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Abstract
We aim to improve upon the exploration of the general-purpose random walk Metropolis algorithm when the target has non-
convex support A ⊂ R

d , by reusing proposals in Ac which would otherwise be rejected. The algorithm is Metropolis-class
and under standard conditions the chain satisfies a strong law of large numbers and central limit theorem. Theoretical and
numerical evidence of improved performance relative to random walk Metropolis are provided. Issues of implementation are
discussed and numerical examples, including applications to global optimisation and rare event sampling, are presented.

Keywords Markov Chain Monte Carlo · Metropolis-Hastings algorithm · Multimodal target distribution · Multistart method ·
Global optimisation
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1 Introduction

A key challenge for Markov chain Monte Carlo (MCMC)
algorithms is the balance between global “exploration” and
local “exploitation”. In this paper we present the skip-
ping sampler, a general-purpose and easily implemented
Metropolis-class algorithm which is capable of improving
exploration of targets π with nontrivial support A, by reusing
proposals lying outside A. For this to be useful, we make the
following standing assumption:

Assumption 1 π is a probability density function on R
d

whose support

A = supp(π) := {x ∈ R
d : π(x) > 0}
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satisfies Leb(Ac) > 0, where Ac is the complement of A and
Leb denotes Lebesgue measure on Rd .

Such targets can arise for example in sampling from the
superlevel sets of a density in the hybrid slice sampler Neal
(2003), or when sampling from rare events.

Proposals in Ac would be automatically rejected by stan-
dard algorithms such as random walk Metropolis (RWM),
which exploits only local proposals for the next state of the
chain. If a proposal lies in Ac, the skipping sampler uses this
information by attempting to cross Ac in a sequence of linear
steps, much as a flat stone can jump repeatedly across the sur-
face of water, and offer a relevant proposal. Since this can be
seen as a tunnelling effect through the zero-mass region Ac,
it is advantageous when A is non-convex and, in particular,
disconnected. The resulting Markov chain satisfies a strong
law of large numbers and central limit theorem under essen-
tially the same conditions as for RWM, to which we provide
theoretical and numerical performance comparisons.

To accelerate global exploration of the state space in
MCMC algorithms, several approaches have by now been
developed including tempering, Hamiltonian Monte Carlo
and piecewise deterministicmethods (seeRobert et al. (2018)
for a recent review). However these methods are best suited
to target densities with connected support, since the chain
cannot cross regions where the target has zero density. A dis-
connected support would thus imply reducibility of the chain
and its failure to converge to the target.
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While RWM can be applied to targets with regions of zero
density, its balance between exploration and exploitation can
be problematic. If any state in Ac is proposed it is discarded
and the chain does not progress. When A is non-convex, in
particular, examples may be constructed where exploration
is slow even when RWM is well tuned, making the chain
sensitive to its initial state. This is illustrated in Fig. 1, where
red dots show the trace of a tuned RWM applied to a target
with non-convex support, with four different initial states of
the chain (the blue traces illustrate the increased exploration
achieved by the skipping sampler). One solution is to use
knowledge of the target to design a more advanced proposal,
such as those reviewed in Robert et al. (2018). However this
approach is unavailable if the target density is unknown, or
is known but insufficiently regular. In this case, a general-
purpose method is instead required.

Theorem 2 establishes that the performance of the skip-
ping sampler is at least as good as that of RWM accord-
ing to the Peskun ordering. However the strengths of the
proposed method lie primarily in applications to difficult
low-dimensional problems. Conversely, in high dimensional
problems the method generally offers similar performance
to RWM. The aim of this paper is to present the method and
illustrate its benefits via numerical examples, rather than to
study any particular application exhaustively.

Although it is not random walk-based, the skipping sam-
pler is Metropolis class. The symmetry of the skipping
proposal can be seen intuitively, provided that the direction of
the first proposal is chosen symmetrically and the sequence
of jump lengths has the same distribution when reversed.
Thus although the proposal density typically does not have
a convenient closed form, it need not be evaluated in order
to access the Metropolis acceptance probabilities. Another
advantage is that the sampler is general-purpose, in the sense
that no knowledge is required of the target density beyond
the ability to evaluate it pointwise. In particular, it is not nec-
essary to know the target’s support a priori.

Beyond the context of random sampling, our work has
applications to probabilistic methods for deterministic non-
convex optimisation such as multistart Jain and Agogino
(1993);Martí (2003) and basin-hopping Leary (2000);Wales
andDoye (1997). Thesemethods combinedeterministic local
search, such as given by a gradient method, with random per-
turbations or re-initialisationswhichmay be performed using
the skipping sampler to improve exploration. Section 5 pro-
vides numerical examples of these applications.

1.1 Related work

Many methods for accelerating the exploration of MCMC
algorithms use prior knowledge of the target. For example,
known mode locations may be used to design global moves
for the samplerAndricioaei et al. (2001); Pompe et al. (2020);

Lan et al. (2014); Sminchisescu and Welling (2007); Smin-
chisescu et al. (2003); Tjelmeland and Hegstad (2001), or
moves may be guided by the known derivatives of a differ-
entiable target density Lan et al. (2014); Tak et al. (2018).

Some exceptions are methods that generate multiple pro-
posals, such as Multipoint MCMC Qin and Liu (2001) and
Multiple-tryMetropolis Liu et al. (2000)which, like the skip-
ping sampler, do not require additional information about the
target. A fixed number of potentially correlated trial points
are generated and one is selected at random, using a weight
function which may be chosen to encourage exploration. Its
random-grid implementation, in particular, has similarities
with the skipping sampler. However, instead of fixing the
number of draws, our proposal attempts to continue project-
ing further sequentially until it reaches A. Another advantage
of our method is that it is Metropolis class, which simplifies
both implementation and theoretical analysis.

During the review process our attentionwas brought to the
very interesting sequential proposals of Park and Atchadé
(2020), which also introduces a Metropolis-class sampler
that modifies the proposal sequentially. In the wider class
of algorithms introduced there, it is possible to recognise
methods close in spirit to the skipping sampler. When skip-
ping is applied to the hybrid slice sampler as in Sect. 5.2, for
example, the resulting algorithm is a particular instance of
the sequential proposal. While in Park and Atchadé (2020)
the authors are motivated by the efficient implementation of
Hamiltonian Monte Carlo, our own motivation is the effi-
cient sampling of rare events. Together, these studies are
suggestive of further potential to use sequences of proposals
to accelerate MCMC methods in a range of situations, for
instance within the framework introduced in Andrieu et al.
(2020).

Like the hit-and-run sampler Smith (1984) and related
algorithms (see Section 6.3 of Gilks and Roberts (1996)),
the skipping sampler splits a Markovian transition into the
random generation of a direction followed by a move in that
direction. When the target conditioned on any line in the
space is available in closed form, the hit-and-run algorithm
is of course preferable, for the reasons provided inRudolf and
Ullrich (2018). Otherwise (which is more typical in applica-
tions), the skipping sampler offers a simple alternative and
has the potential to increase exploration in the case of a non-
convex support.

While also designed for targets with non-convex sup-
port, the ghost sampler introduced by the present authors
in Moriarty et al. (2018) is not general-purpose since it uses
knowledge of the geometry of the set A, assuming it is poly-
hedral.

The rest of the paper is structured as follows.We introduce
the skipping sampler in Sect. 2 and state our main results in
Sect. 3. Implementation and extensions are discussed in Sect.
4. Numerical applications to slice sampling and rare event
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Fig. 1 Traces of the proposed skipping sampler (blue) and RWM algorithm (red) when the target has disconnected support. Both samplers are
started at the same initial point X0 and use the same underlying Gaussian proposal, whose standard deviation is tuned for a RWM acceptance ratio
of 25%. The RWM typically localises around its initial state

sampling are given in Sect. 5, together with an application to
global optimisation. Section 6 is devoted to the proof of the
main results.

2 Skipping sampler

In this section we introduce the skipping sampler on R
d ,

which is a modification of the RWM algorithm Metropolis
et al. (1953). It is Metropolis-class although, unlike RWM,
does not perform a random walk.

Assumption 2 Let q : R
d → R+ ∪ {0} be a symmetric

(q(x) = q(−x)) continuous probability density function
with q(0) > 0. We refer to q as the underlying proposal
density.

Recall that given the state Xn of the chain, the RWM pro-
poses a state Yn+1 sampled from the density y �→ q(y− Xn)

and accepts it as the next state Xn+1 with probability

α(Xn,Yn+1) :=
{
min

{
1, π(Yn+1)

π(Xn)

}
if π(Xn) �= 0,

1 otherwise,
(1)

else it is rejected by setting Xn+1 = Xn . Here π is the
target density, although we do not take care to distinguish
between π and the corresponding distribution as it will not

cause confusion. For convenience we use the common short-
hand MH(π, q) (after the more general Metropolis-Hastings
algorithm, see Hastings (1970)) to refer to the Metropolis-
class algorithm with target π and proposal q.

Algorithm 1 presents the skipping sampler, which aims
to endow RWM with an improved ability to cross regions
in which the target has zero density. Beginning with a RWM
proposal Yn+1, it continues jumping in a linear trajectory and
accepts or rejects the first state of nonzero target density to
be encountered. Thus any RWM proposal Yn+1 ∈ Ac, which
would be rejected by MH(π, q), is instead reused by adding
jumps of random size in the direction Yn+1 − Xn until either
A is entered, or skipping is halted.

Algorithm 1 can be interpreted as follows. The halting
index K is an independent random variable with distribution
K onZ>0∪{∞}. If K = 1 then Y , the usual RWM proposal,
is taken as the proposal. However if K > 1, the proposal is
constructed using the skipping chain {Zk}k≥0 on Rd defined
by Z0 := X , with X = Xn being the current state of the
chain, and the update rule

Zk+1 := Zk + ΦRk+1, k ≥ 0 , (3)

where ‖ · ‖ denotes the Euclidean norm,Φ = (Y − X)/‖Y −
X‖, R1 = ‖Y − X‖, and the distance increments {Rk}k≥2
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Algorithm 1: Skipping sampler (n-th iteration)

Input : The n-th sample Xn ∈ R
d

1 Set X := Xn and Z0 = X ;
2 Generate the initial proposal Y distributed according to the

density u �→ q(u − X);
3 Calculate the direction

Φ = (Y − X)

‖Y − X‖ ;

4 Generate an independent random halting index K ∼ K;
5 Set k = 1 and Z1 := Y ;
6 while Zk ∈ Ac and k < K do
7 Generate an independent distance increment R distributed as

‖Y − X‖ given Φ;
8 Set Zk+1 = Zk + ΦR;
9 Increase k by one;

10 end
11 Set Z := Zk ;
12 Evaluate the acceptance probability:

α(X , Z) =
{
min

(
1, π(Z)

π(X)

)
if π(X) �= 0,

1, otherwise;
(2)

Generate a uniform random variable U on (0, 1);
13 if U ≤ α(X , Z) then
14 Xn+1 = Z ;
15 else
16 Xn+1 = X ;
17 end
18 return Xn+1.

are independent draws from the distribution of the radial part
‖Y − X‖ conditional on the angular part Φ.
Let TA be the first entry time of the skipping chain into A:

TA := min{k ≥ 1 : Zk ∈ A}, (4)

with min ∅ := ∞. Writing TA ∧ K for the smaller of the two
indices TA and K , we also require:

Assumption 3 The support A = supp(π) and distributionK
are such that E[TA ∧ K ] < ∞ .

Relevant considerations for the choice ofK and q are dis-
cussed in Sect. 4. Note that almost surelywe have bothY �= x
(since q is a density) and TA ∧ K < ∞ (Assumption 3), so
the skipping proposal Z := ZTA∧K output by Algorithm 1 is
well defined.

Proposition 1 The following statements hold:

(i) Algorithm 1 is a symmetric Metropolis-class algorithm
on the domain A. That is, there exists a transition density
qK (which depends on the halting index distribution K)
satisfying qK(x, z) = qK(z, x) for all x, z ∈ A, such that
Algorithm 1 is MH(π, qK).

(ii) The inequality qK(x, z) ≥ q(z−x) holds for every x, z ∈
A.

Proof (i) We now make rigorous the intuitive argument
which was provided earlier for the symmetry of the
skipping proposal. Conditional on the direction Φ, the
skipping chain (3) is one-dimensional.We therefore anal-
yse this one-dimensional chain, before integrating over
Φ to obtain the unconditional transition density.
Consider transitions of the skipping chain (3) between
the states x and z in exactly k ∈ Z>0 steps. The
intermediate states z1, . . . , zk−1 satisfy zi ∈ Ac for
i = 1, . . . , k − 1. The (sub-Markovian) density z �→
ξk(x, z) of these transitions is given by the Chapman-
Kolmogorov equation and the density ξ(r) of the distance
increment R, which can in d-dimensional spherical coor-
dinates be seen to be proportional to q(rΦ)rd−1. Since
the distance increments are i.i.d. and have symmetric
densities (q(−rΦ) = q(rΦ)), simple manipulations
of the Chapman-Kolmogorov integral confirm that it is
unchanged when the start and end point, the order of the
jumps, and the direction of each jump are all reversed.
This establishes that the density ξk is symmetric.
Next note that Assumption 3 implies the decomposition

{Z = z} =
∞⋃
k=1

{Z = z, TA ≤ k, K = k}

∪ {Z = z, TA < ∞, K = ∞}

∪
∞⋃
k=1

{Z = z, TA > k, K = k} .

Hence, Z given x and Φ has a (sub-Markovian) density

ξK(x, z) =
∞∑
k=1

P[K = k]
∑
j≤k

ξ j (x, z)1A(z)

+ P[K = ∞]
∞∑
j=1

ξ j (x, z)1A(z)

+
∞∑
k=1

P[K = k]ξk(x, z)1Ac (z) .

When z ∈ A the above can be simplified to

ξK(x, z) =
∞∑
k=1

ξk(x, z)P[K ≥ k] . (5)

Using d-dimensional spherical coordinates, the uncondi-
tional transition density is then the product of the density
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of Φ with the transition density conditional on Φ:

qK(x, z) = ‖z − x‖1−dξK(x, z) ·
∫ ∞

0

q

(
z − x

‖z − x‖r
)
rd−1dr .

As the proposal q and the densities ξk (for all k) are
symmetric, so is ξK and so is the skipping proposal qK,
whenever x, z ∈ A.
Since any proposal Z ∈ Ac is almost surely rejected if
x ∈ A, Algorithm 1 is a well defined Metropolis-class
algorithm on A, i.e. it is equivalent to MH(π, qK) on the
domain A.

(ii) As noted above, if K = 1 then Algorithm 1 reduces to
MH(π, q). From (5) we therefore have

ξK(x, z) =
∞∑
k=1

ξk(x, z)P[K ≥ k] ≥ ξ1(x, z) · 1

which again translates to the desired statement about pro-
posal densities.

3 Theoretical results

For completeness of the discussion below we provide the
following definitions, further details of which may be found
in Meyn and Tweedie (2009). A Markov chain X0, X1 . . . is
π -irreducible if for every x ∈ R

d and every D ⊂ R
d with

π(D) > 0 we have

Px

⎡
⎣ ⋃
n∈Z>0

{Xn ∈ D}
⎤
⎦ > 0 .

Further, if Px
[⋃

n∈Z>0
{Xn ∈ D}] = 1 for every x ∈ B and

every D ⊂ B withπ(D) > 0 we say that X0, X1, . . . isHar-
ris recurrent on B. A set B is absorbing for a Markov chain
with transition kernel P if P(x, B) = 1 holds for all x ∈ B.
Note that an absorbing set B gives rise to a Markov chain
evolving on B whose transition kernel is simply P restricted
to B (see (Meyn and Tweedie 2009, Theorem 4.2.4)).

It is clear from (1) that if x ∈ supp(π) then

P(x, supp(π)c) = 0,

so that supp(π) is an absorbing set for the Metropolis algo-
rithm with target π , and is a natural space of realisations of
the chain. In what follows we therefore always consider the
chain to evolve on the set A.

Regarding initialisation of the skipping sampler, note
from (2) that if X0 /∈ supp(π) in Algorithm 1 then Z is auto-
matically accepted. In this case the skipping sampler first
enters supp(π) at a random step N and, for 0 ≤ n ≤ N − 2,
we have Xn+1 = ZK – that is, themaximum allowed number
of skips is performed at each stage. This implies that the skip-
ping procedure is also capable of improving exploration in
this initialisation stage. Theorem 1 assumes that π(X0) > 0,
or that initialisation has already been performed. We have

Theorem 1 [SLLN] Suppose that MH(π, q) restricted to
supp(π) isπ -irreducible. ThenMH(π, qK) restricted to A =
supp(π) is also π -irreducible and Harris recurrent. More-
over, the Strong Law of Large Numbers holds: if {Xi }i∈Z>0

is the skipping sampler (generated by Algorithm 1) initiated
at X0 = x ∈ A, then for every π -integrable function f we
have

lim
n→∞

1

n

n∑
i=0

f (Xi )
a.s.=

∫
Rd

f (x)π(x)dx .

The conditions of Theorem 1, which are mild, are dis-
cussed in Sect. 4. There are also cases whereMH(π, q) is not
irreducible but MH(π, qK) is, for instance when the dimen-
sion d = 1, q is a random walk proposal with finite support,
and Ac is an interval too wide to be crossed by a single ran-
dom walk step, but which can be skipped across.

The statement of the second main result uses some
additional notation (for further details see Roberts and
Rosenthal (1997)). Consider the Hilbert space L2(π) of
square-integrable functions with respect to π , equipped with
the inner product (for f , g ∈ L2(π))

〈 f , g〉 :=
∫
Rd

f (x)g(x)π(x)dx =
∫
A
f (x)g(x)π(x)dx .

Since all Metropolis-class chains are time reversible, the
Markov kernel of MH(π, q) defines a bounded self-adjoint
linear operator P on L2(π), defined for f ∈ L2(π) via

P f (x) :=
∫
Rd

f (y)α(x, y)q(y − x)dy

+
(
1 −

∫
Rd

α(x, y)q(y − x)dy

)
f (x).

If P is irreducible then its operator norm is ‖P‖ = 1,
with f ≡ 1 as the unique eigenfunction for the eigen-
value 1, and the spectral gap of P is defined to be λ :=
1 − sup{ f : ‖ f ‖=1, π( f )=0}〈P f , f 〉.
Theorem 2 Under the conditions of Theorem 1, denoting
respectively by P and PK the Markov kernels of MH(π, q)

and MH(π, qK) restricted to A = supp(π), the following
statements hold:
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(i) For every f ∈ L2(π) we have 〈PK f , f 〉 ≤ 〈P f , f 〉;
(ii) If MH(π, q) has a non-zero spectral gap λ, then

MH(π, qK) also has a non-zero spectral gap λK that
satisfies λK ≥ λ;

(iii) If the central limit theorem (CLT) holds for MH(π, q)

and function f with asymptotic variance σ 2( f ), that is

√
n

(
1

n

n∑
i=0

f (Xi ) − π( f )

)
−→ N (0, σ 2( f ))

in distribution, then the CLT also holds for MH(π, qK)

and the same function f ,with asymptotic varianceσ 2
K( f )

satisfying σ 2
K( f ) ≤ σ 2( f ).

The inequality at point (i) of Theorem 2 gives a useful
way to compare performance andmixing of differentMarkov
kernels. Indeed, one can consider the Peskun-Tierney par-
tial ordering (see Peskun (1973) and Mira (2001); Mira and
Leisen (2009); Tierney (1998)) on the family of bounded
self-adjoint linear operators on L2(π) by setting P1 ≥ P2
whenever 〈P1 f , f 〉 ≤ 〈P2 f , f 〉 holds for all f ∈ L2(π).

Intuitively, point (ii) of Theorem 2 means that the skip-
ping sampler has the potential to mix faster than the classical
random walk Metropolis, i.e., converge to stationarity in
fewer steps. As explained in Sect. 2.1 of Rudolf and Ull-
rich (2018) the speed of convergence to stationarity can
also be measured by other analytical quantities of the form
inf f ∈M〈(I − P) f , f 〉 for some subset M of L2(π); it is
straightforward tomodify Theorem2 accordingly. In the case
of the spectral gap presented above we have M = { f ∈
L2(π) : π( f ) = 0 and π( f 2) = 1}. It follows from point
(iii) that in stationarity, the samples produced by the skipping
sampler are at least as good for estimatingπ( f ) as those gen-
erated by RWM.

These theoretical benefits are balanced by increased com-
putational complexity. The exploration added by the skipping
sampler relative to RWM carries a computational cost, and
the tradeoff between cost and benefit depends on the target
density. In particular, this tradeoff could become disadvan-
tageous if evaluating the target density (and thus assessing
the event {Zk ∈ A}) in Algorithm 1 carries high cost. In
the absence of global knowledge of the target, a pragmatic
approach would be to run both methods and try to judge
between their output. In Sect. 5.2, for example, we have com-
pared the mean squared error of the coordinate projections
against the increased number of evaluations of the target den-
sity. As noted in Sect. 4.1, the evaluations of the target density
can also be vectorised with the aim of decreasing computa-
tion time.

Sufficient conditions for parts (ii) and (iii) of Theorem 2
have been studied in the literature. An aperiodic reversible
Markov chain has non-zero spectral gap if and only if it is

geometrically ergodic (see Roberts and Rosenthal (1997)),
a property which is explored in Jarner and Hansen (2000);
Mengersen andTweedie (1996); Roberts andTweedie (1996)
for random walk Metropolis algorithms. The CLT holds
essentially for all f ∈ L2(π) under the assumption of
geometric ergodicity (see (Roberts and Rosenthal 2004, Sec-
tion 5)), but also holdsmore generally (see Jarner andRoberts
(2002)).

4 Implementation and extensions

Implementing Algorithm 1 involves two choices, an under-
lying proposal density q and a halting index K, which are
discussed respectively in Sects. 4.1 and 4.2. An alternative
to Algorithm 1 using a ‘doubling trick’ for greater computa-
tional efficiency is given in Sect. 4.3.

4.1 Choice of q

In addition to Assumptions 2–3, to ensure that the SLLN
holds (Theorem 1) we require MH(π, q) to be π -irreducible.
This holds, for example, when π is continuous and bounded
and q is everywhere positive. More generally, MH(π, q) is
also irreducible if the interior of A is (non-empty) connected
and there exist δ, ε > 0 such that q(x) > ε > 0 whenever
‖x‖ < δ (see (Tierney 1994, Section 2.3.2)).

Since skipping can be seen as a way of endowing RWM
with an improved ability to cross regions of zero density,
a minimal approach would be to tune q as if it were to be
employed in the RWM algorithm, for example achieving an
acceptance ratio around 25% when q is employed in RWM.
However we have observed empirically that a lower accep-
tance ratio, for example 15%,may further stimulate skipping.

4.1.1 Computational aspects

For sampling of the i.i.d. radial increments R1, R2, . . . , it
is desirable to choose q such that samples may be drawn
efficiently from

‖Y − X‖ conditional on Φ = Y − X

‖Y − X‖ = ϕ, (6)

for all ϕ ∈ S
d−1. Convenient cases include when q is radially

symmetric so that conditioning is not required, or when q ∼
N (0,Σ) for some d ×d covariance matrix Σ , so that, given
direction ϕ, each increment Ri follows a generalised gamma
distribution with density

(ϕTΣ−1ϕ)d/2

2d/2−1Γ ( d2 )
rd−1 e−(ϕT Σ−1ϕ) r

2
2 .

123



Statistics and Computing (2021) 31 :72 Page 7 of 16 72

Alternatively one may specify q indirectly by choosing the
unconditional distribution of Φ and the conditional distri-
bution of R := ‖Y − X‖ given Φ, then checking that the
conditions of Theorem 1 are satisfied.

If sampling from the distribution (6) is computationally
expensive, however, the sampler may be modified by setting
all Rk equal to R, so that only a single sample is required to
generate a proposal and the skipping chain keeps moving in
the direction Φ with jumps of equal size. While this modi-
fication would not change the mean distance ‖Zm − Z0‖ =∑m

i=1 Ri covered by m steps of the skipping chain, it would
increase its variance to m2Var(R).

4.1.2 Anisotropy

If A has a known anisotropy, the angular part of the under-
lying proposal may be chosen to favour certain directions
in comparison to others, for example by tailoring the covari-
ance matrix in a normal proposal q ∼ N (0,Σ). This may be
useful in high dimensional problems where otherwise, with
high probability, the skipping chain may fail to re-enter A. It
is not difficult to show that if the distance increment retains
the properties used in the proof of Proposition 1, then the
acceptance ratio (1) depends additionally on the ratio of the
angular densities. Denoting by qϕ(x, φ) the density of direc-
tion φ at the location x , for Φ = Yn+1−Xn

‖Yn+1−Xn‖ the acceptance
probability then equals

α(Xn,Yn+1) = min

(
1,

π(Yn+1)qϕ(Yn+1,−Φ)

π(Xn)qϕ(Xn, Φ)

)
.

Although beyond the scope of this paper, in the absence
of geometric knowledge of A other information, for instance
the history of the chain, may be used in an online fashion
to make the angular part of the underlying proposal density
dependent on the chain’s current location.

4.2 Choice ofK

The simplest choice is a nonrandom halting index K ≡ ks ∈
Z>1. Under this choice the ks skips can be vectorised and
stored in memory along with the corresponding states Zi

for i = 1, . . . ks , and the evaluations of whether Zi ∈ A
for i = 1, . . . ks can then be performed in parallel. This
increases computational speed at the expense of a ks-times
higher memory requirement plus the coordination cost of
parallelisation, and the balance between benefit and cost is
not explored here. However if the additional computational
costs are low, and if the costs of evaluating whether Zi ∈ A
are bounded, then the skipping sampler may be run at speed
approaching that of RWM.

There is of course interplay between the choices for K
and q. For example, if an upper bound D is available for

the diameter of Ac then we may use ks = D
supϕ σϕ

, where

σϕ denotes the standard deviation of the conditional jump
density in the direction ϕ. In the anisotropic case of Section
4.1.2, mutatis mutandis the halting index may also be made
direction-dependent using a parametric family of constants
(or distributions) Kϕ , ϕ ∈ S

d−1. To preserve symmetry it is
then necessary that Kϕ = K−ϕ for each ϕ ∈ S

d−1. Similar
tradeoffs between K and q may also be made when K is
chosen to be random with finite mean.

If skipping cannot be efficiently parallelised as suggested
above then, clearly, large realisations of K can result in high
computational costs if A is not re-entered. In the extreme,
bearing in mind Assumption 3, an unbounded distribution
K should only be taken if Ac is known to be bounded. If K
cannot be chosen based on a known diameter D as above,
then the absolute length of skipping trajectories may alterna-
tively be controlled probabilistically using a large deviations
estimate, as follows. If the conditional jump distribution is R
then the probability that a distance mr can be traversed in m
skips is approximately (see for example Dembo and Zeitouni
(2010)):

P

(
m∑

k=1

Ri ≥ mr

)
≈ exp(−mI (r)),

where I (r) = supθ>0[θr − λ(θ)] is the Legendre-Fenchel
transform of R, provided that R has finite logarithmic
moment generating function, i.e. λ(θ) = lnE[exp(θR)] <

∞ for all θ ∈ R.
Based on the above, if K is random and mass is to be

placed on large values of K then this could lead to large
computational costs. In this case the doubling trick of Section
4.3 may be applied.

4.3 The doubling trick

For clarity of exposition we first assume that Ac is convex.
From (3), the state Zk of the skipping chain is the partial sum
x + Φ

∑k
i=1 Ri , where the Ri are i.i.d. and R1 = ‖Y − x‖.

Recalling (4), define

TA := min{k ≥ 1 : Zk ∈ A}, (7)

SA := min{k ≥ 1 : Z2k−1 ∈ A}. (8)

The convexity of Ac induces an ordering on the skipping
chain, in the sense that

Zk ∈ Ac, if k < TA, (9)

Zk ∈ A, if k ≥ TA. (10)

If TA < K then Algorithm 1 evaluates TA by sampling the
partial sums {Zk}k≥1 sequentially. The following alternative
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implementation evaluates TA significantly faster, in order
log2 TA steps. It requires that for any k, the sum

∑k
i=1 Ri

may be sampled directly, both unconditionally and given the
value of

∑2k
i=1 Ri , at a comparable cost to sampling R1. This

is possible, for example, when the Ri are exponentially dis-
tributed.

The idea is to search forward through the exponential sub-
sequence Z1, Z3, Z7 . . . Z2k−1, . . . until k = k̃ = SA (so that
Z2k̃−1 ∈ A), and then to perform a logarithmic search Vijay-
alakshmi Pai (2008) of the sequence Z2k̃−1−1, . . . , Z2k̃−1 to

identify TA. That is, sample Zm for m = 2k̃−1 − 1 + 2k̃−2

and then, depending on whether or not it lies in A, reduce the
search to either the sequence Z2k̃−1−1, . . . , Z2k̃−1−1+2k̃−2 or
the sequence Z2k̃−1−1+2k̃−2 , . . . , Z2k̃−1, repeating until TA is
found.

For generalisations of this trick, note first that the dou-
bling trick can be used only to accelerate skipping over a
convex subset B ⊂ Ac, so that we only add a single distance
increment at a time while the skipping chain is in Ac \ B,
and use the doubling trick while in B. The idea may then
be applied to a maximal convex subset of Ac, provided that
such a subset is known. Then note that if B1, . . . , BnB are
all convex subsets of Ac, the doubling trick may be used to
traverse each convex subset Bi in turn, if needed. Thus the
idea may be applied to an inner approximation of Ac by a
union of balls, for example.

5 Numerical examples

In order to motivate some applications, Section 5.1 begins
with a general discussion of targets for which the skip-
ping sampler offers an advantage over RWM. The numerical
example of Section 5.3, in the context of rare event sam-
pling, illustrates an improvement in exploration achieved
by our method. Then, in an application to optimisation,
Section 5.4 provides quantitative examples of performance
improvements obtained when the skipping sampler is used
as a subroutine in probabilistic methods for non-convex
optimisation. The Python code used to create all these numer-
ical examples and figures is available at Zocca and Vogrinc
(2021).

5.1 General considerations

Note firstly that if the initial proposal Y lies in Ac then it
would be rejected by the RWM algorithm. Instead, in Algo-
rithm 1 it is reused. Thus skipping offers an advantage over
RWM if the initial proposal Y regularly lies in Ac. Secondly,
when Y ∈ Ac the skipping proposal Z of Algorithm 1 needs
regularly to be accepted (which in turn necessitates Z ∈ A).
By construction (since Z lies beyond Y on the straight line

between the current state Xn ∈ A of the chain and Y ∈ Ac),
this requires the support A of the target to be non-convex.

The dimension d also plays a key role. Considering an
example where the support A is the union of two disjoint
balls in R

d , by increasing d we reduce the probability that
Z ∈ A. Hence, the benefit of skipping is greatest in low
dimensions and then gradually decreases. Nevertheless, in
Sect. 5.3 we show that in special cases the sampler can be
beneficial even in high dimensions.

We also note the following tradeoff. Due to the increased
exploration offered by the skipping sampler, the density
encountered upon landing at Z ∈ A after crossing Ac may
be significantly different from that at the current state Xn

of the Markov chain. In particular, if the target density does
not vary slowly then the acceptance ratio α(X , Z) may be so
low that such skips are not regularly accepted. Although this
tradeoff is problem dependent, it does not apply in the rare
event example of Section 5.3.

5.2 Hybrid slice sampler

The slice sampler may be used to sample from a density
ρ on R

d as follows. Given the current sample Xn ∈ K , the
following two steps generate the next sample Xn+1:

(i) pick t uniformly at random from the interval [0, ρ(Xn)],
(ii) sample uniformly from the ‘slice’ or superlevel set

A(t) := {x ∈ K : ρ(x) ≥ t}.

We refer the reader to Łatuszyński and Rudolf (2014); Neal
(2003) and references therein for more information on the
slice sampler and its convergence properties.

Step (ii) is typically infeasible in multidimensional set-
tings. Instead, in the Hybrid Slice Sampler (HSS) a Markov
chain is used to approximately sample the uniform distri-
bution on the slice. The following example illustrates the
potential advantage of using the skipping sampler rather than
RWM to generate this chain, since the slice may not be con-
vex.

For ρ we take a uniform mixture of m = 7 standard nor-
mal densities in d = 5 dimensions, whose means are drawn
uniformly at random from a box B = [−12, 12]5. The under-
lying RWM proposal is a spherically symmetric Gaussian,
with variance tuned to achieve an acceptance ratio of 23.5%
in RWM. Independent trajectories (started in stationarity) of
n = 2 · 105 steps were generated for the HSS algorithm with
respectively the RWMand the skipping sampler used to sam-
ple from the superlevel sets. The halting index is taken to be
P[Kϕ = 15] = 1 for all ϕ ∈ S

d−1.
As can be seen from Figure 2, the RWM implementation

remains in the mode in which it was initiated. In contrast,
the skipping sampler version transitions regularly between
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Fig. 2 Comparison of RWM and skipping sampler as subroutines in HSS when started at the same point. Black diamonds in a and b represent true
mode centers

the seven modes. The experiment was run m = 100 times
(on the same Gaussian mixture), during which skipping tran-
sitions happened on average 16 times per run. While the
number of evaluations of the target density increased 11.61
fold on average, skipping greatly reduced the mean squared
error (MSE) for the estimators of the coordinate-wise means.
TheMSE for RWM and reduction estimates (MSE for RWM
divided byMSE for skipping) for each of the five coordinates
are reported in Table 1. Hence, in this example the skipping
sampler is roughly 12 times more expensive to compute, but
produces samples with much greater effective sample size.

5.3 Rare event sampling

The aim in this example is to sample rare points under a
complex density ρ on Rd , by sampling from its intrinsic tail
or sublevel set A = {x ∈ R

d | ρ(x) ≤ a} for some a > 0.
As an illustration let ρ be a mixture of m = 20 Gaussian
distributions, with randomly drawn means, covariances and
mixture coefficients.

Table 1 Mean squared errors for HSS with RWM or skipping sampler
and its ratio

coordinate 1 2 3 4 5

MSE RWM 22.85 58.45 48.09 35.65 44.20

MSE Skipping 3.90 1.24 0.003 2.84 0.750

reduction 5.86 47.23 18504 12.54 58.91

We use the tails given by the levels a = e−15 and a =
e−350 respectively for dimensions d = 2 and d = 50. In the
case d = 2, a visual illustration of Theorem 2 is provided
by plotting comparisons of the exploration achieved in 105

steps of RWM and the skipping sampler respectively. Since
the superlevel sets of a finite Gaussian mixture are bounded,
in this example we may take the halting index K = ∞.

Figure 3 a-b illustrates that, because of the density’s expo-
nential decay, samples from its tail are concentrated around
the boundary ∂A of A. Figure 3 c-d compares the trajectories
of the first coordinate of the chain, showing that while RWM
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diffuses around ∂A, the skipping sampler regularly passes
through Ac. Indeed, roughly 20% of the chain’s increments
were such ‘skips’ through Ac, almost half of the accepted pro-
posals. The fact that proposals are often re-used rather than
rejected is well illustrated by the acceptance rates, which
are 23.7% and 43.3% for RWM and the skipping sampler
respectively. Further, ∂A is disconnected. While the ‘inner’
component is not visited byRWMin this sample, the skipping
sampler regularly passes through Ac to visit both compo-
nents, thus exploring ∂A more quickly. Despite 3.45 times
more target evaluations required for the skipping sampler,
the benefits in this example are clearly worthwhile.

Figure 4 shows the evolution of the chain’s first coordi-
nate in the case d = 50. While the boundary of A cannot be
easily visualised here, the faster mixing of the skipping sam-
pler is again apparent. The successful re-use of proposals by
skipping across Ac again constituted approximately 18% of
the chain’s steps, suggesting superdiffusive exploration. The
respective acceptance rates were 22.2% for RWMand 48.1%
for the skipping sampler. The benefits of skipping are again
seen to be worth the computational cost, since this time the
skipping sampler required only 1.44 times more target eval-
uations than RWM.

5.4 Applications to optimisation

The challenging problem of finding the global minimum of a
non-convex function has attractedmuch attention and several
probabilistic methods and heuristics have been developed,
including simulated annealing Kirkpatrick et al. (1983), mul-
tistart Jain and Agogino (1993);Martí (2003), basin-hopping
Leary (2000); Wales and Doye (1997), and random search
Schumer and Steiglitz (1968). In this section we illustrate
how the skipping sampler can be used in difficult low-
dimensional examples to either bias the choice of initial
points of suchmethods, or as a subroutine, in order to improve
exploration. Below we consider an optimisation problem in
R
d of the form

min f (x) s.t. x ∈ D :=
d∏

i=1

[li , ui ], (11)

and consider as the target density the Bolztmann distribution
with temperature T ≥ 0 and energy function f , conditioned
on the region D, that is

π(x) ∝ exp (− f (x)/T ) 1{x∈D}. (12)

5.4.1 Monotonic skipping sampler

While outside the scope of our theoretical analysis, a vari-
ation on Algorithm 1 is one in which the support A is not
constant. In particular, defining the level sets S(Xn) = {x ∈

R
d : f (x) ≤ f (Xn)}, amonotonic skipping sampler (MSS)

may be defined in which the support at the n-th step of Algo-
rithm 1 is An := S(Xn)∩D (setting A0 := D), and the target
density π = πn is uniform on An . That is, only downward
moves (Markov chain transitions with f (Xn+1) ≤ f (Xn))
are accepted. By construction we have Xn ∈ An for each
n ∈ N. Also, since the random subsets {An}n=1...,m are them-
selves decreasing with An+1 ⊆ An for every n, they contain
progressively fewer non-global minima in addition to the
global minima of the function f . In common with the skip-
ping sampler where the support A is fixed, the n-th step of the
MSS requires no information about the sublevel set S(Xn),
just the ability to check whether the proposal Z lies in An .

To illustrate a trajectory of the MSS, take f to be the
so-called eggholder function in dimension d = 2, i.e.

feggholder(x) := −x1 sin
(√|x1 − x2 − 47|

)
− (x2 + 47) sin

(√∣∣∣ x1
2

+ x2 + 47
∣∣∣) ,

an optimisation test function often used in the literature Jamil
and Yang (2013), with D = [−512, 512]2. Figure 5 shows
some snapshots from a trajectory of theMSS, also indicating
the progressively shrinking sublevel sets An = S(Xn)∩D. In
this subsample the state of the chain (starred marker) is seen
to jump four times between different connected components
of the sublevel sets (in the subfigures for n = 67, 84, and
108), which happens by means of the skipping mechanism.

In Sections 5.4.2 and 5.4.3 we provide numerical exam-
ples of performance improvements achieved when the MSS
is used as a subroutine in the multistart and basin-hopping
optimisation procedures respectively.

5.4.2 Augmented multistart method

Given a nonconvex optimisation problem of the form (11)
with possibly several local minima, a classical strategy to
find its global minimum is to restart the local optimisation
method of choice at several different points. The multistart
method produces the desired number N of initial points by
sampling them uniformly at random in

∏d
i=1[li , ui ].

Note that in the above setup, f may be set equal to positive
infinity outside an arbitrary constraint set. If the set f −1(R)

of feasible points has a low volume compared to D thenmany
of the randomly sampled points may lie outside it, making
thismultistart initialisation procedure inefficient. In this case,
recalling the remark on initialisation of Algorithm 1 from
Section 2, the MSS is capable of accelerating the search for
feasible starting points x ∈ f −1(R).

Equally, sampling starting points uniformly at random
may not be helpful if the basin of attraction of the global min-
imum has low volume. We can mitigate both of these issues
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Fig. 3 Comparison of RWM and skipping sampler in dimension 2

by “improving” each of the points proposed by the multistart
method as follows. Assume N initial points X (1)

0 , . . . , X (N )
0

have been sampled uniformly at random in
∏d

i=1[li , ui ],
which need not be feasible. For each i = 1, . . . , N , aMarkov
chain of lengthm may be generated using the MSS started at
X (i)
0 , returning X (i)

m . Algorithm2 summarises in pseudo-code
this MSS-augmented multistart method. By monotonicity,
the augmented multistart procedure results in a greater pro-
portion of feasible points, while each initially feasible point
is improved.

Algorithm 2: MSS-augmented multistart method
Input : The number N of initial points and the desired length m

of MSS trajectories

1 Generate N points uniformly at random X (1)
0 , . . . , X (N )

0 in∏d
i=1[li , ui ];

2 for i = 1 to N do
3 Starting at X (i)

0 generate a trajectory of length m using the
MSS

4 end

5 return the endpoints of the MSS trajectories X (1)
m , . . . , X (N )

m .

To illustrate the potential of the MSS-augmented mul-
tistart method, we present an example again using the
eggholder function. We first consider the unconstrained opti-
misation problem

min feggholder(x) s.t. x ∈ [−512, 512]2, (13)

which has the optimal solution x∗ = (512, 404.2319), attain-
ing the value feggholder(x∗) = −959.6407. Averaging over
N = 1000 runs, in Table 2 we summarise the “goodness” of
the N starting points given by the following three methods:

(i) multistart method, i.e., initial points uniformly dis-
tributed on [−512, 512]2;

(ii) the initial points obtained in (i) are evolved for m =
100 steps with a RWM with Gaussian proposals with
covariance matrix 2 · I and the Boltzmann distribution
π in (12) with T = 1.0 as target distribution;

(iii) the initial points obtained in (i) are evolved form = 100
steps with the MSS using a deterministic halting index
K = 200 and the same Gaussian proposal density as in
(ii).
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Fig. 4 First coordinate trajectory comparison for RWM (left) and skipping sampler (right) in dimension 50

Table 2 Comparison of the quality of the starting points returned by the
three variants of the multistart method when solving the optimisation
problem (13). The results are averaged over N = 1000 samples. The
RWMandMSS variants both use trajectories of lengthm = 100 and the
Gaussian proposal densityN (0, 2 · I ). The halting index for MSS was

taken to be deterministic and equal toK = 200. The acceptance proba-
bilities for the RWMare evaluated w.r.t. the target distribution (12) with
T = 1.0. For three of the metrics in the table, we report the median
value and, in parenthesis, the 2.5 and 97.5 percentiles

Metric Multistart method Multistart method
augmented with m RWM
steps

Multistart method augmented with m
MSS steps

Fraction of proposed points in the basin of
attraction of the global minimum x∗

0.004 0.008 0.657

Euclidean distance from the global
minimum x∗

741.85 (87.94, 1218.84) 741.85 (87.94, 1218.84) 0.0 (0.0, 977.869)

Gap between the optimum f (x∗) and the
objective value of the proposed point

465.68 (24.30, 848.49) 465.68 (24.30, 848.49) 0.0 (0.0, 70.69)

Number of function evaluations per run 36 (21, 84) 398 (325, 1909) 61527 (7805, 133470)

Running time (sec/run) 0.0021 0.0441 0.4577

TheMSSaugumentedmultistartmethod effectively biases
the initial points towards the global minimum x∗, bringing
65.7% of them in the correct basin of attraction, although at
the expense of more function evaluations than the other two
methods.

5.4.3 Skipping sampler as basin-hopping subroutine

Besides improving the multistart method, the skipping
sampler can also be used to improve stochastic techniques for
non-convex optimisation, in particular the so-called basin-
hopping method. In this subsection we explore this novel
idea, although the implementation details and a systematic
comparison with other global optimisation routines are left
for future work.

Basin-hopping is a global optimisation technique pro-
posed in Wales and Doye (1997), which at each stage
combines a random perturbation of the current point, local
optimisation, and an acceptance/rejection step. The random
perturbation consists of i.i.d. uniform simultaneous pertur-
bations in each of the coordinates, that is, a random walk

step. The stopping criterion for this iterative procedure is
often a maximum number of function evaluations, or when
no improvement is observed for a certain number of consec-
utive iterations.

The random walk step may be replaced by a step from the
MSS. That is, at step n, given the current point Xn−1 we first
sample a new point Yn from the sublevel set S(Xn−1) ∩ D
using MSS and then perform a local optimisation procedure
starting from Yn to obtain a new point Xn . This idea is sum-
marised in the pseudo-code presented in Algorithm 3.

The MSS variant of the basin-hopping method is related
to themonotonic sequence basin-hopping (MSBH) proposed
in Leary (2000), which also accepts only new points in
S(Yn−1) ∩ D. However MSBH uses only local uniform per-
turbations and thus faces the same exploration challenges as
RWM when S(Yn−1) ∩ D is disconnected.

In Table 3, we compare the performance of basin-hopping
and of the MSBH with the proposed basin-hopping with
skipping. The MSS subroutine leads to 54.4% of the ini-
tial (uniformly distributed) points converging to the basin of
attraction of the globalminimum x∗. This sharp improvement
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Fig. 5 Given a trajectory (Xn)n=0,1,... of the MSS started at X0 = (−200, 180), each subfigure displays the point Xn (starred marker) and
corresponding sublevel set S(Xn) (in red) for n = 66, 67, 83 (first row) and n = 84, 107, 108 (second row). There are a total of 54 skipping
moves in this trajectory, which corresponds to 36.0% of the moves. The MSS uses the Gaussian distribution N (0, 2 · I ) as proposal density and a
deterministic halting index K = 150

Table 3 Performance comparison of the three basin-hopping variants
using different subroutines averaged over N = 1000 samples for tra-
jectories of lengthm = 100. The underlying proposal used for theMSS
subroutine is a standard Gaussian distribution N (0, I ) and the uni-
form displacement of the other two methods is scaled to have the same

standard deviation. The halting index for MSS was taken to be deter-
ministic and equal to K = 200. The acceptance probabilities for the
basin-hopping methods are evaluated w.r.t. the target distribution (12)
with T = 1.0. For three of the metrics in the table, we report the median
value and, in parenthesis, the 2.5 and 97.5 percentiles

Metric Basin-hopping (with uniform
displacement as subroutine)

Monotonic sequence
basin-hopping (with uniform
displacement as subroutine)

Basin-hopping with skipping

Fraction of proposed points in the
basin of attraction of the global
minimum x∗

0.022 0.017 0.544

Euclidean distance from global
minimum x∗

741.85 (87.94, 1248.15) 752.827 (87.94, 1248.15) 0.0 (0.0, 41.23)

Gap between the optimum f (x∗)
and the objective value of the
proposed point

419.21 (24.30, 835.76) 402.03 (24.30, 835.85) 0.0 (0.0, 2.72)

Number of function evaluations 2004 (1776, 3432) 348 (324, 5085) 20370 (19957, 23702)

Running time (sec/run) 0.123 0.065 0.333
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Algorithm 3: Basin-hopping with skipping

Input : An initial point X0 ∈ ∏d
i=1[li , ui ], not necessarily

feasible

1 Set n = 1;
2 while basin-hopping stopping criterion is not satisfied do
3 Perform a single step of the MSS started at Xn−1, obtaining a

new point Yn ;
4 Perform a local optimisation step started at Yn to obtain a new

point Xn ;
5 Increment the index n by one;
6 end
7 return The last point Xn .

with respect to basin-hopping (which has a correspond-
ing success rate of only 2.2%) only requires ten times
more function evaluations. In Goodridge et al. (2021) we
present additional performancemetrics for the basin-hopping
method with skipping and more extensive numerical results
over a large collection of test functions.

6 Proofs

6.1 Proof of Theorem 1

For each x ∈ supp(π) let Px be a probability measure
carrying all random variables used in Algorithm 1, such
that X0 = x almost surely under Px . Denote respectively
by {Ym}m≥1 and {Xn}n≥1 the proposals generated by the
MH(π, q) algorithm and the Markov chain returned by the
algorithm. Writing An := ⋂n

i=1{Xi = Yi } for the event that
the first n proposals of MH(π, q) are all accepted, we have

Lemma 1 If the chain MH(π, q) restricted to supp(π) is π -
irreducible then Px (Am) > 0 for all x ∈ supp(π) and all
m ≥ 1.

Proof Fixing x ∈ supp(π) and supposing otherwise for
a contradiction, let n be the smallest integer such that
Px (An) = 0. Clearly n ≥ 2, since otherwise, Px−almost
surely we have Xk = X0 for all k ≥ 1, contradicting the
assumption of π -irreducibility. Therefore Px (An−1) > 0
and we may write p for the density of Xn−1 conditional on
the event An−1. Then by the Markov property we have

0 = Px (An−1)Px (An|An−1)

= Px (An−1)

∫
supp(p)

p(y)Py(A1) dy,

so thatPy(A1) = 0 for some y ∈ supp(p). Arguing as above,
this contradicts the assumption of π -irreducibility.

Denote the Markov kernels of the chains generated by
MH(π, q) and MH(π, qK) by P and PK respectively. Also

let {X ′
n}n≥1 be the jump chain associated with X (that is, the

subsequence of {Xn}n≥1 given by excluding all Xm which
satisfy Xm = Xm−1).

Lemma 2 For all x ∈ A = supp(π), n ∈ Z>0 and all B ⊂ A
the following inequality holds:

Pn
K(x, B) ≥ Px ({Xn ∈ B} ∩ An)

= Px (Xn ∈ B | An)Px (An)

= Px
(
X ′
n ∈ B | An

)
Px (An) . (14)

Proof Note first that the last equality in (14) follows by defi-
nition of the jump chain. We will prove the inequality in (14)
by induction on n. Since supp(π) = A, Proposition 1 (ii)
gives

PK(x, B) ≥
∫
B

α(x, z)qK(x, z)dz

≥
∫
B

α(x, z)q(z − x)dz

= Px ({X1 ∈ B} ∩ A1) .

Assume now the statement holds for some n ∈ Z>0 and let
us prove it for n+1.We argue using the induction hypothesis
and Proposition 1 (ii) again:

Pn+1
K (x, B) =

∫
A
Pn
K(z, B)PK(x, dz)

≥
∫
A
Pn
K(z, B)α(x, z)qK(x, z) dz

≥
∫
A
Pn
K(z, B)α(x, z)q(z − x) dz

≥
∫
A
Pz ({Xn ∈ B} ∩ An) α(x, z)q(z − x) dz

= Px ({Xn+1 ∈ B} ∩ An+1) .

Proof of Theorem 1 Take B ⊆ A = supp(π) such that
π(B) > 0, x ∈ A and let {Xn}n≥1 be MH(π, q) started
at X0 = x . Since MH(π, q) is π -irreducible there exists
an integer n ∈ Z>0 such that Px (Xn ∈ B) > 0. Let Sn be
the number of rejections which occur in the generation of
{Xm}1≤m≤n . Then

0 < Px (Xn ∈ B) =
n∑

i=0

Px (Xn ∈ B, Sn = i) .

For some j ∈ {1, . . . , n} we therefore have

Px (Xn ∈ B, Sn = j) > 0.

Consequently

Px

(
X ′
n− j ∈ B|An− j

)
> 0,
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so that

Pn− j
K (x, B) ≥ Px

(
X ′
n− j ∈ B | An− j

)
Px

(An− j
)

> 0 ,

where we used the above together with Lemma 2 and Lemma
1. The skipping chain MH(π, qK) is therefore π -irreducible,
and thus is Harris recurrent by (Tierney 1994, Corollary 2).
Furthermore, (Meyn and Tweedie 2009, Theorem 10.0.1)
yields that π is its unique invariant probability measure.
Finally, the SLLN holds for all π -integrable functions by
Harris recurrence and (Meyn and Tweedie 2009, Theo-
rem 17.1.7).

6.2 Proof of Theorem 2

To prove Theorem 2, we will make use of the following
lemma, whose proof is omitted.

Lemma 3 (Integration with respect to a symmetric joint den-
sity) Consider a symmetric densityΔ : Rd ×R

d → [0,+∞)

and a subset B ⊆ R
d . For every f ∈ L2(Δ) the following

identity holds:

∫
B

∫
B

f (x)2 + f (y)2

2
Δ(x, y)dydx

=
∫
B
f (x)2

(∫
B

Δ(x, y)dy

)
dx .

Proof of theorem 2 (i) For any f ∈ L2(π) the desired
inequality 〈PK f , f 〉 ≤ 〈P f , f 〉 can be written more explic-
itly as

∫
Rd

f (x)

( (∫
Rd

f (y)α(x, y)(qK(x, y) − q(y − x))dy

)

+ f (x)(rK(x) − r(x))

)
π(x)dx ≤ 0,

wherewe respectively denote by r(x) and rK(x) the rejection
probabilities starting at point x ofMH(ρ, q) andMH(ρ, qK),
i.e., r(x) := 1− ∫

Rd α(x, y)q(y− x)dy and analogously for
rK(x). The above inequality holds provided that we establish
the following one:

∫
Rd

f (x)

(∫
Rd

f (y)α(x, y)
(
qK(x, y) − q(y − x)

)
dy

)
π(x)dx

≤
∫
Rd

f 2(x)(r(x) − rK(x))π(x)dx . (15)

Then considering the LHS of (15) and Proposition 1 (ii)
we have:

∫
Rd

f (x)

(∫
Rd

f (y)α(x, y) (qK(x, y) − q(y − x)) dy

)
π(x)dx

=
∫
A

∫
A
f (y) f (x)α(x, y)π(x) (qK(x, y) − q(y − x)) dydx

≤
∫
A

∫
A

f 2(y) + f 2(x)

2
α(x, y)π(x) (qK(x, y) − q(y − x)) dydx

(�)=
∫
A

∫
A
f (x)2α(x, y)π(x) (qK(x, y) − q(y − x)) dydx

=
∫
A
f (x)2

(∫
A

α(x, y) (qK(x, y) − q(y − x)) dy

)
π(x)dx

=
∫
Rd

f 2(x)(r(x) − rK(x))π(x)dx .

In this derivationwe used (in order) the fact thatα(x, y) =
0 for y ∈ Ac by definition of α and π and the classical GM-
QM inequality 2 f (x) f (y) ≤ f (x)2 + f (y)2. Furthermore,
equality (�) holds thanks to Lemma 3 by taking Δ(x, y) =
α(x, y)(qK(x, y)−q(y−x))π(x) and B = A. The property
that Δ(x, y) = Δ(y, x) for every x, y ∈ A readily follows
by combining the following two identities that hold for every
x, y ∈ A:

α(x, y)π(x) = min(π(x), π(y)) = α(y, x)π(y), and

qK(x, y) − q(y − x) = qK(y, x) − q(x − y).

The first identity is an immediate consequence of the defini-
tion (2) ofα,while the secondone follows fromAssumption2
and Proposition 1 (i).

(ii) By (i) we have 〈(I − PK) f , f 〉 ≥ 〈(I − P) f , f 〉 for
all f ∈ L2(π). The proof follows by λK = inf f ∈M〈(I −
PK) f , f 〉 ≥ inf f ∈M〈(I − P) f , f 〉 = λ where M = { f ∈
L2(π) : π( f 2) = 1, π( f ) = 0}.

(iii) This follows by (i) and (Mira and Leisen 2009, The-
orem 6).
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