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Abstract—We develop upper bounds for line failure probabil-
ities in power grids, under the DC approximation and assuming
Gaussian noise for the power injections. Our upper bounds
are explicit, and lead to characterization of safe operational
capacity regions that are convex and polyhedral, making
our tools compatible with existing planning methods. Our
probabilistic bounds are derived through the use of powerful
concentration inequalities.

I . I N TRODUCT I ON

Electrical power grids are expected to be reliable at all

times. The rise of intermittent renewable generation is making

this expectation challenging to live up to. Power imbalances

caused by generation intermittency may cause grid stability

constraints to be violated: 80% of the bottlenecks in the

European high-voltage grid was already caused by renewables

in 2015 [1]. A well-controlled power grid matches supply

and demand, ensuring that line constraints are not violated.

System operators achieve this by making periodic control

actions that adapt the operating point of the grid in response

to changing conditions [2].

Due to the impact of renewables, a planning method

that accounts for worst-case behavior may lead to overly

conservative solutions. A more realistic paradigm is to

make a planning admissible when the probability that

line power flows exceed a threshold is sufficiently small.

This has motivated several recent works that attempt to

evaluate line failure probabilities using rare event simulation

techniques [3]–[5], as well as large deviations techniques [6].

Simulation techniques can lead to accurate estimates, but

may be too time-consuming to use as subroutine within an

optimization package that has to determine an operational

profile for the next 5 to 15 minutes, such as optimal power

flow (OPF). Recent papers studying chance-constrained

versions of OPF problems include [7], [8]. Large deviations

techniques are appealing, but rely on a scaling procedure,

essentially assuming that the noise during the next planning

period is small.

This article makes a new contribution to this emerging

area by deriving approximations for line failure probabilities

that are guaranteed to be conservative. That is, under the
DC approximation our methodology ensures that reliability

constraints on active power flows are actually met. In addition,

these new approximations are explicit enough to be used

for optimization purposes on short time scales. In particular,

we develop two such approximations in Section III. Both

bounds lead to an approximation of the capacity region that

is conservative, convex and polyhedral, making our results

compatible with existing planning methods like OPF [7], [8].

This paper is organized as follows. In Section II we provide

a detailed problem formulation. We model stochastic power

injections into the network by means of Gaussian random

variables, describe line power flows through the well-known

DC approximation, and define the failure probabilities of

interest. Our main results are two different upper bounds that

we present in Section III. The first upper bound is explicit,

while the second one is sharper and explicit up to a finite-

step minimization procedure. These bounds are compared

numerically with the exact safe capacity regions in Section IV.

Section V provides the proofs of the results in Section III.

Concluding remarks are provided in Section VI.

I I . P ROBLEM FORMULAT I ON

A. Network description and DC approximation

We model the power grid network as a connected graph

G = G(V,E), where V denotes the set of buses and E
the set of directed edges modeling the transmission lines.
n = |V | is the number of buses and m = |E| is the number
of lines. (i, j) ∈ E denotes the transmission line between

buses i and j with susceptance βi,j = βj,i. If there is no

transmission line between i and j we set βi,j = βj,i = 0.
As in [9], [10], the network structure and susceptances are

encoded in the weighted Laplacian matrix

Li,j :=

{
−βi,j if i �= j,∑

k �=j βi,k if i = j.

Let p ∈ R
n denote the vector of (real) power injections,

θ ∈ R
n the vector of phase angles, and f̃ ∈ R

m the

vector of (real) power flow over the lines. We will use

the convention that pi ≥ 0 (pi < 0) means that power
is generated (consumed, respectively) at bus i.
We make use of the DC approximation, which is commonly

used in transmission system analysis [11]–[14]. Thus, the

real flow f̃i,j over line (i, j) is related to the phase angle
difference between buses i and j via the linear relation

f̃i,j = βi,j(θi − θj). (1)

We assume a balanced DC power flow, which means that

the total net power injected in the network is zero, i.e.

1T p = 0, (2)

where 1 ∈ R
n is the vector with all entries equal to 1.

We enforce this constraint through the concept of slack bus.



Following the approach in [9], and invoking assumption (2),

the relation between θ and p can be written in matrix form
as

θ = L+p, (3)

where L+ is the Moore-Penrose pseudo-inverse of the matrix
L and an average value of zero has been chosen as a reference
for the node voltage phase angles. Choosing an arbitrary

but fixed orientation of the transmission lines, the network

structure is described by the weighted edge-vertex incidence
matrix B ∈ Rm×n whose components are

B�,i =

⎧⎪⎨
⎪⎩
βi,j if � = (i, j),

−βi,j if � = (j, i),

0 otherwise.

Using such a matrix, we can rewrite identity (1) as f̃ = Bθ.
Combining the latter equation and (3), the line power flow

f̃ can be written as a linear transformation of the power

injections p, i.e.
f̃ = BL+p. (4)

Transmission lines can fail due to overload. We say that a

line overload occurs in transmission line � if |f̃�| > M�,

where M� is the line capacity. If this happens, the line

may trip, causing a global redistribution of the line power

flows which could trigger cascading failures and blackouts.

It is convenient to look at the normalized line power flow
vector f ∈ R

m, defined component-wise as f� := f̃�/M�

for every � = 1, . . . ,m. The relation between line power

flows and normalized power flows can be rewritten as

f = Df̃ , where D ∈ R
m×m is the diagonal matrix

D := diag(M−1
1 , . . . ,M−1

m ). In view of (4), we have

f = Cp, (5)

where C := DBL+ ∈ R
m×n. Henceforth, we refer to

the normalized power flows simply as power flows, unless

specified otherwise.

B. Stochastic power injections and line power flows

In this section we describe our model for the bus power

injections. As our focus is on network reliability under

uncertainty, we assume that each bus houses a stochastic
power injection or load. This choice allows to model, for
example, intermittent power generation by renewable sources

or highly variable load.

In order to guarantee that network balance condition (2) is

satisfied even with stochastic inputs, we assume that bus n is
a slack bus, which means that its power injection is chosen
in such a way that the vector of actual power injections is a

zero-sum vector as required in (2).

More specifically, we assume that the the vector of

the first n − 1 power injections (p1, . . . , pn−1) follows
a multivariate Gaussian distribution, with expected value

μ ∈ Rn−1 and covariance matrix Σ ∈ R(n−1)×(n−1). Since
the covariance matrix Σ is positive semi-definite, the matrix√
Σ ∈ R

(n−1)×(n−1) is well defined via the Cholesky

decomposition of Σ. We are now able to formally define the

vector p of power injections as the n-dimensional random
vector

p = S(
√
ΣX + μ), (6)

where X ∼ Nn−1(0, In−1) is a (n−1)-dimensional standard
multivariate Gaussian random variable and S is the matrix

S :=

(
In−1
−1

)
∈ Rn×(n−1).

By construction we have p = (p1, . . . , pn−1,−
∑n−1

i=1 pi), so
that (2) is satisfied. Note that this formulation allows us to

model deterministic power injections as well, by means of
choosing the corresponding variances and covariances equal

to zero (or, from a practical standpoint, equal to very small

positive numbers, so that the rank of Σ is not affected).

It is well known that an affine transformation of a

multivariate Gaussian random variable is again a multivariate

Gaussian random variable. Thus, identity (6) tells us that

the power injections p are indeed Gaussian, and hence,

in view of (5), so are the line power flows f . As it is
convenient to look at the line power flows f as an affine

transformation of standard independent Gaussian random
variables, combining (5) and (6), we can write

f = V X +Wμ, (7)

where V := DCS
√
Σ ∈ R

m×(n−1) and W := DCS ∈
R

m×(n−1). We denote by ν :=Wμ the vector of expected
line power flows.

To summarize, we assume that the line power flows f fol-
low a multivariate Gaussian distribution f ∼ Nm(ν, V V

T ),
where the network topology and the correlation of the power

injections are both encoded in the matrix V . Note in particular
that fi ∼ N (νi, σ2i ), where the variance can be calculated
as σ2i :=

∑n
j=1 V

2
i,j .

The main assumption behind our stochastic model is

that the power injections are Gaussian. In [7, Section 1.5]

it is argued how this assumption, altough simplifying, is

reasonable in order to model buses that house wind farms.

Note that, compared to the power injections model in [7], our

formulation allows for general correlations between stochastic

injections, as we do not impose any restrictions on the

covariance matrix Σ. Section VI contains a discussion to
what extent our assumptions may be relaxed.

C. Line failure probabilities

The main goal of the present paper is to understand how

the probability of an overload violation depends on the

parameters of the systems and characterize which average

power injection vector μ will make such a probability smaller
than a desired target.

In view of the definition of line overload given in

Subsection II-A, we define the line failure event L as

L :=
{

∃ � = 1, . . . ,m : |f̃�| ≥ M�

}
. Leveraging the nor-

malized line power flows that we introduced earlier, we can

equivalently rewrite L as

L =
{
max

i
|fi| ≥ 1

}
.



Given a power injection covariance matrix Σ, define the risk
level r(μ) associated with a power injection profile μ as

r(μ) := Emax
i

|fi|.
Given a covariance matrix Σ, the risk level is a well-defined

function r : Rn−1 → R of the average injection vector μ,
since in view of (7) we can rewrite r(μ) = Emaxi |ViX +
Wiμ|, where Vi and Wi denote the i-th row of the matrices

V and W , respectively.

D. Goal

We aim to characterize for a given covariance matrix

Σ the average power injection vectors μ that make line

failures a rare event, say Pμ(L) ≤ q for some very small
threshold q ∈ (0, 1) to be set by the network operator (think
of q = 10−5 or q = 10−6). In other words, given q ∈ (0, 1),
we aim to determine the region Rtrue

q ⊂ R
n−1 defined by

Rtrue
q := {μ ∈ Rn−1 : Pμ(L) ≤ q}. (8)

We will refer to Rtrue
q as the capacity region of the network.

For every given μ ∈ Rn−1, calculating exactly the probability
Pμ(L) means solving a high-dimensional integral that is

also unavoidably error-prone, since the integrand becomes

extremely small quickly (containing a multivariate Gaussian

density). Hence, finding the capacity region Rtrue
q exactly is

a very computationally expensive and error-prone task.

This is the main motivation of the present work, in which

we develop analytic tools which are explicit enough to be

useful for planning and control of power grids in the short-

term. More specifically, in the next section we introduce

new capacity regions that can be calculated much faster and

that can be used to approximate Rtrue
q . In particular, these

regions are inner approximation of Rtrue
q .

I I I . MA IN RE SULT S

This section is entirely devoted to the derivation of

three new capacity regions that provide an efficient way

of identifying the average power injection vectors μ such

that the probability of a line failure is provably smaller than a

fixed threshold q. Indeed, such regions approximate the true
capacity region defined in (8) while being computationally

less expensive and retaining desirable properties such as

being convex and polyhedral.

We first introduce the probabilistic upper bounds on which

our method is based in Subsection III-A, then formally

define the new capacity regions Rup
q ,R�

q , and Rc.i.
q in

Subsection III-B and lastly in Subsection III-C discuss the

trade-offs between these different regions.

A. Concentration inequalities

Our methodology relies on a well-known concentration
bound for a function of Gaussian random variables. Concen-

tration bounds describe the likelihood of a function of many

random variables to deviate from its expected value. In our

context, we are interested in understanding how likely is the

random variable maxi |fi| to deviate from its expected value

r(μ) = Emaxi |fi|.

Many concentration bounds have been proved, see [15,

Chapter 2] for an overview. In our setting, we require

Proposition V.1, which is presented and proved later in

Section V. The next theorem presents an explicit upper bound

for the line failure probability in terms of r(μ) = Emaxi |fi|
and the variances σ21 , . . . , σ

2
m of the line power flows that can

be derived using the aforementioned concentration bound.

Theorem III.1 (Upper bound for line failure probability).
If r(μ) < 1, then

Pμ(L) ≤ exp
(

− (1− r(μ))2
2maxi σ2i

)
. (9)

Note that Emaxi |fi| = r(μ) > 1 is definitely not a

desirable operational regime for the power grid, since line

failures are not rare events anymore.

B. Capacity regions

Given q ∈ (0, 1), region Rc.i.
q is defined as the region

that consists of all average power injection vectors μ such
that the upper bound for Pμ(L) given by the concentration
inequality (9) is smaller than or equal to q, i.e.

Rc.i.
q :=

{
μ ∈ Rn−1 : exp

(
− (1− r(μ))2
2maxi σ2i

)
≤ q

}
,

which can be rewritten as

Rc.i.
q =

{
μ ∈ Rn−1 : r(μ) ≤ 1−max

i
σi

√
2 log q−1

}
.

Unfortunately, the exact calculation of r(μ) is computation-
ally expensive, for the same reasons outlined at the end of

Section II. Furthermore, we want to have a better analytic

understanding of the dependency of r(μ) on the power

injection averages μ, on the network topology and on the
variances σi, something that is hard to obtain from purely

numerical procedure. Aiming to overcome these issues, we

propose an explicit upper bound for r(μ), namely

r(μ) ≤ rup(μ) := max
i

|νi|+max
i
σi

√
2 log(2m), (10)

where we recall that ν =Wμ is the vector of average line
power flows. The bound in (10) is proven in Lemma V.1 and

can be used to obtain the following sub-region of Rc.i.
q

Rup
q :=

{
μ ∈ Rn−1 : rup(μ) ≤ 1−max

i
σi

√
2 log q−1

}
,

which can be rewritten explicitly as

Rup
q =

{
μ ∈ Rn−1 : max

i
|νi| ≤

≤ 1−max
i
σi(

√
2 log q−1 +

√
2 log(2m)

}
.

In terms of μ we see that Rup
q is an intersection of half-

spaces, and so Rup
q is convex and polyhedral. A refinement

of our analysis (see Lemma V.1) shows that is possible to

obtain a sharper upper bound r�(μ) for r(μ),

r(μ) ≤ r�(μ) ≤ rup(μ),

which results in the following region

R�
q :=

{
μ ∈ Rn−1 : r�(μ) ≤ 1−max

i
σi

√
2 log q−1

}
.



Unfortunately there is no analytic expression for r�(μ), but
in Section V we show that calculating r�(μ) requires only
the evaluation of a function in a finite number of points,

making it a numerically viable approach, and the resulting

capacity region remains convex and polyhedral. Summarizing,

we have

Theorem III.2 (Inclusions among capacity regions). Given
q ∈ (0, 1), if r(μ) < 1, then the following inclusions hold:

Rup
q ⊆ R�

q ⊆ Rc.i.
q ⊆ Rtrue

q . (11)

C. Discussion

We can guarantee that a line overload is a sufficiently

rare event by enforcing that the risk level r(μ) is at most
1 − maxi σi

√
2 log(1/q). This approach has the merit to

provide a capacity region Rc.i.
q that can be expressed as

a simple linear condition on the risk level r(μ), but has
the drawback that it requires the computation of r(μ), a
non-trivial task.

The smaller region Rup
q , although more conservative, is

expressed in closed-form and, moreover, its dependency on

the parameters ν, σ and m is made explicit. In particular, the

maximum standard deviation of the power flows, i.e. maxi σi

plays a big role in defining the capacity regions: indeed to

larger values of maxi σi correspond smaller regions, which is

intuitive since a bigger variance results in a higher probability

of overload. In between the two regions Rup
q and Rc.i.

q lies

the intermediate region R�
q , which is less conservative that

Rup
q and can be computed very efficiently, even if it cannot

be expressed in closed-form (see Section V for more details).

Both regions Rup
q and R�

q seem sufficiently explicit to

be used as probabilistic constraints into chance-constrained

versions of OPF problems, as studied in [7], [8].

IV. NUMER I CAL CA S E S TUD I E S

To illustrate how the three new regions compare to Rtrue
q ,

we consider first a very simple network with a circuit

topology, consisting of 3 buses, all connected with each

other by 3 identical lines of unit susceptance and capacity
M = 5. We take the power injections in the non-slack nodes
to be independent, zero-mean Gaussian random variables

with variance ε = 0.5, which correspond to taking μ = (0, 0)
and Σ = εI2. The corresponding four safe capacity regions
with q = 10−3 are plotted in Figure 1a.
We then plot in Figure 1b the two-dimensional capacity

regions Rup
q and R�

q for the IEEE 14-bus test network

(representing a portion of the American Electric Power

System [16]) corresponding to bus 6 and 9. We replace

the deterministic power injections with Gaussian random

variables with average μ equal to the original deterministic
values and variance ε = 2 · 10−2. The line capacities have
been chosen to be equal to 1.5 times the average line power
flow ν = Wμ, and we used q = 10−4. The data for μ,
line susceptances and network topology have been extracted

from the MATPOWER package [17]. The regions Rc.i.
q

and Rtrue
q have been omitted since the calculations were

intrinsically computationally unstable, as argued at the end

of Section II. Note that our capacity regions are indeed

convex, and polyhedral.

(a) 3-bus cycle network (b) IEEE 14-bus network

Figure 1: Capacity regions comparison

V. MATHEMAT I CAL TOOL S

Proposition V.1 (Unilateral concentration inequality for the
maximum of multivariate Gaussian random variables).
Let X = (X1, . . . , Xk) ∼ Nk(μ,Σ) be a multivariate
Gaussian random variable, and let δi :=

√
Σi,i be the

standard deviation of Xi, i = 1, . . . , k. The following
concentration inequality holds for every s ≥ 0:

P

(
max

i
|Xi| − Emax

i
|Xi| ≥ s

)
≤ exp

(
− s2

2maxi δ2i

)
.

Proof. The multivariate Gaussian vector X can be seen as an

affine transformation X =
√
ΣZ + μ of a standard Gaussian

vector Z ∼ Nk(0, Ik). Then we apply [15, Theorem 2.4]

to the random vector Z choosing the function h : Rk → R

that maps Z into h(Z) := maxi=1,...,k |(√Σ)iZ + μi|. A
straightforward computation shows that h is a Lipschitz

function with Lipschitz constant equal to maxi=1,...,k δi.

Proof of Theorem III.1. Write

Pμ(L) = Pμ

(
max

i
|fi| − Emax

i
|fi| ≥ 1− Emax

i
|fi|

)
.

Set s := 1− Emaxi |fi| > 0 and apply Proposition V.1 to
f . Inequality (9) follows as the standard deviation of fi is
equal to σi, see Subsection II-B.

Lemma V.1 (Upper bounds for the risk level). Let r(μ) :=
Emaxi |fi|, and define

r�(μ) := inf
s∈(0,+∞)

{
log(2m)

s
+ max

i=1,...,m

(
σ2i
2
s+ |νi|

)}
.

Then

r(μ) ≤ r�(μ) ≤ max
i

|νi|+max
i
σi

√
2 log(2m). (12)

Proof. Take 2m random variables Y1, . . . , Y2m defined as

Yj :=

{
fj if j = 1, . . . ,m,

−fj−m if j = m+ 1, . . . , 2m.



From the definition of these random variables it immedi-

ately follows that maxi=1,...,m |fi| = maxj=1,...,2m Yj and

therefore Emaxi |fi| = Emaxj Yj . Note that

λj := EYj =

{
νj if j = 1, . . . ,m,

−νj−m if j = m+ 1, . . . , 2m,
(13)

and VarYj = VarYj+m = σ2i for every j = 1, . . . ,m. For

every j = 1, . . . , 2m let mj(s) := E
(
esYj

)
= eσ

2
j s

2/2+λjs

be the moment generating function of the random variable

Yj . Following [18], for any s ≥ 0 we have

esEmaxj Yj ≤ E(esmaxj Yj ) =

2m∑
j=1

mj(s) ≤ 2mmax
j
E(esYj ).

Taking the log on both sides and rearranging we obtain

Emax
j
Yj ≤ inf

s∈(0,∞)
1

s
log

(
2m · E

(
max

j=1,...,2m
esYj

))

= inf
s∈(0,∞)

{
log(2m)

s
+
1

s
log

[
max

j=1,...,2m

(
eσ

2
j s

2/2+λjs
)]}

,

yielding the first bound, since the RHS is equal to r�(μ).
If we now denote ν̂ := maxj=1,...,2m λj = maxi νi and
σ̂2 = maxi σ

2
i , we have mj(s) ≤ M(s) for all s ≥ 0 and

for every j = 1, . . . , 2m. Thus

Emax
i
Yi ≤ log(2m)

s
+
σ̂2

2
s+ ν̂.

Optimizing over s in (0,+∞) and finding the optimum

equals s = σ̂−1
√
2 log(2m), we get Emaxi Yi ≤ ν̂ +

σ̂
√
2 log(2m), proving the other inequality in (12).

Lastly, we want to make some final remarks on how to

calculate r�(μ) which is the infimum over (0,∞) of

g(s) :=
log(2m)

s
+ max

i=1,...,m

(
σ2i
2
s+ |νi|

)
.

This can be seen as the point-wise maximum of m functions

gk(s) :=
log(2m)

s +
σ2k
2 s + |νk|, k = 1, . . . ,m. Note

that r�(μ) can be computed by evaluating of the function
g into at most m + m(m − 1)/2 points and then take

the minimum value: the candidate points are the m lo-

cal minima of the functions g1(s), . . . , gm(s) (which are

s�i :=
√
2 log(2m)/σi, i = 1, . . . ,m), and the points

si,j := 2(|νi|−|νj |)/(σ2j −σ2i ), i, j = 1, . . . ,m, i �= j, (if
they exist and positive) of the lines

σ2i
2 s+ |νi| and σ2j

2 s+ |νj |
with , which are at most m(m− 1)/2. This analysis implies
that the resulting capacity region is convex and polyhedral.

V I . CONCLUD I NG REMARKS

Probabilistic techniques, in particular powerful upper

bounds for Gaussian random vectors, can be applied to

generate explicit upper bounds for failure probabilities and

corresponding safe capacity regions. The resulting regions

are polyhedral, and can be characterized in such a way that

they can be incorporated in optimization routines, such as

OPF. In an extended version of this paper we will show that

our upper bounds give the correct asymptotic estimate of the

failure probability in the small-noise large deviations regime

as studied in [6], i.e. our bounds are asymptotically sharp.

We will also extend the scope of our method as it is not

limited to the assumptions in Section II: (i) the static analysis

we consider can be extended to the dynamic situation as

considered in [6], [19]; (ii) the Gaussian assumption may be

relaxed by the ideas in [20]; (iii) other performance measures,

like the probability that several lines fail, can be analyzed.
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