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Abstract

We consider the ferromagnetic q-state Potts model with zero external field in a finite volume and
assume that its stochastic evolution is described by a Glauber-type dynamics parametrized by the inverse
temperature β. Our analysis concerns the low-temperature regime β → ∞, in which this multi-spin system
has q stable equilibria. Focusing on grid graphs with various boundary conditions, we study the tunneling
phenomena of the q-state Potts model, characterizing the asymptotic behavior of the first hitting times
between stable equilibria as β → ∞ in probability, in expectation, and in distribution and obtaining tight
bounds on the mixing time as side-result.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction and main results

1.1. Model description

The Potts model is a canonical statistical physics model born as a natural extension [59] of
the Ising model in which the number of possible local spins values/directions goes from two to a
general integer number q ∈ N.

The q-state Potts model is a spin system characterized by a set S = {1, . . . , q} of spins values
and by a finite graph G = (V, E), which describes the spatial structure of the finite volume
where the spins interact. A configuration σ ∈ SV assigns a spin value σ (v) ∈ S to each vertex
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v ∈ V . The edge set E describes the pairs of vertices whose spins interact with each other. In
the present paper we focus on grid graphs, i.e., finite two-dimensional rectangular lattices. More
precisely, given two integers K , L ≥ 3, we will take the graph G to be a K × L grid graph Λ
with two possible boundary conditions: periodic and open.

Let X = SV be the set of all possible spin configurations on the graph Λ. The Hamiltonian or
energy function H : X → R associates an energy with each configuration σ ∈ X according to

H (σ ) := −Jc

∑
(v,w)∈E

1{σ (v)=σ (w)}, σ ∈ X , (1)

where Jc is the coupling or interaction constant. Such an energy function corresponds to the
situation where there is no external magnetic field and, in fact, H (σ ) describes only the local
interactions between nearest-neighbor spins. The Gibbs measure for the q-state Potts model on
Λ is the probability distribution on X defined by

µβ(σ ) :=
e−β H (σ )∑

σ ′∈X e−β H (σ ′)
, σ ∈ X , (2)

where β > 0 is the inverse temperature. The Potts model is called ferromagnetic if Jc > 0
and antiferromagnetic if Jc < 0. In the ferromagnetic case, on which we focus in this paper,
the Gibbs measure µβ favors configurations where neighboring spins have the same value. On
the contrary, in the antiferromagnetic case, neighboring spins are more likely not to be aligned.
Without loss of generality, we take Jc = 1, since in absence of a magnetic field it amounts to
rescaling of the temperature.

We assume the spin system evolves according to a Glauber-type dynamics described by a
single-spin update Markov chain {Xβ

t }t∈N on X with transition probabilities between any pair of
configurations σ, σ ′

∈ X given by

Pβ(σ, σ ′) :=

⎧⎨⎩Q(σ, σ ′)e−β[H (σ ′)−H (σ )]+ , if σ ̸= σ ′,

1 −

∑
η ̸=σ

Pβ(σ, η), if σ = σ ′, (3)

where Q : X × X → R+ is a connectivity matrix that allows only single-spin updates,
namely Q(σ, σ ′) := (q|V |)−11{|{v∈V : σ (v)̸=σ ′(v)}|=1} for every σ, σ ′

∈ X . The matrix Q is clearly
symmetric and irreducible, and the resulting dynamics Pβ is reversible with respect to the Gibbs
measure µβ given in (2). One usually refers to the triplet (X , H, Q) as energy landscape and
to (3) as Metropolis transition probabilities.

The considered Metropolis dynamics can be described in words as follows. At each step a
vertex v ∈ V and a spin value k ∈ S are selected independently and uniformly at random and
the current configuration σ ∈ X is updated in vertex v to spin k with a probability that depends
only on the neighboring spins of v in view of (1).

1.2. Main results

In this work we focus on the analysis of the q-state ferromagnetic Potts model in the
low-temperature regime β → ∞, in which the system is in the so-called ordered phase, in
which multiple equilibrium states coexist. Indeed, in this regime the stationary distribution µβ

concentrates around the global minima of the Hamiltonian H , which, since Λ is a connected
graph, are exactly q and correspond to the configurations where all the spins have the same
value. We denote them by s1, . . . , sq , with the convention that sk ∈ X is the configuration where
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all the spins are equal to k, i.e., sk(v) = k for every v ∈ V . In the following we will refer to them
as the stable configurations and denote their collection as X s

⊂ X .
In the low-temperature regime these stable configurations and their basins of attraction

become traps, in the sense that the Markov chain {Xβ
t }t∈N cannot move quickly between them.

Intuitively, along any possible trajectory the Markov chain must visit mixed-spin configurations
that are highly unlikely in view of (2) and the time to reach such configurations is correspond-
ingly long. Due to these exponentially long transition times between stable configurations, the
considered dynamics exhibits the so-called slow or torpid mixing.

We characterize the low-temperature behavior of the q-state Potts model in terms of both
hitting times and mixing times. For a nonempty subset A ⊂ X and σ ∈ X \ A, we denote by τ σ

A
the first hitting time of the subset A for the Markov chain {Xβ

t }t∈N with initial configuration σ at
time t = 0. The hitting time τ σ

A is often called tunneling time when both the starting and target
configurations are stable configurations, i.e., {σ }∪ A ⊆ X s . For ϵ ∈ (0, 1) define the mixing time
tmix
β (ϵ) of the Markov chain {Xβ

t }t∈N as tmix
β (ϵ) := min{n ≥ 0 : maxx∈X ∥Pn

β (x, ·) − µβ(·)∥TV ≤

ϵ}, where ∥ν − ν ′
∥TV denotes the total variation distance between two probability distributions

ν, ν ′ on X . The mixing time tmix
β (ϵ) describes the rate of convergence of the Markov chain

{Xβ
t }t∈N to its stationary distribution µβ and is intimately related to the spectral gap ρβ , defined

in terms of the eigenvalues 1 = λ
(1)
β > λ

(2)
β ≥ · · · ≥ λ

(|X |)
β ≥ −1 of the transition matrix

(Pβ(σ, σ ′))σ,σ ′∈X as ρβ := 1 − λ
(2)
β .

The main result of this paper concerns the asymptotic behavior of the tunneling times between
stable configurations: for any pair of stable configurations s, s′, we give asymptotic bounds in
probability for τ s

X s\{s} and τ s
s′ , identify the order of magnitude of their expected values and prove

that their asymptotic rescaled distribution is exponential. We further identify the precise exponent
at which the mixing time of the Markov chain {Xβ

t }t∈N asymptotically grows with β and show
that it depends up to a constant factor on the smaller side length of Λ.

Theorem 1.1 (Low-temperature Behavior of the Potts Model on Grid Graphs). Consider the
Metropolis Markov chain {Xβ

t }t∈N corresponding to the q-state Potts model on the K × L grid
Λ with max{K , L} ≥ 3. Let Γ (Λ) > 0 be the constant defined as

Γ (Λ) :=

{
2 min{K , L} + 2 if Λ has periodic boundary conditions,
min{K , L} + 1 if Λ has open boundary conditions.

Then, for any s, s′
∈ X s , s ̸= s′, the following statements hold:

(i) For every ϵ > 0 limβ→∞ P
(

eβ(Γ (Λ)−ϵ) < τ s
X s\{s} ≤ τ s

s′ < eβ(Γ (Λ)+ϵ)
)

= 1;

(ii) limβ→∞
1
β

logEτ s
s′ = limβ→∞

1
β

logEτ s
X s\{s} = Γ (Λ);

(iii)
τ s
X s\{s}

Eτ s
X s\{s}

d
−→ Exp(1), as β → ∞;

(iv)
τ s

s′
Eτ s

s′

d
−→ Exp(1), as β → ∞;

(v) For any ϵ ∈ (0, 1) limβ→∞ β−1 log tmix
β (ϵ) = Γ (Λ) and there exist two constants 0 < c1 ≤

c2 < ∞ independent of β such that c1e−βΓ (Λ)
≤ ρβ ≤ c2e−βΓ (Λ) for every β > 0.

We remark that in the low-temperature limit the total number q of possible spin values does
not appear in our main result because we focus on logarithmic equivalences and the number q
does not affect the order of magnitude of the tunneling times and neither that of the mixing time.
This is the case also for analogous results for mixing times of heat-bath and Swenden–Wang
dynamics derived in [15], for which the dependence on the grid side length is the same. The
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bounds in [15] are valid for a more general d-dimensional grid, while ours are specialized for the
case d = 2, for which we obtain sharper exponents.

In the degenerate case K = L = 2 not covered by Theorem 1.1, the same results still hold,
but the correct exponents can be shown to be Γ (Λ) = 4 and Γ (Λ) = 2 for periodic and open
boundary conditions, respectively. From our analysis it is easy to derive analogous results for
a K × L grid graph Λ with semi-periodic boundary conditions (i.e., periodic on the horizontal
boundaries and open on the vertical ones), for which the exponent Γ (Λ) would be equal to
min{K + 2, 2L + 1}. We expect analogous results to hold also for rectangular regions Λ of other
lattices (e.g. triangular, hexagonal, Kagome lattices) with an exponent Γ (Λ) that would depend,
up to a constant, on the minimum side length.

1.3. Related results and discussion

The Potts model is one of the most studied statistical physics models and is named after
Renfrey Potts, who introduced the model in his Ph.D. thesis [59] in 1951. The model was related
to the “clock model” or “planar Potts”, a variant of which was introduced earlier in [4] and is
known as the Ashkin–Teller model. The Potts model has been studied so extensively both by
mathematicians and physicists that an exhaustive review of the related literature would be very
long and out of the scope of this paper. Nevertheless, we now outline some related work that
focus on the equilibrium or dynamical properties of the Potts model that are most relevant for
this paper.

The equilibrium properties of the Potts model, such as the phase transition, critical tem-
perature, and their dependence on q, have been studied on various infinite graphs, such as
the square lattice Zd [5,6], the triangular lattice [7,36], and the Bethe lattice [1,3,52]. If the
underlying structure is described instead by a complete graph, then we obtain the mean-field
version of Potts model, also known as Curie–Weiss Potts model, which received a lot of attention
in the literature [29,34,35,41,64]. Another branch of research focuses more on the dynamical
properties of the Potts model, investigating in particular mixing times for various types of
dynamics, the most studied ones being Glauber [13,14,30,38–40,42,44,46,47], Swendsen–Wang
dynamics [14,15,27,28,37,43–45,63]. The focus of this part of literature is to describe at a given
temperature how the mixing time grows as a function the graph size n = |V | and the number
of colors q . In particular, the goal is to distinguish whether the considered dynamics has fast or
slow mixing depending on the type of the graph and its properties, such as boundary conditions
or dimensions in the specific case of grid graphs.

In the present paper we study the low-temperature behavior of the Potts model using the
pathwise approach (see [58] for a systematic overview and further references) and its more recent
extensions [25,53,56], but also other techniques have been successfully used in the literature to
study tunneling and metastability phenomena, e.g. the potential theoretical approach (introduced
in [16], for an overview see [17]) and the martingale approach [8–10].

Metastability is a dynamical property with a similar flavor as tunneling that has been
studied for various spin systems. In particular, the metastability for the mean-field 3-state
Potts model with a non-reversible dynamics has been studied in [51] for fixed temperature
in the thermodynamic limit. In this paper we focus instead on the q-state Potts model on
finite volume with Metropolis dynamics, for which we study the tunneling behavior. There is
an extensive literature about the metastable behavior for the Ising model with small external
magnetic field h > 0 on square lattices with Glauber dynamics, which relates our main result in
the special case q = 2. More specifically, results have been derived for the finite-volume case
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in [9,11,19,23,49,50,57] and for the infinite-volume one in [18,20,31,61]. In the finite-volume
case the energy barrier between −1 and +1 and, thus, the exponent Γ (Λ) depend only the ratio
Jc/h (which determines the length of the so-called critical droplet) and not on the grid sizes
(which are always taken sufficiently large to contain the critical droplet).

Similar results for the hitting times of the Ising model with zero magnetic field have been
proved in [62]. More precisely, the lower bound maxσ∈X Eτ σ

SΛ
≥ c(β)eβα∗Ld−1

is derived for
the hitting time of a certain subset SΛ on the d-dimensional cube Λ ⊂ Zd of side L , where
α∗ is a constant independent of Λ and β and c(β) > 0 is a function that does not depend on
Λ. Since +1 ∈ SΛ, our result can be seen as a refinement of [62, Proposition 2.3] in dimension
d = 2, as (a) we identify the precise constant α∗ showing how it depends on the type of boundary
conditions, (b) we indirectly prove that limβ→∞

1
β

log c(β) = 0, and (c) we derive a matching
upper bound. Moreover, when q = 2 Theorem 1.1(iv) improves the estimates on the spectral gap
of [62, Proposition 2.5], since we identify the exact exponent and obtain a matching upper bound
for this quantity. In the special case of open boundary conditions, our result for the spectral gap
should be compared with the estimates of [55, Theorem 4.1] (valid for more general dynamics)
and the asymptotics for L → ∞ proved in [21, Theorem 1.4]. For related equilibrium properties
of the Ising model on finite lattices with zero magnetic field see also [22].

Results have been obtained for the metastability of the Ising model on the hypercube [48] and
on certain types of random graphs [32,33]. The Blume–Capel model is another related 3-spin
system which has been studied with similar techniques in [24,26,54]. Tunneling phenomena
have been studied for other models with Metropolis dynamics: the hard-core model [56,66] and
the Widom–Rowlinson model [67].

2. Geometry of Potts configurations and energy landscape analysis

This section is devoted to the analysis of some geometrical and combinatorial properties of
the Potts configurations on grid graphs. This analysis will then be leveraged to prove some
structural properties of the corresponding energy landscape (X , H, Q), which are presented
in Theorem 2.1. These properties are precisely the model-dependent characteristics needed to
exploit the general framework developed in [56] to derive our main result, Theorem 1.1, whose
proof will be presented in Section 3.

We first introduce some definition and notation that will be used in the rest of the paper. Since
the connectivity matrix Q is irreducible, for each pair of configurations σ, σ ′

∈ X , σ ̸= σ ′, there
exists a finite sequence ω of configurations ω1, . . . , ωn ∈ X such that ω1 = σ , ωn = σ ′ and
Q(ωi , ωi+1) > 0, for i = 1, . . . , n − 1. We will refer to such a sequence as a path from σ to σ ′

and we will denote it by ω : σ → σ ′.
Given a path ω = (ω1, . . . , ωn), we define its height as Φω := maxi=1,...,n H (ωi ). The

communication energy between two configurations σ, σ ′
∈ X is the minimum among the heights

of all the paths from σ to σ ′, i.e., Φ(σ, σ ′) := minω:σ→σ ′ Φω = minω:σ→σ ′ maxη∈ω H (η). Given
two nonempty disjoint subsets A, B ⊂ X , we define the communication energy between A and
B by Φ(A, B) := minσ∈A, σ ′∈B Φ(σ, σ ′).

Theorem 2.1 (Structural Properties of Energy Landscape). Consider the energy landscape
(X , H, Q) corresponding to the Potts model on a K × L grid Λ with min{K , L} ≥ 3. Then:

(i) For every s, s′
∈ X s , s ̸= s′

Φ(s, s′)− H (s) = Γ (Λ) =

{
2 min{K , L} + 2 if Λ has periodic boundary conditions,
min{K , L} + 1 if Λ has open boundary conditions.
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Fig. 1. Examples of Potts configuration on the 10 × 10 grid.

(ii) For every σ ∈ X \ X s the inequality Φ(σ,X s) − H (σ ) < Γ (Λ) holds.

The rest of the section is organized as follows: in Section 2.1 we introduce some useful
notation and definitions that will be used throughout the section, while in Section 2.2 we describe
the geometric properties of Potts configurations that will be of interest for our analysis. Later,
in Section 2.3 we present an expansion algorithm for Potts configurations on grid graphs that
will be leveraged to build paths of prescribed height between stable configurations. Section 2.4
is devoted to the derivation of lower bounds for the communication height between stable
configurations and leads to Section 2.5, where we present the proof of Theorem 2.1.

2.1. Definitions and notation

In this subsection we introduce some notation and definitions for the Potts model on a
grid graph Λ, which are valid regardless of the chosen boundary conditions, unless specified
otherwise.

A K × L grid graph Λ = (V, E) has vertex set V = {0, . . . , L − 1} × {0, . . . , K − 1} and
every vertex v ∈ V is naturally identified by its coordinates (v1, v2), where v1 denotes the column
and v2 the row where v lies. We denote by c j , j = 0, . . . , L − 1, the j th column of Λ, i.e., the
collection of vertices whose horizontal coordinates are equal to j , and by ri , i = 0, . . . , K − 1,
the i th row of Λ, i.e., the collection of vertices whose vertical coordinates are equal to i . It is
convenient to visualize a q-state Potts configuration on a K × L grid graph Λ by coloring a
K × L chessboard with q colors, one for each spin value, see three examples in Fig. 1.

Note that this representation respects the adjacency relations: the neighbors of a given
vertex v are in one-to-one correspondence with the squares that share an edge with the square
corresponding to v. In the rest of the paper, for brevity, we will interchangeably refer to the spin
value of a vertex using its color.

Define the energy gap ∆H (σ ) of a configuration σ ∈ X as the difference between its energy
and the energy of any stable configuration, i.e., ∆H (σ ) := H (σ ) − H (s), for any s ∈ X s . Given
a configuration σ ∈ X , we call an edge e = (v, w) ∈ E disagreeing if it connects two vertices
with different colors, i.e., σ (v) ̸= σ (w). From (1), it follows that ∆H (σ ) is equal to the number
of disagreeing edges that configuration σ has, since

∆H (σ ) = H (σ ) + |E | = |E | −

∑
(v,w)∈E

1{σ (v)=σ (w)} =

∑
(v,w)∈E

1{σ (v)̸=σ (w)}.
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Fig. 2. Example of configurations on a 8 × 10 grid graph displaying black bridges or a black cross.

The energy gap ∆H (σ ) quantifies the surface tension between different spin clusters, since
∆H (σ ) is equal to the total perimeter of the same-color clusters that configuration σ has. Indeed,
the disagreeing edges of a Potts configuration σ on Λ are in one-to-one correspondence with the
edges of the dual graph Λ +

( 1
2 , 1

2

)
that are used to define the Peierls contour of the clusters.

The structure of the grid graph Λ allows us to rewrite the energy gap in a different form that
will be crucial for our analysis. The edges of Λ can have either vertical or horizontal orientation,
and we can partition the edge set E accordingly into two subsets of vertical edges Ev and
horizontal edges Eh . Using this partition of E and (1), we can rewrite the energy gap ∆H (σ ) as
the sum of the contributions on horizontal and vertical edges, namely

∆H (σ ) =

∑
(v,w)∈Ev

1{σ (v)̸=σ (w)} +

∑
(v,w)∈Eh

1{σ (v)̸=σ (w)}.

Let ∆Hri (σ ) be the energy gap of a configuration σ ∈ X in the i th row, namely ∆Hri (σ ) :=∑
(v,w)∈ri

1{σ (v)̸=σ (w)}, and ∆Hc j (σ ) that in the j th column, i.e., ∆Hc j (σ ) :=
∑

(v,w)∈c j
1{σ (v)̸=σ (w)}, where, with a minor abuse of notation, we write (v, w) ∈ ri (c j , respectively) when
(v, w) ∈ E is a horizontal (vertical) edge that links two vertices v, w both on row ri (column c j ).
We can thus rewrite the energy gap of a configuration σ ∈ X as

∆H (σ ) =

K−1∑
i=0

∆Hri (σ ) +

L−1∑
j=0

∆Hc j (σ ). (4)

Given σ ∈ X on Λ, a vertex v ∈ V , and k ∈ {1, . . . , q}, we define σ v,k
∈ X to be the

configuration obtained from σ by coloring the vertex v with color k, i.e., σ v,k(w) = k if w = v

and σ v,k(w) = σ (w) otherwise.

2.2. Local geometric properties: Bridges and crosses

In this subsection we will introduce some geometric features of Potts configurations on a
K × L grid graph Λ and study how they are related with their corresponding energy.

We say that a configuration σ ∈ X has a horizontal bridge on a row if all the vertices on that
row have the same color. Vertical bridges are defined analogously. A few examples of bridges are
illustrated in Fig. 2(a) and (b). An immediate consequence of the structure of rows and columns
of the grid graph Λ is that a Potts configuration cannot display simultaneously a horizontal and
a vertical bridge of different colors. Hence, if a configuration σ ∈ X has both a vertical and a
horizontal bridge, they must be of the same color and we refer to them as a cross, see an example
in Fig. 2(c). If the specific color k ∈ {1, . . . , q} of bridges (crosses) is relevant, we will refer to
them as k-bridges (k-crosses) or specify their color.
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Lemma 2.2 (Bridges and Zero Energy Gap Rows/Columns). The following properties hold for
every Potts configuration σ ∈ X on a grid graph Λ:

(a) ∆Hr (σ ) = 0 if and only if σ has a horizontal bridge on row r;
(b) ∆Hc(σ ) = 0 if and only if σ has a vertical bridge on column c.

Furthermore, if Λ has periodic boundary conditions, then

(c) If σ has no horizontal bridge on row r, then ∆Hr (σ ) ≥ 2;
(d) If σ has no vertical bridge on column c, then ∆Hc(σ ) ≥ 2.

2.3. Expansion algorithm and reference path

In this subsection we introduce the expansion algorithm, a procedure that can be used to
create a path to one of the stable configurations consisting of single-site updates allowed by the
dynamics. The algorithm is presented in Proposition 2.3 and will be used twice: first to construct
a path between any pair of stable configurations with a prescribed height (Proposition 2.4) and
later to show that every Potts configuration on Λ can be reduced to a stable configuration with a
maximum energy gap strictly smaller than Γ (Λ), proving Theorem 2.1(ii).

Not every configuration σ ∈ X is a suitable starting point for the expansion algorithm: indeed,
we require that there exists a monochromatic bridge in σ . The procedure gradually “expands”
this monochromatic bridge by progressively changing the color of the vertices in the adjacent
columns until the corresponding stable configuration is obtained: this is the reason for the name
expansion algorithm. We remark that the fact that our algorithm makes a cluster grow gradually
column by column (or row by row) is not crucial, and in fact we could have defined a more
general procedure leveraging the vertex-isoperimetric order for grid graphs, known both for
periodic and open boundary conditions [2,12,60,65]. We choose to present here a procedure
based on the row and column structure of Λ as it is more intuitive and eventually yields the same
energy bounds. The following proposition summarizes our findings for both types of boundary
conditions.

Proposition 2.3 (Expansion Algorithm for Grid Graphs). Let σ ∈ X be a Potts configuration
on a grid graph Λ. If σ has a monochromatic k-bridge, then there exists a path ω : σ → sk such
that

Φω − H (σ ) ≤

{
2 if Λ has periodic boundary conditions,
1 if Λ has open boundary conditions.

Proof. Consider first the case of periodic boundary conditions. We can assume that the k-bridge
that σ has is vertical and lies on the first column c0, modulo columns relabeling. If the k-bridge
was horizontal, the argument still works simply interchanging the role of rows and columns. In
the rest of the proof we associate the color black to the spin value k. We now describe an iterative
procedure that builds a path ω : σ → sk as concatenation of L paths ω(1), . . . , ω(L) and using the
following intermediate configurations σi , for every i = 0, . . . , L:

σi (v) :=

{
k if v ∈

⋃i
j=0 c j ,

σ (v) if v ∈ V \
⋃i

j=0 c j .

For every i = 1, . . . , L we will define a path ω(i)
: σi−1 → σi of length K so that along

path ω(i), i = 1, . . . , L , the vertices on i th column are progressively colored in black. Fig. 3



4564 F.R. Nardi and A. Zocca / Stochastic Processes and their Applications 129 (2019) 4556–4575

Fig. 3. Illustration of some configurations along the path ω(1)
: σ0 → σ1 on a 8 × 10 grid.

depicts some configurations along the path ω(1). Set ω
(i)
0 = σi−1 and for any m = 1, . . . , K

define the configuration ω(i)
m from the previous one by coloring as black the vertex (i, m − 1),

i.e., ω(i)
m := (ω(i)

m−1)(i,m−1),k, for m = 1, . . . , K .

The energy cost of these single-vertex updates satisfies the following inequalities:

H (ω(i)
m ) − H (ω(i)

m−1) ≤

⎧⎪⎨⎪⎩
2 if m = 1,

0 if 1 < m < K ,

−2 if m = K .

(5)

By updating a configuration only in a given vertex v, the edges that can change from agreeing
to disagreeing and vice-versa are only those incident to v. Given η ∈ X and v ∈ V , denote
by dv(η) =

∑
w∈V : (v,w)∈E 1{η(v)̸=η(w)} the number of disagreeing edges incident to vertex v in

configuration η, so that

H (ω(i)
m ) − H (ω(i)

m−1) = d(i,m−1)(ω(i)
m ) − d(i,m−1)(ω

(i)
m−1). (6)

Denote v = (i, m −1). If v is already black, the step is void and trivially H (ω(i)
m )− H (ω(i)

m−1) = 0.
If v is not black, using identity (6), inequality (5) is proved distinguishing three different cases,
which are illustrated below in Fig. 3, respectively in (a)–(b) for m = 1, (c)–(d) for 1 < m < K ,
and (e)–(f) for m = K .

• If m = 1, then dv(ω(i)
m−1) ≥ 1, since v is not black and, as such, disagrees at least with its

left neighbor (black by construction), while dv(ω(i)
m ) ≤ 3, since dv(ω(i)

m ) ̸= 4 as at least the
left neighbor of v is also black.

• If 1 < m < K , then dv(ω(i)
m−1) ≥ 2, since v is not black and, as such, disagrees at least

with its left and bottom neighbor (both black by construction), while dv(ω(i)
m ) ≤ 2, since v

is black and agrees at least with its left and bottom neighbor (both black by construction).
• If m = K , then dv(ω(i)

m−1) ≥ 3, since v is not black and as such it disagrees at least with its
left, top, and bottom neighbors (that are black by construction), while dv(ω(i)

m ) ≤ 1, since
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v is black and agrees at least with its left, top, and bottom neighbors (all three black by
construction).

The inequalities in (5) imply that Φω(i) − H (σi−1) ≤ 2 for every i = 1, . . . , L − 1.
Therefore, by concatenating all the paths ω(1), . . . , ω(L−1) we obtain a path ω : σ → sk such
that Φω − H (σ ) ≤ 2.

As far as the case of open boundary conditions is concerned, instead of giving a full
description of the expansion algorithm, we will only briefly outline the main differences with
respect to the one we just presented. Let σ ∈ X be the configuration displaying a black bridge,
which, as before, we can assume to be vertical. There are two tweaks necessaries to adapt the
algorithm described earlier to this scenario:

1. Let c∗ be the column where the bridge lies. The columns of a grid graph with open
boundary conditions are not identical and, therefore, we cannot assume without loss of
generality that c∗ is the first column c0. The procedure described previously can be used
to expand the bridge first to the right of c∗, until the open boundary of Λ is reached, and
then analogously to the left of c∗ (“mirroring” the moves described earlier).

2. Every new column is started by updating its bottom-most vertex (which in view of the
open boundaries has at most 3 neighbors) and is completed by updating the topmost vertex
(also having at most 3 neighbors). By revisiting the previous calculations, we can control
the energy differences along any path ω(i), namely

H (ω(i)
m ) − H (ω(i)

m−1) ≤

⎧⎪⎨⎪⎩
1 if m = 1,

0 if 1 < m < K ,

−1 if m = K .

Therefore, H (σi ) ≤ H (σi−1) and Φω(i) − H (σi−1) ≤ 1 and the path ω obtained by
concatenating ω(1), . . . , ω(L) then satisfies the inequality Φω − H (σ ) ≤ 1. □

Using the expansion algorithm we build a path between any pair of stable configurations with
a prescribed height, to which we will refer as reference path.

Proposition 2.4 (Reference Path). Consider the Potts model on a K ×L grid Λ with min{K , L} ≥

3. For every pair of stable configurations s, s′
∈ X s , s ̸= s′, there exists a reference path

ω∗
: s → s′ such that

Φω∗ − H (s) =

{
2 min{K , L} + 2 if Λ has periodic boundary conditions,
min{K , L} + 1 if Λ has open boundary conditions.

Proof. Consider first the case of periodic boundary conditions and assume K ≤ L . The
construction of the reference path is analogous when K > L and is obtained simply by
interchanging the role of rows and columns.

Let σ ∗ be the configuration that agrees with the target configuration s′ on the first column c0

and elsewhere with the starting configuration s. We construct a reference path ω∗ from s to s′ such
that Φω∗ − H (s) = 2K + 2 as the concatenation of two paths, ω(1)

: s → σ ∗ and ω(2)
: σ ∗

→ s′,
such that Φω(1) = H (s) + 2K and Φω(2) = H (s) + 2K + 2. For simplicity we color to the vertices
whose spins agree with s as white and the one agreeing with s′ as black, see Fig. 4 for some
snapshots of the reference path ω.
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Fig. 4. Reference path in the case K ≤ L (column c0 is shifted to the right to visualize better the effect of the boundary).

The path ω(1) is the path (ω(1)
0 , . . . , ω

(1)
K ) of length K starting from ω

(1)
0 = s and obtained

iteratively by coloring at step i vertex (0, i − 1) as black. It is easy to check that

H (ω(1)
i ) − H (ω(1)

i−1) =

⎧⎪⎨⎪⎩
4 if i = 1,

2 if i = 2, . . . , K − 1,

0 if i = K .

The configurations with the highest energy along ω(1) are ω
(1)
K−1 and ω

(1)
K = σ ∗, as ∆H (ω(1)

K−1) =

2K = ∆H (σ ∗), and therefore Φω(1) = H (σ ∗) = H (s) + 2K . The newly obtained configuration
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σ ∗ has a monochromatic black bridge on c0 and as such is a suitable starting configuration for
the expansion algorithm introduced earlier. In view of Proposition 2.3, such an algorithm outputs
a path ω(2)

: σ ∗
→ s′ such that Φω(2) = H (σ ∗) + 2 = H (s) + 2K + 2.

In the case where Λ has open boundary conditions, the exact same reference path yields the
desired identity. By reviewing the calculations for the maximum energy along the paths ω(1) and
ω(2) it is easy to show that Φω(1) = H (s) + K and Φω(2) = H (s) + K + 1, from which the
conclusion readily follows. □

2.4. Communication energy between stable configurations

Given a configuration σ ∈ X and a spin value k ∈ {1, . . . , q}, let Bk(σ ) ∈ N ∪ {0} be
the total number of k-bridges (both horizontal and vertical) that configuration σ has. The next
lemma shows how this quantity evolves with single-spin updates and relates its increments with
geometric properties of the spin configurations.

Lemma 2.5 (Bridges Creation and Deletion). Let σ, σ ′
∈ X be two Potts configuration that

differ by a single-spin update, i.e., such that Q(σ, σ ′) > 0. Then, for every k ∈ {1, . . . , q} we
have that Bk(σ ′)− Bk(σ ) ∈ {−2, −1, 0, 1, 2}, and Bk(σ ′)− Bk(σ ) = 2 if and only if σ ′ a k-cross
that σ does not have.

This lemma, whose easy proof is omitted, states that at most two bridges of a given color
can be created or destroyed by a single-spin update and that, if two bridges are created
simultaneously, they must be orthogonal (one horizontal and one vertical). The total number
of k-bridges is the key quantity to exactly characterize the minimum height of any path between
stable configurations, as illustrated by the next proposition.

Proposition 2.6 (Communication Energy Lower Bound). Consider the Potts model on a K × L
grid with max{K , L} ≥ 3. Then, for every s, s′

∈ X s , with s ̸= s′, the following inequality holds

Φ(s, s′) − H (s) ≥

{
2 min{K , L} + 2 if Λ has periodic boundary conditions,
min{K , L} + 1 if Λ has open boundary conditions.

Proof. Consider first the case of periodic boundary conditions. It is enough to show that along
every path ω : s → s′ in X there exists at least one configuration with energy gap not smaller
than 2 min{K , L} + 2. Let k ∈ {1, . . . , q} be the spin value such that s′

= sk . In the rest of the
proof we will associate the color black to the spin value k and, in particular, we will refer to
k-bridges and k-crosses as black bridges and crosses, respectively.

Consider a path ω from s to s′ of length n. Note that s has no black bridges, i.e., Bk(s) = 0,
while s′ is has Bk(s′) = K + L black bridges. Hence, there exists a configuration along the path ω

that is the first to have at least two black bridges and let m∗
:= min{m ≤ n | Bk(ωm) ≥ 2} ∈ N be

the corresponding index. We claim that the total energy gap of the configuration ωm∗−1 satisfies
the following inequality

∆H (ωm∗−1) ≥ 2 min{K , L} + 2.

We prove this claim by considering separately three scenarios:

(a) ωm∗ displays only vertical black bridges;
(b) ωm∗ displays only horizontal black bridges;
(c) ωm∗ displays at least one black cross.
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Fig. 5. Examples of configuration ωm∗ in scenario (a).

(a) By definition of m∗, we have Bk(ωm∗−1) ≤ 1 and Bk(ωm∗ ) ≥ 2. Moreover, Bk(ωm∗ ) −

Bk(ωm∗−1) < 2, since otherwise ωm∗ would have a black cross in view of Lemma 2.5. Hence,
Bk(ωm∗−1) = 1 and Bk(ωm∗ ) = 2 and configuration ωm∗ has exactly two vertical black bridges,
say on columns c and c′, see an example in Fig. 5. Since ωm∗−1 and ωm∗ differ by a single-spin
update and Bk(ωm∗−1) = 1, it follows that configuration ωm∗−1 has only one vertical k-bridge,
say on column c, and all black vertices but one on column c′. In particular, ωm∗−1 has no vertical
bridge on column c′ and, therefore, by Lemma 2.2(d),

∆Hc′ (ωm∗−1) ≥ 2. (7)

We claim that ωm∗−1 cannot have any horizontal bridge. Indeed the presence of a black horizontal
bridge in some row would imply that Bk(ωm∗−1) ≥ 2 (since ωm∗−1 has by construction at least a
vertical black bridge on column c), contradicting the definition of m∗; furthermore, there cannot
be non-black horizontal bridges either due to the presence of the black bridge in column c. By
Lemma 2.2(c), the absence of horizontal bridges yields that ∆Hr (ωm∗−1) ≥ 2 for every row r
and thus

K−1∑
i=0

∆Hri (ωm∗−1) ≥ 2K . (8)

Using identity (4), inequalities (7) and (8) yield ∆H (ωm∗−1) ≥ ∆Hc′ (ωm∗−1) +
∑K−1

i=0 ∆Hri
(ωm∗−1) ≥ 2K + 2.

(b) Arguing like in (a) but interchanging the role of rows and columns, one can show that
∆H (ωm∗−1) ≥ 2L + 2.

(c) Assume now that ωm∗ displays at least one black cross. By definition of m∗, the quantity
Bk(ωm∗−1) can take only two values, 0 or 1, and we consider these two cases separately.

Assume first that Bk(ωm∗−1) = 0, which means that ωm∗−1 has no black bridges, see an
example in Fig. 6.

Since ωm∗−1 and ωm∗ differ by a single-spin update, Lemma 2.5 gives that Bk(ωm∗ ) ≤ 2 and
thus we can conclude that Bk(ωm∗ ) = 2, by definition of m∗. Lemma 2.5 implies further that
ωm∗ displays a unique black cross and denote by r̂ and ĉ the row and column on which it lies.
Since Bk(ωm∗−1) = 0, the horizontal and vertical black bridges that ωm∗ has must have been
created simultaneously by updating the spin in the vertex v̂ = r̂ ∩ ĉ. Hence, by construction,
ωm∗−1(v) = k for every v ∈ r̂ ∪ ĉ, v ̸= v̂, which means that there is a black vertex in every
row and column. Consequently, configuration ωm∗−1 cannot have any non-black (horizontal or
vertical) bridges, and, since we assumed Bk(ωm∗−1) = 0, we conclude that ωm∗−1 has no bridges
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Fig. 6. Example for scenario (c) of a configuration ωm∗−1 such that Bk (ωm∗−1) = 0.

Fig. 7. Example for scenario (c) of a configuration ωm∗−1 such that Bk (ωm∗−1) = 1.

of any color. Therefore, by Lemma 2.2(c)–(d), the energy gap is not smaller than 2 in every row
and column, and, hence,

K−1∑
i=0

∆Hri (ωm∗−1) ≥ 2K and
L−1∑
j=0

∆Hc j (ωm∗−1) ≥ 2L .

and thus, using identity (4), we obtain ∆H (ωm∗−1) ≥ 2K +2L ≥ 2 min{K , L}+2 max{K , L} >

2 min{K , L} + 2.

Consider now the scenario in which Bk(ωm∗−1) = 1, in which ωm∗−1 has a unique black
bridge, see Fig. 7. Assume such black bridge is vertical and lies in column c̃ (if it is horizontal,
the proof is identical after interchanging the role of rows and columns). Its presence makes the
existence of any horizontal non-black bridge impossible in ωm∗−1. Furthermore, by assumption
ωm∗−1 has no horizontal black bridges and Lemma 2.2(c) then yields

K−1∑
i=0

∆Hri (ωm∗−1) ≥ 2K . (9)

Since ωm∗−1 and ωm∗ differ by a single-spin update, the presence of a black cross ωm∗ and the
absence of horizontal black bridges in ωm∗−1 imply that ωm∗ has a unique horizontal black bridge,
say on row r̂ . By construction, the vertex, say v̂, where ωm∗ and ωm∗−1 differ must lie in such
a row, ωm∗−1(v̂) ̸= k, and ωm∗−1(v) = k for every v ∈ r̂ , v ̸= v̂. Let ĉ be the column where v̂

lies. The black vertices in row r̂ implies that configuration ωm∗−1 has no vertical l-bridge with
l ̸= k in every column c ̸= ĉ, c̃. Lemma 2.2(d) then yields that in each of these L − 2 columns
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the energy gap is greater than or equal to 2 and, thus,
L−1∑
j=0

∆Hc j (ωm∗−1) ≥ 2(L − 2) = 2L − 4. (10)

Inequalities (9) and (10) combined yield ∆H (ωm∗−1) ≥ 2K + 2L − 4 ≥ 2 min{K , L} +

2 max{K , L} − 4 ≥ 2 min{K , L} + 2, where the last inequality holds since max{K , L} ≥ 3.
The proof in the case of open boundary conditions is very similar and thus omitted. The

only minor tweak necessary is due to the fact that the lower bound for the energy gap on rows
or columns without bridges is different due to the open boundary conditions. As illustrated in
Lemma 2.2, a row or column without bridges has energy gap not smaller than 2 when Λ has
periodic boundary conditions, while we only know that is non-zero (and in particular greater
than or equal to 1) when Λ has open boundary conditions. By adjusting this factor in all the
inequalities derived above, one gets the desired lower bound for the communication energy
Φ(s, s′). □

2.5. Proof of Theorem 2.1

(i) The proof readily follows by combining the upper bound for Φ(s, s′) given by the
reference path constructed in Proposition 2.4 with the matching lower bound obtained in
Proposition 2.6.

(ii) We first consider the case of (a) periodic boundary conditions and later that of (b) open
boundary conditions. We henceforth assume K ≤ L , since one can argue similarly interchanging
rows and columns when K > L .

(a) Consider a configuration σ ∈ X \X s . If σ has a (vertical or horizontal) k-bridge for some
k = 1, . . . , q, then the expansion algorithm can be used to build a path ω : σ → sk such that
Φω ≤ H (σ )+2 and the proof is concluded. On the other hand, if σ has no (vertical or horizontal)
bridges, consider the column c∗ with the largest number of vertices of the same color, say black,
and let k be the associated spin value. Define

σ ∗(v) :=

{
σ (v) if v ∈ V \ c∗,

k if v ∈ c∗.

Let m := |{v ∈ V : σ (v) ̸= σ ∗(v)}| be the number of vertices in which configurations σ and σ ∗

differ, which is precisely the number of non-black vertices that configuration σ has on column
c∗, since {v ∈ V : σ (v) ̸= σ ∗(v)} = {v ∈ c∗

: σ (v) ̸= k}. In particular, by construction,
m < K = |c∗

|. We build a path ω(1)
: σ → σ ∗ along which these m non-black vertices are

progressively colored as black. The order in which these vertices are updated is crucial to obtain
the desired bound for Φω: more specifically for every step i = 1, . . . , m, consider a vertex vi ∈ c∗

such that ω
(1)
i−1(v) ̸= k and with at least one black neighbors on column c∗ and then obtain the

new configuration ω
(1)
i from ω

(1)
i−1 by coloring such vertex as black.

The way in which the vertices v1, . . . , vm are progressively chosen guarantees that ∆H (ω(1)
i )

≤ ∆H (ω(1)
i−1) + 2, for every i = 1, . . . , m − 1, since at most two disagreements are created by

coloring vertex vi as black, and that ∆H (ω(1)
m ) ≤ ∆H (ω(1)

m−1), since vertex vm has by construction
exactly two black neighbors on column c∗. Hence, the path ω(1) is such that Φω(1) − H (σ ) ≤

2(m − 1). Configuration σ ∗ has a vertical black bridge and thus the expansion algorithm yields
a path ω(2)

: σ ∗
→ sk such that Φω(2) − H (σ ∗) ≤ 2. The concatenation of ω(1) and ω(2) then is a

path from σ to sk that guarantees that Φ(σ,X s) − H (σ ) ≤ 2(m − 1) + 2 ≤ 2m < 2K < 2K + 2.
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(b) In the case of open boundary conditions we only briefly need to review the calculations
done in (a). If σ has a bridge on the first column, then the expansion algorithm guarantees that
Φ(σ,X s) − H (σ ) ≤ 1. If there is no bridge there, let k be the most present spin value on the
first column and associate the color black with it. Define the configuration σ ∗ obtained from σ

by coloring as black all vertices on the first column, i.e., σ ∗(v) = k if v ∈ c0 and σ ∗(v) = σ (v)
otherwise. Similarly to case (a), we define a path from σ to X s using σ ∗ as intermediate
configuration. If m denotes the number of vertices in which configurations σ and σ ∗ differ,
we have m < K since we assumed that σ has no bridge on the first column. By progressively
coloring them as black, always updating a vertex with at least one black neighboring vertex on
c0, the energy cost is no larger than 1 for every vertex newly colored in black (thanks to the
open boundary conditions). In particular, coloring the last non-black vertex on column c0 costs
0 or less, since by construction it had at most one disagreeing neighbor. The path we defined
in this way implies that Φ(σ, σ ∗) − H (σ ) ≤ m − 1. We can then concatenate to this path
another one built using the expansion algorithm (applicable because σ ∗ has a black bridge),
obtaining in this way a path from σ to sk ∈ X s and looking at its height we conclude that
Φ(σ,X s) − H (σ ) ≤ (m − 1) + 1 ≤ m < K < K + 1. □

3. Proof of Theorem 1.1

(i)–(ii) Consider the target stable configuration s′
∈ X s . We first claim that

∀ σ ̸= s′ Φ(σ, s′) − H (σ ) ≤ Γ (Λ). (11)

Assuming this inequality holds, then the energy barrier between stable configurations is the
largest across the whole energy landscape. The proofs of statements (i) and (ii) readily follow
by applying [56, Corollary 3.16] and [56, Theorem 3.19], which, using this information on the
maximum energy barrier, yield sharp bounds in probability for the hitting times τ s

s′ and τ s
X s\{s}

and the convergence of their scaled first moments. The technical assumption under which these
two results hold is implied by (11) and [56, Proposition 3.18].

Let us then prove inequality (11). If σ ∈ X s
\ {s′

}, then the inequality follows from
Theorem 2.1(i). In the other case, when σ ̸∈ X s , Theorem 2.1(ii) guarantees that there exists
s∗

∈ X s such that Φ(σ, s∗) − H (σ ) < Γ (Λ), which means that there exists a path ω∗
: σ → s∗

with Φω∗ − H (σ ) < Γ (Λ). If s∗
= s′, then the claim in (11) is proved. Otherwise, we can

concatenate such path ω∗ and another path, say ω(2)
: s∗

→ s′, constructed as in Proposition 2.4
to obtain a path ω : σ → s′ satisfying Φω − H (σ ) ≤ Γ (Λ), proving that inequality (11) holds
also in this case.

(iii) Since the statement of Theorem 2.1(i) holds for any pair of stable configurations, it
follows that Φ(s,X s

\ {s}) − H (s) = Γ (Λ) for every s ∈ X s . Combining this identity with
Theorem 2.1(ii) readily implies that

∀ s ∈ X s max
σ∈X \X s

Φ(σ,X s) − H (σ ) < Φ(s,X s
\ {s}) − H (s). (12)

This inequality means that the energy barrier separating s from the target set X s
\ {s} is

strictly larger than any other energy barrier in the energy landscape. The technical condition
in [56, Proposition 3.20] then holds and we can apply [56, Theorem 3.19] to get the asymptotic
exponentiality of τ s

X s\{s}/Eτ s
X s\{s} and conclude the proof.

(iv) If q = 2, statements (iii) and (iv) coincide and there is nothing to prove. If q > 2,
although statement (iv) look very similar to (iii) and (iv), its proof does not immediately follow
from the structural properties of the energy landscape. Indeed in this case the subset X s

\ {s, s′
}

is not empty and there exists at least a third stable configuration η ∈ X s
\ {s, s′

} such that
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Φ(s, s′) − H (s) ̸> Φ(η, s′) − H (η) (both the left-hand and right-hand sides are equal to Γ (Λ)
by Theorem 2.1). Thus, a condition analogous to (12) does not hold in this case and thus we
cannot directly apply the model-independent results in [56] as we did for statement (iii). This
technical detail reflects the fact that the energy landscape X \ {s, s′

} has at least one stable
configuration different from the starting and target ones; the dynamics may be trapped in the
“valley” of any such stable configuration and thus these visits must be considered to determine
the asymptotic distribution of τ s

s′/Eτ s
s′ . The proof of the asymptotic exponentiality of τ s

s′ is
thus obtained leveraging the already proved statement (iii) in combination with a stochastic
representation of the tunneling time τ s

s′ that exploits the intrinsic symmetries of the energy
landscape (X , H, Q) of the q-state Potts model on Λ. For any k, l ∈ {1, . . . , q}, with k ̸= l,
define the automorphism Ψk,l : X → X as

[Ψk,l(σ )](v) =

⎧⎪⎨⎪⎩
σ (v) if σ (v) ̸= k, l,
k if σ (v) = l,
l if σ (v) = k.

In other words, the configuration Ψk,l(σ ) is obtained from σ by interchanging every spin with
value k with a spin with value l and vice-versa, while leaving all the other q − 2 spin values
unchanged. Exploiting the family of automorphisms {Ψk,l}k,l=1,...,q and, arguing similarly to [67,
Proposition 2] and [66, Proposition 4.3], we can construct a coupling between different copies
of the Markov chain {Xβ

t }t∈N and show that for any s ∈ X s and at any temperature β > 0 the
following properties hold:

(a) The random variable Xτ s
X s\{s}

has a uniform distribution over X s
\ {s};

(b) The distribution of the random variable τ s
X s\{s} does not depend on s;

(c) The random variables τ s
X s\{s} and Xτ s

X s\{s}
are independent.

Let Nq be the random variable that counts the number of non-consecutive visits to stable
configurations in X s

\ {s′
} until the configuration s′ is hit (counting the initial configuration s

where the Markov chain starts at time t = 0 as first visit). Non-consecutive visits means that we
count as actual visit to a stable configuration only the first one after the last visit to a different
stable configuration. Property (b) implies that the random time between these non-consecutive
visits does not depend on the last visited stable configuration. In view of property (a), the random
variable Nq is geometrically distributed with success probability equal to (q − 1)−1, i.e.,

P(Nq = m) =

(
1 −

1
q − 1

)m−1
·

1
q − 1

, m ≥ 1. (13)

In particular, Nq depends only on q and not on the inverse temperature β. The amount of time
τ s
X s\{s} it takes the Metropolis Markov chain started in s ∈ X s to hit any stable configuration in
X s

\{s} does not depend on s, by virtue of property (b). In view of these considerations and using
the independence property (c), we derive for every s, s′

∈ X s , s ̸= s′ the following stochastic
representation of the tunneling time τ s

s′ :

τ s
s′

d
=

Nq∑
i=1

τ (i), (14)

where {τ (i)
}i∈N is a sequence of i.i.d. random variables distributed as τ s

X s\{s} and Nq is an
independent geometric random variable as defined in (13). In particular, since both random
variables Nq and τ s

X s\{s}
d
= τ (i) have finite expectation and ENq = q −1, it immediately follows
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from Wald’s identity that Eτ s
s′ = (q − 1) · Eτ s

X s\{s} = (q − 1) · Eτ (i). Thus, we can rewrite (14)
as τ s

s′/Eτ s
s′

d
= (ENq )−1 ∑Nq

i=1 τ (i)/Eτ (i). Statement (iii) gives that τ (i)/Eτ (i) d
−→ Exp(1) for every

i ∈ N as β → ∞ and thus τ s
s′/Eτ s

s′ is asymptotically distributed as geometric sum of i.i.d. unit-
mean exponential random variables, which is also exponentially distributed.

(v) By combining Theorem 2.1(i) and (ii), it is easy to check that maxσ ̸=s Φ(σ, s) − H (σ ) =

Γ (Λ) for every s ∈ X s, and the statements for both mixing time and spectral gap then follow
from [56, Proposition 3.24]. □
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