o(V) /IETL o(v) (s ) = -- . 
v-+oo ' , 1 + S 

The continuity theorem for Laplace transforms then yields 
that the scaled escape time has an asymptotically exponential 
distribution as stated in the next theorem, where EXp(A) 
denotes an exponentially distributed random variable with 
mean 1/ A. 

TL o (v) d Theorem 11.4. lET�,o (v) --+ Exp( I) ,  v --+ 00. 

The above result may be interpreted as follows .  For large v, 
state L is frequently visited, while state 0 becomes rare. This 
suggests that the probability of hitting state 0 before the first 
return to state L becomes small . So the time TL,O ( V )  consists 
of a geometric number of excursions from L which return 
to L without hitting 0, followed by part of the excursion that 
hits O. Hence, apart from this final excursion, TL,O ( V )  is the 
sum of a large geometric number of i .i .d. random variables, 
which should be asymptotically exponential. 

The fact that the time until the first occurrence of a rare 
event is asymptotically exponential, is a widely observed 
phenomenon in probability [25] . In order to establish expo­
nentiality of hitting some subset B of the state space, one 
typically decomposes the process into regenerative cycles, and 
assumes that (i) the probability of hitting B in a single cycle 
is small, and (ii) the length of the cycle in which B is hit 
is asymptotically negligible compared with the mean cycle 
length [23 ] ,  [ 25] . For the case K = 1, both assumptions 
hold, and an alternative proof of Theorem 11. 4 can be obtained 
using [23 ,  Thm.l] (which is a generalized version of the 
theorem proved in [24] ) .  However, this general theorem for 
regenerative processes will fail for the majority of cases 
considered in this paper. For instance, in the case K = 2 and 
L1 = L2 (two identical components) ,  the process (Xt )t20 
will exhibit bistable behavior, in the sense that, as v --+ 00, 
it spends extremely long periods circling around either one 
of the leaf nodes. For analyzing the transition time between 
the two dominant leaf nodes, assumption (i) remains valid, 
because it is still extremely hard to go from one leaf to the 
other, but assumption (ii) will be violated. Indeed, when the 
process crosses all the way from one leaf to the other, the 
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length of the latter cycle will be of the same order as the entire 
hitting time. Despite the fact that the regenerative approach no 
longer works, we will prove (using different methods) in the 
next section that the scaled transition time between dominant 
states is still asymptotically exponential. 

Let us finally remark that for reversible Markov chains 
similar exponentiality results were established in [ 20] -[22] . 
Aldous [ 20] showed that a result like Theorem 11. 4 can 
be expected when the underlying Markov process converges 
rapidly to stationarity. Indeed, the Markov process (Xt k::o 
for the case K = 1 turns out to have a small mixing time. 
However, the picture changes drastically in the case K � 2, 
for which we prove in Section V that the mixing time is 
8 (v,B- l ) with (3 the size of the second-largest component; 
hence the mixing time is of the same order as the escape time 
of the second-longest branch, see (3 ) .  For large v, this implies 
that the Markov process is extremely slowly mixing, which is 
another way of understanding why the regenerative approach 
sketched above fails in this situation. 

III .  BIPARTITE INTERFERENCE GRAPH 

In this section we examine the asymptotic behavior of the 
transition time T(k,h) ,(k2 ,/2) ( V ) as v --+ 00 for any pair 
of states ( k l' h) and (k2,12) when the interference graph 
is bipartite. We will establish how the expectation scales 
(Theorem IILl) and use two different methods to prove that 
the scaled transition time has an asymptotically exponential 
distribution when states ( k1 , h) and (k2, 12) belong to different 
branches (Theorem III .2) .  Most of these results in fact extend 
to arbitrary partite graphs, as will be shown in the next section. 
However, we treat the case of a bipartite graph separately first, 
since it allows us to develop the key ideas in a relatively 
transparent setting, while being sufficiently rich to exhibit the 
essential qualitative characteristics of general scenarios . 

Consider a bipartite interference graph, i .e .  K = 2, where 
the two components C1 and C2 have sizes L1 and L2 , respec­
tively. In this case, the two branches of the state space along 
with the root node form a simple linear array. For notational 
convenience, we will therefore relabel the states ,  indicating 
the number of active nodes in C1 by a negative integer in 
{ -L1 , . . .  , - I, }  and representing the number of those in C2 
by a positive integer in { I, . . .  , L2} . 

The activity process (Xt k::o on n = C1 U { O} U C2 evolves 
as a birth-and-death process with transition rates 

q(l , [ + 1 )  = { I l l 
(L2 - l ) v  

q(l , [ - 1 )  = { iLl - I l l ) v  

yielding 

if - L1 :s: I < 0, 
if 0 :s: I < L2 , 

if - L1 < I :s: 0, 
if 0 < I :s: L2 , 

L/ ( V )=7l'O ( V ) (�1) vl , l=l , . . .  , Ll' 

7l'm ( V )=7l'o (v) (�) vm , m = l , o o . , L2 . 

(5) 

(6) 

A. Asymptotic growth rate 

We first determine how the expectation of the transition time 
T-I,,/2 ( V ) scales as v --+ 00. 

Theorem 01.1. For any 0 < h :s: L1 and 0 < h :s: L2, 

lET ( )  Ll + L2 L,-1 -It,/2 V rv v ,  V --+ 00. L1L2 (7) 

In the CSMA context, the above theorem implies that 
when at least one of the nodes in component k is currently 
active, k = 1 , 2, it will approximately take an amount of 
time LL-:L�2 vLk-1 before any number of nodes in the other 
component 3 - k will have a chance to transmit. 

Proof As before, note that for any h < h lETt, ,/2 (v) = 
L :�l1

1 lETt , 1+ 1 (v) , so we can again use a general result for 
birth-and-death processes [18] , which in the present case says 
that lETt,/ + l ( V )  = q(l.i+l) L�=-L' :';((:J, for -Ll :s: I < L2 . 
Now (5) and (6) imply that 7l'n (v) = O(LL, (v) ) as v --+ 00 
for all n = -L1 + l , o o. , min{L1 - l , L2} and 7l'n (v) 
0 ( 7l'/ ( V ) )  as v --+ 00 for all n = -L1 , . . .  ,1 - 1 , when I 
L1 + I,  . . .  , L2 . Thus, for -L1 :s: I < 0, as v --+ 00, 

lET. (v) rv � LL1 ( V ) _ (L1 - l l l )! ( l l l - 1 )! L,-1/ 1 1,/ + l [ 7l'/ ( V ) - Ll! v , 

and, for 0 :s: I :s: L2 , as v --+ 00, lETI,/ + l ( V )  scales as 

if 1 <  L1 , 

if I > L1 . 
(8) 

It follows that lETt,l+ l ( V )  = 0 (lET_1,O ( V ) )  as v --+ 00 for all 
[ = -L1'" . , -2 and [ = 1 ,  . . .  , L2 - 1 .  Hence, as v --+ 00, 

1 1 lET_I, ,/2 (v) rv lET_1,o (v) +lETo , 1 (v) rv 
Ll v

L1 -1 + L2 v
L1 -1 , 

which yields (7) .  • 
Remark 1. Theorem III .I only deals with the case where 
the two states - II and 12 belong to different components, 
but extends to the case where the two states belong to the 
same component. In case 0 :s: [2 < h :s: L1 , the transition 
time T-I,, -/2 ( V ) is not influenced by the presence of the 
second component, and its expected value thus follows from 
Proposition I Ll.  In case 0 :s: h < h :s: L2 , it may be deduced 
from (8) that lETt 1 ,/2 (v) rv lETt"I,+I( V ) as v --+ 00, yielding 

B. Asymptotic exponentiality 

if h < Ll 
if h = Ll , V --+ 00. 
if h > L1 

In the previous subsection we obtained the asymptotic 
growth rate of the mean transition time lET_I, h (v) as v --+ 00. 
We now turn attention to the scaled transition time and will 
prove that it has an asymptotically exponential distribution as 
stated in the next theorem. 
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Theorem 111.2. For any 0 < II � Ll and 0 < 12 � L2 
T-h,12(V) d E (1) lET-h,12(V) ---+ xp , v ---+ 00. 

Before providing a proof, we first present an interpretation 
of the above theorem. In order for the process to make a 
transition from state -h to state 12, it must first reach state O. 
Proposition 11. 1 indicates that the expected transition time from 
state -Ll to state -h is asymptotically negligible compared 
to the expected transition time from state -ll to state O. 
This means that the transition time from state -h to state 0 
asymptotically behaves as the transition time from state -Ll 
to state O. Theorem 11. 4 shows that the latter time, after 
scaling, has an asymptotically exponential distribution. Once 
the process has reached state 0 for the first time, there are two 
possible scenarios. With probability p = LI/(Ll + L2)' the 
process returns to state -1, and then almost surely falls back 
to state -Ll quite rapidly (compared with the time to reach 
state 0) . With probability 1 - p, the process moves to state 1, 
and then most likely is attracted to state 12 quite quickly. 

In conclusion, in order for the process to make a transition 
from state -h to state 12 it must visit state 0 once plus a 
geometrically distributed number of times with parameter p. 
The successive time periods to reach state 0 are independent 
and, after scaling, exponentially distributed. Observing that 
the sum of one plus a geometrically distributed number of 
independent and exponentially distributed random variables is 
again exponentially distributed, we arrive at the statement of 
the above theorem. 

Obviously, the above argumentation is heuristic, and in the 
next two subsections we will provide a rigorous proof. The 
first proof method is analytical in nature, and relies on an 
asymptotic characterization of the eigenvalues of the generator 
matrix, while the second proof is more probabilistic, and in 
fact closely mirrors the above intuitive explanation. 
Remark 2. Theorem III .2  only deals with the case where 
the two states -ll and l2 belong to different components, 
but extends to the case where the two states belong to the 
same component. In case 0 � 12 < h � L1, the transition 
time T-h ,-12 (v) is not affected by the presence of the 
second component, and thus has an asymptotically exponential 
distribution according to Theorem 11. 4 .  In contrast, in case 
o � II < h � L2, a fundamentally different situation emerges. 
In that case, a series of upward transitions from state h to 
state 12 occurs in rapid succession with high probability, so 
that the transition time converges in distribution to 0, even 
though its expectation may not tend to 0 and in fact grow to 
infinity as v ---+ 00 when h < L1, as observed in Remark 1. 

C. Analytical approach 

We now extend the analytical approach of Section II to 
prove the asymptotic exponentiality of the scaled transition 
time as stated in Theorem III .2. For convenience, we restrict 
attention to h = L1, but the proof readily extends to any 
hE{1, ... ,L1 -1}. 

Let Q(v) be the generator matrix of the birth-and-death pro-
cess (Xt)t20 on the state space { -L1, ... , -1,0,1, ... ,12} 
with h an absorbing state. Let 0 < /'1 (v) < /'2 (v) < . . .  < 
/'L1+12(V) denote the non-zero eigenvalues of -Q(v). 

Theorem 11. 2 implies that T-Llh(V) � Lf�iI2Yi(v), 
where Y1 (v), ... , YL, +12 (v) are independent and exponen­
tially distributed random variables with lEYi(v) = 1hi(v) . 

The following lemma shows that the smallest eigenvalue 
/'1 (v) becomes dominant as v ---+ 00, and implies the asymp­
totic exponentiality stated in Theorem 111. 2. The proof is 
similar to that of Lemma 11.3 and thus omitted. 

Lemma 111.3. 

lim /'i(V) ·lET-L, 12(V) = { 1, 
v--+oo ' 00, 

D. Probabilistic approach 

i = 1, 
i = 2, ... ,L1 + 12. 

We now present an alternative, probabilistic approach to 
establish the asymptotic exponentiality of the scaled transition 
time as stated in Theorem III .2. In contrast to the analytical 
method as used in the previous subsection, the probabilistic 
approach in fact extends to arbitrary partite graphs, but we 
first focus on the case of a bipartite graph in order to 
illuminate the key ideas. The approach relies on a stochastic 
decomposition of the transition time into independent random 
variables which are easier to handle. In order to obtain the 
stochastic decomposition, we consider the evolution of the 
process as it makes a transition from state -ll to a state 12, 
and define the following random variables: 

• T_I,,_I(V): time to reach state -1 for the first time; 
• T�°2,o(v): time to reach state 0 once the process has 

reached state -1 for the first time; 
• N: number of times the process makes a transition 0 ---+ 

-1 before the first transition 0 ---+ 1 occurs' 
• TJi�1 (v): time spent in state 0 before

' 
the i-th transition 

back t� state -1, i = 1, . . .  , N; 
• TO,I(V): time spent in state 0 before the first transition to 

state 1; 
• T�ii 0 (v): time to return to state 0 after the i-th transition 

back to �tate -1, i = 1, . . .  , N; 
• Tl ,12 (v): time to reach state 12 once the process has 

reached state 1 for the first time. 
By definition, the transition time may be represented as 

T !iT (0) -hh - -1,,-1 + T_1,0 (9) 
N "" ( A(i) (i) ) A + � TO,-1 +T_1,0 + TO,1 +T1,12' 
i=1 

where the dependence on the parameter v is suppressed for 
compactness .  We can make the following observations : 
• The random variables T-I,,-1 and T1,12 are distributed as 
typical hitting times for the respective pairs of states ;  
• The random variables T�ii,o, i = 0,1, . . .  ,N, are i . i .d .  copies 
of a typical transition time T -1 0; 
• The random variables TO,1 'and TJi�I' i = 1,2, . . .  , N, 
are i.i.d. copies of a random variable To � Exp((Ll + L2)v), 
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which represents the residence time in state 0; 
• N � Geo(p) ,  p = L'�L2' independent of the parameter v; 
• All the random variables are independent. 

Based on the stochastic representation in (9) and the above 
observations , we now proceed to give a proof of the asymptotic 
exponentiality of the transition time as stated in Theorem 111. 2. 
The proof consists of three main parts: (i) the first part 
establishes that the distribution of the scaled transition time 
T -I, h (v) asymptotically coincides with that of a dominant 
term U(v), which involves a random sum of i .i .d. random 
variables (Proposition IlIA); (ii) the second part serves to 
identify the asymptotic behavior of each of these random 
variables (Proposition I1I .5) ;  (iii) the third part then shows that 
a scaled random sum asymptotically behaves as the random 
sum of the scaled terms (Proposition I1I .6) .  

Part (i) :  According to  Theorem TILl and Remark 1 ,  the 
mean values of the random variables T�ii,o, i = 0 , 1 ,  ... , N, 
asymptotically dominate, i.e. they are an order-of-magnitude 
larger than those of all other random variables in (9) as 
v ---+ 00. This suggests that the asymptotic behavior of the tran­
sition time T -I, h (v) will be determined by that of U (v) = 

2::;:0 T�ii,o(v), and in particular that the distribution of the 
scaled transition time T -I, h (v) j lET_1, h (v) asymptotically 
coincides, as v ---+ 00, with that of U (v) j lEU (v). This follows 
as a special case of Proposition IlIA below, whose proof is 
technical, but relatively straightforward, and omitted because 
of page limitations. In passing we note that the above obser­
vations also imply that the expectation of T -l, ,/2 (v) scales 
as lEU(v) = ( 1 + lE N(v)) lET_1,0(V) = L't2

L2 lET_1,0(V), 
with lET-1,0(V) rv vL,-ljL1 as v ---+ 00 according to 
Proposition ILl, which corroborates Theorem 111. 1. 

Part (ii) :  In order to determine the asymptotic behav­
ior of the random variable T-1,0(V), we first observe that 
T-L"O(V) �T-L,,-l(V) + T_1,0(v). According to Theo­
rem 111. 1, the mean value of T _ L, ,-1 (v) is asymptoti­
cally negligible compared to that of T-1,0(V), which sug­
gests that the asymptotic behavior of T-1,0(V) is equiva­
lent to that of T-Ll'O(V). Since Theorem 11. 4 states that 
T-L"O(v)j lET_L"O(V) has an asymptotically exponential dis­
tribution, this would imply that the same holds for the scaled 
hitting time T-1,0(V)j lET_1,0(V), as is covered as a special 
case of Proposition I1I .5, stated and proved below. 

Part (iii): It remains to be shown that U(v)j lEU(v), with 
U(v) = 2::;:0 T�to(v), asymptotically behaves as the ran-
dom variable HiN 2::;:0 Y;, when T-1,0(V)j lET_1,0(V) � 
Y, and Y1, Y2, . . .  are i .i .d. copies of the random variable Y. 
This follows as a special case of Proposition 111.6 below, whose 
proof is in Appendix B. In particular, if N is geometrically dis­
tributed and Y is exponentially distributed, then U(v)j lEU(v) 
has an asymptotically exponential distribution as well . 

Proposition 111.4. Let T(v), U(v), V(v), W(v) be non­
negative random variables such that 
(i) limv-too lEV(v)j lEU(v) = 0 = limv-too lEW(v)j lEU(v); 
(ii) For every v > 0, U -V :S:st T :S:st U + W, i.e. Vt > 0 

lP'{U -V> t} :s: lP'{T > t} :s: lP'{U + W > t}; 
(iii) U(v)j lEU(v) � X as v ---+ 00, where X is a random 
variable independent of v with continuous c.d.f. 

Then T(v)j lET(v) � X as v ---+ 00. 

Proposition III.S. For any 0 < I :s: L, 
Tz o(v) d 
lETz,o(v) ---+ Exp(l), v ---+ 00. 

Proof The birth-and-death structure of the process and 
the strong Markov property yield the stochastic identity 
TL,O(V) �TL,l(V) +Tz,o(v), which gives the stochastic bounds 
TL,O(V) -TL,/(V) :S:st Tz,o(v) :S:st TL,O(V) (the two terms 
in the lower bound being dependent) .  It follows from The-

d orem 1104 that TL,O(V)j lETL,O(V) ---+ Exp(l) as v ---+ 00. In 
order to complete the proof, we can then use Proposition IlIA, 
taking U(v) = TL,o(v), V(v) = TL,l(v) and W(v) = O. The 
condition which needs to be checked is limv-too :�i�j = 0 ,  
which follows directly from Proposition 11. 1. • 

Proposition 111.6. For every v > 0, define SM(V) := 

2::�1 Xi(v), where M is an integer-valued random variable 
and {Xi(v)h>l is a sequence, independent of M, of i.i.d. 
copies of a random variable X(v), with lEX(v) < 00. Assume 

that X(v)j lEX(v) � Y as v ---+ 00, where Y is some unit­
mean random variable. Then 

SM(V) d 1 � 
lESM(v) ---+ lEM � Y;, v ---+ 00, 

where {Y;}i>l is a sequence, independent of M, of i.i.d. copies 
of the random variable Y. 

IV. ARB ITRARY PARTITE GRAPHS 

In this section we investigate the asymptotic behavior of 
the transition time T(k,,l,),(k2h)(v) as v ---+ 00 for any pair 
of states (k1,h) and (k2,l2) in arbitrary partite graphs . While 
the key ideas are similar to those used for the bipartite graph 
in the previous section, there are now some dependencies 
that require specific treatment and some different qualitative 
features that arise in certain scenarios. In particular, it turns 
out that the scaled transition time may no longer have an 
asymptotically exponential distribution. This scenario arises 
when there are longer branches than k1 , in which case the 
number of returns to the root node that dominate the transition 
time is no longer geometrically distributed plus one, but just 
geometrically distributed. 

As in the case of the bipartite graph, the proof approach 
involves a stochastic representation of the transition time, but 
some of the terms are now no longer entirely independent. In 
order to obtain the stochastic representation, we consider the 
evolution of the process as it makes a transition from a state 
(k1, h) to a state (k2, l2)' and define the following random 
variables: 
• T(k"I,),(k"l)(V): time to reach state (k1 ' 1) for the first time; 
• T(�l,l),O(V): time to reach state 0 after state (k1 ' 1 )  is visited 
for the first time; 
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• Nk: number of times the process makes a transition 0 ---+ 
(k ,  1), k -I- k2 , before the first transition 0 ---+ ( k2, 1) occurs; 
• T��ik,l)(V): time spent in state 0 before the i-th transition 
back to state (k ,  I) ,  k -I- k2 , i = 1, ... , Nk; 
• TO,(k2 ,1) (v): time spent in state 0 before the first transition 
to state ( k2, 1); 
• T(��l),O(V): time to return to state 0 after the i-th transition 
back to state (k ,  I) ,  k -I- k2 , i = 1, ... , Nk; 
• T(k2,1),(k2h) (v): time to reach state ( k2, h ) once the process 
has reached state ( k2, 1) for the first time. 

By definition, the transition time may be represented as 
d (0) T(k,h),(k2h) =T(k,h),(k"I) + T(k"l),O (10) 

Nk '" '" ( A(i) (i) ) A 
+ � � TO,(k,l) + T(k,I),O + TO,(k2,1) + T(k2,1),(k2h), 

k#k2 i=1 
where the dependence on the �arameter v is suppressed for 
compactness. Define L := 2::k=1 Lk , 'Y := Lv , and Pk := 
Lk/L for all k = l, . . .  , K . 

We can make the following observations: 
• The random variables T(k,h),(k"I) and T(k2,1),(k2h) are 
distributed as typical transition times for the respective pairs 
of states ;  
• The random variables T(��I),O are i . i .d .  copies of a typical 
transition time T(k,l),O, i = 0, ... , Nk, k -I- k2; 

• A A (i) . 
• The random varIables TO,(k2,1) and TO,(k,l)' k -I- k2, Z = 
1, ... , Nk, are i .i .d. copies of a random variable To � Exp("( ) ,  
which i s  the residence time in state 0; 
• N := 2::k#2 Nk � Geo( l - Pk2) , independent of the 
parameter v; 
• Given N = n, N = ( N1, ... , Nk2-1, Nkdl, ... , NK) 
has a multinomial distribution with parameters n and iiI, . . .  , 
Pk2-1, Pk2+1, '" , PK, with Pk = Pk/( l - Pk2) 

IF' {N = ( nl"'" nk2-1, nk2+1, ... , nK)} 

= Pk2 ( 1 - Pk2 )Lk"'k2 nk ( 2::k#2 nk ) II p�k 
nl, ·· ·  , nK k#k2 

= Pk2 ( 2::k#2 nk ) II p�k ; (11) nl, · · ·  , nK k#k2 
• All the random variables representing time durations are 
mutually independent, as well as independent of the random 
variables Nk, k -I- k2. 

Define L* := maxj#2 Lj , K* := {k -I- k2 : Lk = L*} ,  
and P* : =  I K* I L*/( I K* I L* + Lk2 )' 

We first use the stochastic representation (10) to establish 
how the expectation of the transition time scales. 

Theorem IV.1. For 0 < h ::; Lk, • 0 < h ::; Lk2 • kl -I- k2• 

( )  ( I{klEK*} I K* I ) L -l lET(k"I,),(k2h) v rv 

L + -L v' , v ---+ 00. 
* k2 

In the CSMA context, the above theorem implies that for 
any component k when some other component is presently 
active, it will roughly take an amount of time of the order vL * , 
L * = max#k Lj before any number of nodes in component k 

will get an opportunity to transmit. The proof of the above 
theorem is subsumed in that of the next one. 

We now proceed to determine the asymptotic distribution 
of the scaled transition time. 

Theorem IV.2. For 0 < h ::; Lk, • 0 < l2 ::; Lk2 • kl -I- k2• 
M T(k,h),(k2h)(v) 

� _1_ 2:1': 
lET(k"I,),(k2h) (v) lEM i=l 

" v ---+ 00, 

where M � Geo(p* ) + I{k,EK,} and Yi are independent 
exponentially distributed random variables with unit mean. 

Proof The proof is similar to that for the bipartite 
graph and is based on the stochastic representation (10) of 
the transition time T(k1h),(k2h)(v). Proposition II . 1  implies 
that lET(k,h),(k"l) (v) rv VLk,-2 and lET(k,l),O(V) rv vLk-1 
for every branch k. Moreover, lETO,(k,l)(V) = 0 ( 1), and it is 
easily verified that lET(k2,1),(k2h)(v) = O(VL,-I) similarly 
as in the proof of Theorem III .l. Thus the asymptotically 
dominant term in (10) is 

kEK* i=l i=l 
d for M = Geo(p* ) + I{k,EK*} and for any k E K* , where 

the latter stochastic equality follows from (11) and the fact 
that the random variables T(k,I),O are identically distributed 
for all k E K* . Taking Xi(v) := T(��1),o(v) and applying 
Propositions III A-III . 6 then completes the proof. Also, noting 
that lEM = I{k,EK,} +P* /( l -p* ) and lET(k,I),O = vL '-I / L * 
yields the statement of Theorem IVI. • 

The k-th branch, k -I- k2, is called weakly dominant if k E 
K* , i .e .  if Lk ;::: Lj for all j -I- k2. Based on Theorem IV2, we 
may distinguish two scenarios, depending on whether branch 
kl is weakly dominant or not. 

Suppose that branch kl is weakly dominant, i .e . Lkl = L* . 
In this case M � Geo(p* ) + 1 and so Theorem IV2 implies 
that for every 0 < h ::; Lkl and 0 < h ::; Lk2 

T(k1h),(k2h)(v) 
� Exp( l ) ,  v ---+ 00. lET(kl ,1,),(k2h) (v) 

Thus in this case the scaled transition time converges to an 
exponential random variable with unit mean as v ---+ 00. 

Suppose instead that branch kl is not weakly dominant, i .e .  
Lk, < L* . In this case M � Geo(p* ) and so Theorem IV. 2 
implies that for every 0 < h ::; Lkl and 0 < l2 ::; Lk2 

( ) Geo(p,) T(k"I,),(k2h) v 
� 1 - P* 2: y; 

lET(k"I,),(k2,12) (v) P* i=1 
" V ---+ 00, 

where Yi are independent and exponentially distributed ran­
dom variables with unit mean. 

V. MIXING TIMES 
In the previous sections we have analyzed the transient 

behavior of our Markov process (Xtk::o in terms of hitting 
times. In this section we turn attention to the long-run behavior 
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of our Markov process and in particular examine the rate of 
convergence to the stationary distribution. We measure the rate 
of convergence in terms of the total variation distance and 
explore the intimate connection between the hitting times and 
the so-called mixing time of our Markov process .  The mixing 
time describes the time required for the distance to stationarity 
to become small . It turns out that the mixing time is largely 
determined by the time it takes the process to escape from 
the second-longest branch in the state space, as formalized 
in Theorem VI below. In this section, we assume without 
loss of generality that the branches are indexed such that 
L1 2: L2 2: ... 2: L K, and denote by Ok the leaf node of the 
k-th branch. Also, we attach the starting state X(O) = x E n 
as a superscript to our notation for the Markov process, and 
thus write (Xt)t>o. 

A. Main result 

Our objective is to bound the maximal distance over x E n, 
measured in terms of total variation, between the distribution 
at time t and the stationary distribution: 

d(t) := max IIIP'{X: E . } -KIITV. xEO 

We define the mixing time of our process as 

tmix(E, v) = inf{t 2: 0 : d(t) :s: E} . 

Theorem V.l. The mixing time of the Markov process (Xt)t>o 
satisfies 

tmix(E, v) = 8 (vL2-1), 

i.e. ::3C1(E),C2(E) > 0 ::3vo > 0 such that for all v > Vo 

C1 (E) vL2-1 :s: tmix( E, v) :s: C2( E) VL2-1. 

Theorem VI shows that it can take an extremely long 
time for the process (Xtk::o to reach stationarity, especially 
when v is large. Such a long mixing time is typically due to 
the process being stuck for a considerably period in one of 
the components, and thus not visiting the states in the other 
components. This is particularly relevant when in the network 
has two or more dominant components which together attract 
the entire probability mass in the limit as v --+ 00. Indeed, in 
this case the mixing time provides an indication how long it 
takes for a certain fairness among the dominant components to 
occur. We will prove Theorem VI by deriving an upper bound 
for d(t) using coupling in Subsection V-B and a matching 
lower bound for d( t) using the bottleneck ratio and the notion 
of conductance in Subsection V-CO 

B. Upper bound using coupling 

It can be easily established that 

d(t) :s: d(t) := max IIIP'{X: E . } -IP' {Xi E . } IITV. x,yEO 

We consider d(t) instead of d(t), because it can be bounded 
using a standard coupling technique. Consider all couplings 
of the processes (Xl', Xi) with the property that both (Xt) 
and (Xi) are Markov processes that have the same generator. 
Moreover, assume that the coupling is such that the two 

processes stay together at all times after they have met for 
the first time. Under these assumptions , we have that 

IIIP'{X: E . } -IP' {Xi E . } IITV 
= max lIP' {X: E A} -1P'{Xi E A} I A<:;;O 

= maxlP' {X: E A,Xi � A} 
A<:;;O 

:s: IP'{X: # Xi} = IP' {T:��Ple > t} , 

where the coupling time T:��ple = min{t 2: 0 : Xl' = Xi} 
denotes the first tin�e the two processes (Xl') and \ Xi) meet. 
Therefore, d(t) :s: d(t) :s: maxx,yEolP' { T:��ple > t f ' and the 
strength of this coupling inequality depends of course heavily 
on the choice of the coupling. 

We now introduce a birth-and-death process (Mt)t>o that 
will play a crucial role in our coupling . Let (Mtk::.o describe 
the position of a particle that lives only on the two longest 
branches of the state space C1 U {O} U C2, starts in the leaf 
node rh, and moves within the two branches according to the 
same transition rates as (Xt)t>o. Call the particle that moves 
according to (Mt)t>o particle O. Consider also a particle I 
and particle 2 whose positions are governed by the coupled 
Markov process (Xl', Xi). To be more specific, we denote the 
exact position of particle i at time t by (Kl, Li), i = 0 , 1 , 2 , 
with Ki the branch and Li the level. 

Proposition V.2. For all x, y E n, the coupling time T:��ple' 
with x = (k1' [1) and y = (k2' [2) is stochastically bounded 
from above by the absorption time T;h/h of state a1 of 
the continuous-time birth-and-death process (Mt)t>o starting 
from state Mo = a2· 

Proof The coupling is such that particles I and 2 stay 
together at all times after they have met for the first time. 
Before that time, whenever a particle i (i = 1 , 2) resides 
in C1 U C2, it is coupled to particle 0 in the following way: 
whenever particle 0 moves towards the root, particle i moves 
towards the root. In order to construct this coupling, we 
introduce a Poisson clock with rate L1. When the clock ticks, 
we first generate a [0 , 1] uniform random variable U and then 
do the following: move particle i down one level (towards the 
root) if U < LULl; also move particle 0 down one level 
if U < L� / L1. This coupling ensures that when L� = Li 
(i = 1 ,  2) and particle 0 moves down one level, then so 
does particle i. A consequence of the above coupling is that 
whenever particle 0 enters C1 both particle I and particle 2 
reside in C1. Extend the coupling by assuming that when 
particle 0 meets a particle i (i = 1 , 2) in some state in C1, 
the two particles keep making the same transitions as long as 
they are in C1. Hence, inevitably, by the time particle 0 reaches 
aI, the particles I and 2 are coupled. • 

Since, for every v > 0 and for all x, y E n, T:��ple(v) :S:st 
T82 ,8, (v) , we arrive at the following result: 

d(t) < d(t) < IP' {T . (v) > t} < IET82,8, (v) 
. - - 82,8, - t 

(12) 

It then follows immediately that tmix( E, v) :s: C 1 IET82 ,8, (V) . 
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Using Theorem lVI , we thus obtain the following upper 
bounds on the distance to stationarity and the mixing time. 

Proposition V.3. For the Markov process (Xtk::o the maxi­
mal total variation distance is bounded by 

d(t) 
< lET82 ,8, (v) 

rv 
� (L1 + L2 ) vL2-1 

- t t L1L2 
' V -+ 00, 

and the mixing time is bounded by 

1 1 (L1 + L2) L2-1 tmiAE,V) � - lET82,8, (V) rv - v , V -+ 00. 
E E L1L2 

C. Lower bound exploiting the bottleneck 

Consider the activity process (Xt)t>o with activation rate 
v. For S <;;; n, let 11"(S) := L(k , / ) E S  11"(k , l ) (v) be the 
stationary probability of S. Define the flow rate out of S as 

Q(S, SC) := L(k, / ) E S, (j,m) ESC 11"(k , l ) (v)q((k, l ) ,  (j , m) )  and 
the conductance of S as 1>(S) := Q(S, SC)/11"(S) . 

The conductance of the process (Xt)t>o is defined as 

1>* := min 1>( S). S : 7r (S) ::; 1/ 2 

All the quantities we just defined depend on v, but we 
suppress it for conciseness .  

The following result, valid for any Markov process on a 
finite state space n with conductance 1>*, shows how the 
conductance of the process yields a lower bound on the mixing 
time. It is a continuous-time version of Theorem 7 .3  in [27] 
and since the proof is quite similar, it is omitted. 

Lemma V.4. For E E (0, � ) , tmix(E) ;::: ( �  - 2E) �. ' 

We now exploit the fact that our activity process on the 
state space n has a geometric feature usually referred to 
as bottleneck, that strongly influences the mixing time. This 
bottleneck indeed makes some parts of n difficult to reach, 
resulting in a small conductance. As it turns out, C2 will be 
the bottleneck. 

Proposition V.S. The conductance of C2 satisfies 

1>(C2) rv L2 v 1-L2, V -+ 00, 
and hence, for E E (0, � ) ,  ( 1 ) 1 L2-1 tmix(E, V) ;::: 2 - 2E 

L2 
V , V -+ 00. (13 ) 

Proof Since C1 U {O} will have at least half of the 
probability mass for v sufficiently large, it is clear that 
11"(C2) � 1/2 when v -+ 00. From (2) it follows that 
if l and m belong to the same component k of size L, 
then 7r(k .=) (v) = I ! (L-/) ! vm-I as v -+ 00. Thus the 7r(k . l )  (v) m! (L-m) ! ' 
conductance of C2 satisfies 

Then Lemma VA gives 
definition 1> * � 1> (C2). 

7r(2, 1 )  (v) 
7r(2, L2) (v) rv L2 v 1-L2. ""L2 7r(2, l )  (v) 

L.., 1= 1 7r(2, L2) (v) 
the lower bound (13) ,  since by 

• 

VI.  C ONCLUSION AND EXTENSIONS 

We have examined transient throughput characteristics and 
associated starvation effects in CSMA networks in terms of 
the transition times between dominant activity states .  We 
established how the magnitude of the transition time scales 
with the activation rate and the sizes of the various network 
components in partite interference graphs. We also proved that 
in several cases the scaled transition time has an asymptotically 
exponential distribution and discussed the connection with 
related exponentiality results for rare events and meta-stability 
effects in statistical physics .  In addition, we investigated the 
convergence rate to equilibrium of the activity process in terms 
of mixing times .  

In the present paper we have focused on partite interference 
graphs with uniform activation rates, giving rise to a star­
shaped state space, but most of the methods and results 
extend to more general networks, as long as there is a 
unique path between any two activity states .  For example, 
we could allow for the branches to be general trees, with 
Mk,1 nodes in the k-th tree at distance I from the root, and 
transition rates bk , lik , /(V) and dk , l away from and towards 
the root, respectively. The node-dependent functions fk , l (v) 
are particularly relevant, since taking fk , /(V) = v 1/Lk could 
for example serve to balance the long-term throughputs in 
the various components. In those cases, the expectation of 
the transition time will scale differently, but most of the 
distributional results for the scaled transition time continue to 
hold, even though qualitatively different scenarios arise, with 
some branches being visited for relatively short periods but an 
overwhelmingly large number of times .  
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ApPENDIX 

A. Proof of Lemma 1/.3 
Order the state space as n = {L, L - 1 , . . .  , 1 , O} and 

consider the generator matrix Q(v) of the process (Xt ) t20 
with 0 an absorbing state. That is, 

qL(V) L 0 
v qL-1(V) L - 1 

Q(v) = 

(L - l)v Q1(V) 1 
0 0 0 

where the diagonal elements are Ql(V) = - (L - l)v - l for 
l = 1 , . . .  , L .  Write Q(v) as 

Q(v) = ( Ti;) t(v) ) 
o ' 

where T(v) is an L x L invertible matrix. Since the char­
acteristic polynomials of -Q(v) and -T(v) satisfy the re­
lation P-Q (v )(z) = -Z P-T (v )(Z) , the spectrum of -Q(v) 
consists of that of -T(v) plus the eigenvalue zero with 
multiplicity one. Denote by D(v) the L x  L diagonal matrix, 
whose diagonal entries are { JBl (v) }7=L ' where the B 's are 
the so-called potential coefficients, defined as BL (v) = 1 
and Bl-1(V) = (L�l ) V Bl (v) . The L x L matrix G(v) = 

_D(v) 1/ 2 T(v) D(v)-1/ 2 is tridiagonal and symmetric with 
diagonal entries 9l,l(V) = QL-l+ 1(V) and 9l,l+ 1(V) 

gl+l,l(V) = -Jl · (L - l  + l)v. Since G(v) is similar to 
-T(v), they have the same spectrum. Denote by V(p, R) 
the closed disc centered in P with radius R, i .e .  V(p, R) = 
{z E <C I z - pi ::; R}. Consider the Gershgorin discs 
{Vl(v)}f=l of G(v) , defined as Vl(v) := V( -Ql(V), Rl(v)), 
where the radius Rl(V) is the sum of the absolute values of 
the non-diagonal entries in the L -l + 1 -th row, i .e .  Rl(V) := 

Lm#-l+l IgL-l+l,m(v) l · Then 

VL(v) = V(L, ..jL;;) ,  
VL-1(V) = V(L - 1 + v, ..jL;; + J2 (L - l)v), 

V 2(v) = V(2 + (L - 2)v, J3(L - 2)v  + J2 (L - l)v), 

V 1(v) = V(l + (L - l)v, J2(L - l)v). 

We now exploit the second Gershgorin circle theorem, 
which is reproduced here for completeness .  
Theorem. If the union of j Gershgorin discs of a real 
r x r matrix A is disjoint from the union of the other r - j 
Gershgorin discs, then the former union contains exactly j 
and the latter the remaining r - j eigenvalues of A. 

In our case, for v sufficiently large, the disc V L (v) does 
not intersect with the union Uf=-;.l Vl (v), thus the smallest 
eigenvalue O!l(V) lies in VL(v) and the other L - 1 ones in 
Uf=-;.l Vl(V). Hence, for v sufficiently large, O!l(V) ::; L+$ 
and O!i(V) � (L - 1 ) + v - yl/(YL + J2(L - 1 ) )  for 
. - 2 L Th ,. 0 Ql (V) < L+,;y;;; Z - , . . .  , . erelore, < -(-) IT � , Qi V - v-y'V( v L+y 2(L-l ) )  
and so  limv-too O!l(V)j O!i(V) = 0 for i = 2 , . . .  , L . Hence, � O!l(V) 

lETL,o(v) . O!l(V) = 1 + 6 O!i(V) -7 1, v -7 00, 

while for 2 ::; i ::; L, 
O!i(V) 

lETL o(v) . O!i(V) > -(
-
) 

-7 00, v -7 00. , O!l V 
B. Proof of Proposition 1ll. 6  

Using lESM(V) = lE M · lEX (v) , gives 
",M M SM(V) L..,i=l  Xi (v) 1 '" Xi(v) 

lESM(v) 
= 

lEMlEX(v) 
= 

lEM � lEXi(v) ' ,= 1 
Thus the Laplace transform of SM jlESM may be written as 

LSM (v) /IESM (V) (S ) = L"Lt!l Xi (V) /IEXi (V) (lE�) 
= GM (LX, (v)/IEX, (V) (lE�) )  , 

where GM(z) = lE(ZM). The assumption X(v)j lEX(v) � Y 
implies that limv-too LX, (v)/IEX, (v) (t) = Ly(t) for all t � 0 
and i E N. Hence 

}�� LSM (v) /IESM (V) (S ) = }�� GM (LXi (V) /IEXi (V) (lE�) )  
= G M (L y (lE� ) ) , 

which is the Laplace transform of 1E� L�l Yi .  Invoking the 
continuity theorem for Laplace transforms concludes the proof. 
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