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Abstract

The maritime industry must prepare for the energy transition from fossil fuels to sustainable

alternatives. Making ships future-proof is necessary given their long lifetime, but it is also

complex because the future fuel type is uncertain. Within this uncertainty, one typically

overlooks pipe routing, although it is a crucial driver for design time and costs. Therefore,

we propose a mathematical approach for modeling uncertainty in pipe routing with deter-

ministic, stochastic, and robust optimization. All three models are based on state-of-the-art

integer linear optimization models for the Stochastic Steiner Forest Problem and adjusted

to the maritime domain using specific constraints for pipe routing. We compare the mod-

els using both artificial and realistic instances and show that considering uncertainty using

stochastic optimization and robust optimization leads to cost reductions of up to 22% in our

experiments.

Keywords: Pipe routing, Ship design, Robust optimization, Stochastic optimization,

Energy transition, Stochastic Steiner forest

1. Introduction

The maritime industry is a significant contributor to global greenhouse gas emissions as

it accounts for 2-3% of global carbon emissions [22]. Therefore, the International Maritime
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Organization (IMO) and the United Nations (UN) have made regulations and guidelines

for the maritime industry. To stop global warming, emissions must be reduced as soon as

possible. Approximately a 40% reduction per vessel is to be achieved by 2030 and even net

zero for the fleet by 2050 [23].

These guidelines should stimulate the maritime industry to transition from fossil fuels to

sustainable alternatives. However, ship owners optimize for the economic situation at the

beginning of a ship’s construction [34]. This means sustainability is often not taken into

account. Yet, with a service life of 20 to 30 years at least [7], a ship should be profitable

in all (economic) conditions encountered in that period. As a result, ships are currently

already sub-optimal at delivery. To deal with this issue, we must consider future alternative

fuels already in the design phase to prevent this sub-optimality.

Transitioning to a new fuel type would impact the engine, the fuel storage, and the piping

between the two. The first two are extensively researched already [27, 42], and piping as well

[8, 26, 40], yet it is often overlooked in the context of the energy transition. Pipe routing

takes over 50% of the total detail-design labor hours [32]. Additionally, the labor costs yield

60% of the total costs of a ship [1, Section 1.2]. Hence, pipe routing greatly determines both

design time and costs.

Furthermore, pipe routing constraints are heavily dependent on the corresponding fuel

type [30]. Even though present studies fundamentally mention the same alternative fuels,

the industry has not agreed on a single optimal future marine fuel [33]. They state that the

future mix of fuels will depend on their expected price, availability, and suitability for the

specific ship.

This work focuses on the mathematical optimization of pipe routing in ship design in

light of the uncertainty created by the energy transition. The goal is to find a pipe routing

that minimizes the costs of installing pipes when building a ship and adjusting this routing

in the future, also referred to as retrofit costs. To that end, we build upon and combine

aspects of pipe routing and the mathematical optimization literature.
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Related pipe routing literature. The existing literature on pipe routing is described in several

surveys, see [39, 1, 5]. The synthesis tables from [5, Section 5] give a detailed overview of the

current state-of-the-art. According to this table, the pipe routing literature mainly describes

deterministic models that do not take uncertainty into account. Even more, considering the

uncertainty about the energy transition can reduce future retrofit costs, which has not been

done in the literature so far [5, Section 6].

Related mathematical optimization literature. The goal of ship pipe routing is connecting

multiple points, such as engine room(s) and tank(s), using as little material as possible

while following the rules described in [30]. Mathematically, this is close to a Steiner Tree

Problem (STP), which is a well-studied problem in combinatorial optimization, see [28] for

a recent overview. We represent a ship by a graph in which the vertices denote (engine)

room(s) and tank(s), and the edges denote a connection between those vertices where we

can install pipes. The objective is to connect a set of terminals (i.e., a subset of vertices)

in a given graph using edges with minimal total costs. For example, a set of terminals may

consist of an engine and multiple fuel tanks. STP is known to be NP-hard [9, p. 208-209],

meaning that it is unlikely that there exists a scalable (polynomial-time) algorithm that can

find the optimal solution to all STP instances.

The stochastic equivalent of the STP is called the Stochastic Steiner Tree Problem

(SSTP), which considers two stages and a finite number of scenarios with the corresponding

probabilities, terminal groups, and edge costs. In the first stage, it is unknown which sce-

nario will occur in the second stage. The question is which edges to buy in the first stage

and which (more expensive) edges to buy in the second stage. Approximation algorithms for

the SSTP are described in [18, 17, 38, 14, 19], whereas an exact model that uses a two-stage

branch-and-cut algorithm based on Benders’ decomposition is discussed in [6]. For the 11th

DIMACS challenge, a genetic algorithm has been developed and is discussed in [21]. Addi-

tionally, a comparison between different Integer Linear Optimization (ILO) models for the

SSTP is made in [41]. Finally, a two-stage branch-and-cut algorithm based on a decomposed

model is discussed in [29], whereas a new decomposition model is described in [25].
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In this work, multiple groups of terminals (i.e., tanks and engine rooms) must be con-

nected in ship pipe routing. Consequently, we consider a generalization of STP called the

Steiner Forest Problem (SFP) [37], in which multiple terminal groups must be connected.

As STP is NP-hard, also SFP is NP-hard [10]. For this problem, approximation algorithms

are described in [2, 43, 11], whereas a greedy algorithm is discussed in [16] and a local-search

algorithm in [13]. We mainly base our work on a study [36] that describes and compares

different ILO models for the SFP. We have only found one work that studies the Stochastic

Steiner Forest Problem (SSFP) with an approximation algorithm [15]. To the best of our

knowledge, no paper in the literature describes an SSFP where the terminal groups from

the first stage scenario must also be connected.

Our contributions. This work is the first to introduce the 2-Stage Stochastic Steiner Forest

Problem (2S-SSFP), which we base on the SSTP problem formulation from [6, 41, 25]. Our

work differs from these three papers as

• we generalize from STP to SFP by using multiple terminal groups per scenario;

• we generalize the problem by requiring the terminal groups from the first stage scenario

to be connected.

We study deterministic (DO), stochastic (SO), and robust optimization (RO) models ad-

justed with pipe routing constraints. For these models, we build upon [36], as this work

provides models with state-of-the-art LO relaxation bounds for SFP, leading to enhanced

optimization performance in practice. To study the scalability of the models and the relative

gains of considering uncertainty, we use artificial instances and a realistic instance made in

collaboration with maritime experts. Although this work focuses on ship pipe routing, we

would like to emphasize that the studied network design problem is also relevant in other

domains such as in, for example, telecommunication [6, 21, 29, 25].

Outline. The rest of this paper is structured as follows. Sections 2 and 3 formulate the de-

terministic and stochastic problem, respectively, and elaborate on the mathematical models.
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A discussion of the experiments and the corresponding results follows in Section 4. Finally,

we conclude the paper with our conclusions and directions for future research in Section 5.

2. Deterministic problem formulation

In this section, we describe the deterministic problem formulation of the SFP. This

model captures the ship pipe routing problem for a single fuel type without considering

the possibility of a transition to another fuel in the future, which is often the focus of

current practice [34, 35]. We introduce this model in such a way that it can be reused in

the stochastic and robust optimization models in Section 3. More specifically, each future

scenario corresponds to an equivalent deterministic ship pipe routing problem for a particular

fuel type in the future. The future scenario-dependent parameters and decision variables will

use the same notation as introduced in this section but then decorated by (s), for example,

the current admissible edges will be denoted by E and in future scenario s by E(s).

In the following, we first give the general formulation of the SFP and explain how this

general problem relates to ship pipe routing in Section 2.1. Then, we present the mathe-

matical models of our deterministic optimization ILO model in Section 2.2.

2.1. Problem description for ship pipe routing

We model a ship as an undirected graph G = (V , E) where the finite vertex set V

denotes the set of (ship) rooms and E represents the possible pipe connections between them,

i.e., E := {(u, v) : u ∈ V , v ∈ V , u ∼ v, u < v}, where u ∼ v denotes adjacency between the

vertices u and v. Furthermore, A is the set of arcs of the bi-direction of G, represented

by {(u, v) : u ∈ V , v ∈ V , u ∼ v}. Each (ship) room can contain one or more engines or fuel

tanks. We illustrate in Figure 1a an example of a schematic top-down view of a ship’s deck

and in Figure 1b the corresponding graph representation. Later, when we consider future

scenarios, we will assume that the ship’s graph representation G remains the same.

Pipes must connect each ship’s engine to one or more tanks to enable fuel transportation.

This information is captured by a given set of K terminal groups T = (T k)k∈K, where

T k ⊆ V denotes the k-th terminal group consisting of terminal vertices, in short terminals,
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Figure 1: Example of a ship pipe routing problem instance and the corresponding abstract representation
as a graph. Figure 1a shows a schematic top-down view of a ship’s deck. We can install pipes in the gray
rooms but not in the black rooms. Figure 1b displays a graph representation of the ship’s deck. Note that
we omitted the three vertices whose corresponding rooms are located at the black squares of Figure 1a.
Dashed lines denote possible pipe connections.

and K = {1, . . . , K}. We must install pipes such that all vertices within a terminal group T k

are connected for all k ∈ K. Without loss of generality, we can take these terminal groups

to be pairwise disjoint subsets of vertices, i.e.,
⋂

k∈K T k = ∅ [36, Section 1].

We refer to a scenario in this article as a pipe routing instance in the present or in the

future (in contrast, the literature often denotes a scenario as a branch in the scenario tree, see

Figure 3 for an example). We assume that every scenario (now and in the future) corresponds

to one fuel type, which does not rule out the possibility that future scenarios differ from

the present scenario. Different fuel types require different pipe types [30]. Therefore, we

introduce a finite set of available pipes P and the subset P ⊆ P that describes feasible pipes

for the fuel type under consideration. Introducing P and P allows us to consider different

fuel types in the future. The cost of placing a pipe p ∈ P at a particular edge (u, v) ∈ E is

given cpuv > 0 and all costs are collected in C = (cpuv)p∈P,(u,v)∈E .

Due to regulations, pipes transporting dangerous fuel types cannot cross certain rooms on

a ship [30]. For example, diesel cannot be routed through a room adjacent to the waterside

to reduce the chance of pollution in an accident. For this purpose, we introduce the set of

admissible edges E ⊆ E for the fuel type under consideration, i.e., only edges in E can be
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used to install pipes to connect terminal groups. Again, introducing both E and E allows

us to consider different fuel types in the future. Similarly, note that E ⊆ E induces a subset

of admissible arcs A ⊆ A, i.e., only arcs in A can be used to connect vertices in terminal

groups.

An instance of our problem is denoted by I = (G,P , T , P, C,E), where G (and thus

A) and P are fixed, and T , P , C, and E (and thus A) can vary in future scenarios. We

define M(I) as the set of all feasible solutions for instance I. A feasible solution S ∈ M(I)

for a fuel type under consideration is given by a set of edge-pipe pairs that (i) connect all

vertices in each terminal group from T , (ii) uses only feasible pipes from P for the terminal

connections, and (iii) only uses feasible edges for the terminal connections. Note that a

feasible S ∈ M(I) may use different feasible pipes to connect terminals and can also install

infeasible pipes as long as they are not used to connect terminals (this can be efficient to

anticipate for future scenarios later on). To be able to take future scenarios into account,

we assume that we are given the set S0 of edge-pipe pairs that describe which pipes already

exist on which edge. Specifically, (p, (u, v)) ∈ S0 means that pipe p ∈ P is present at edge

(u, v) ∈ E . We let F (I,S0,S) be the cost of solution S ∈ M(I) for instance I when edge-pipe

pairs S0 are present. Then our mathematical optimization problem can be written as

(DO) min
S∈M(I)

F (I,S0,S) = min
S∈M(I)

∑
(p,(u,v))∈S\S0

cpuv. (1)

Note that our problem, with S0 = ∅, reduces to a Steiner forest problem (G, T ) if it holds

that P = P = {1}, E = E (and thus A = A) in I = (G,P , T , P, C,E), i.e., there is only

one feasible pipe type, all edges are feasible, and there are no current pipes in the graph.

Consequently, (DO) is NP-hard.

2.2. Deterministic ILO model for ship pipe routing

We can reformulate (DO) to an integer linear optimization (ILO) model so that (com-

mercial) ILO solvers can solve our problem. This section introduces the deterministic ILO

model and the corresponding decision variables and constraints. For the deterministic ILO
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model, we build on the work of [36], as this work describes the cut-based and flow-based

ILO models for the SFP, which are equivalent. In this work, we use both the undirected

and directed flow-based ILO models from [36] tailored to the ship pipe routing problem. An

overview of the ILO models can be found in Table 1, which shows that we consider three

optimization types (DO, RO, and SO) and two model types regarding the flow (undirected

and directed). For example, (DO-U) and (DO-D) are ILO models for DO using undirected

and directed formulations, respectively. We explain later the difference between the two

model types.

Table 1: Abbreviations of our different ILO models. Model types specify whether directed flows or undi-
rected flows are considered.

Optimization type \ model type Undirected (U) Directed (D)

Deterministic optimization (DO) (DO-U) (DO-D)
Robust optimization (RO) (RO-U) (RO-D)
Stochastic optimization (SO) (SO-U) (SO-D)

Deterministic optimization with an undirected formulation. For (DO-U) in (2), we introduce

a binary decision variable xpuv that equals 1 if pipe p ∈ P is installed at edge (u, v) ∈ E ,

and 0 else. To ensure that pipes connect all terminals in each terminal group, we will let

an artificial flow go through the pipes. In particular, in each terminal group k ∈ K, we

randomly (without losing on generality) designate one terminal as the root vertex rk ∈ T k

of that particular terminal group for orientation purposes. The set of all root vertices

is defined as R = {r1, . . . rK}. From the root vertex, we let an (artificial) flow go to

all remaining terminals in the corresponding terminal group. We define ftpuv as the flow

amount to terminal t ∈ T \R from the corresponding root over pipe p ∈ P at arc (u, v) ∈ A.

The formulation of (DO-U) is called “undirected” as it does not force a flow direction upon

the installed pipes for different terminals. Table 2 gives the comprehensive list of the sets,

parameters, and decision variables used to formulate (DO-U) in (2).

Table 2: Notation overview for our ship pipe routing problem (DO) and its ILO model (DO-U).
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Sets

V Set of vertices.

E Set of edges, represented by {(u, v) : u ∈ V , v ∈ V , u ∼ v, u < v}.

E Set of admissible edges; E ⊆ E .

A Set of arcs, represented by {(u, v) : u ∈ V , v ∈ V , u ∼ v}.

A Set of admissible arcs; A ⊆ A.

K Set of indices for the terminal groups, indexed from 1 to K.

T Set of all terminal groups T = (T k)k∈K, where T k ⊆ V .

R Set of root vertices; R = {r1, . . . rk}, where rk ∈ T k for terminal group

k ∈ K. Note that the root vertex is chosen arbitrarily for each terminal

group.

P Set of available pipe types.

P Set of feasible pipe types; P ⊆ P .

Parameters

cpuv Cost parameter for installing pipe type p ∈ P at edge (u, v) ∈ E .

Other notation

τ(t) The index of the unique terminal group that contains the terminal t ∈ T .

Decision Variables

xpuv Binary variable equal to 1 if we install a pipe of type p ∈ P on edge

(u, v) ∈ E , and 0 otherwise.

ftpuv Binary variable equal to 1 if there is a flow over arc (u, v) ∈ A with pipe

type p ∈ P for a route between vertex t ∈ T \R and rτ(t), and 0 otherwise.

(DO-U)

9



min
∑

(p,(u,v))∈(P×E)\S0

xpuv · cpuv (2a)

s.t.
∑
p∈P

 ∑
u:(v,u)∈A

ftpvu−

∑
u:(u,v)∈A

ftpuv

 =


1 if v = rτ(t)

−1 if v = t

0 otherwise

∀v ∈ V ,∀t ∈ T \ R (2b)

ftpuv + ftpvu ≤ xpuv ∀t ∈ T \ R,∀p ∈ P, ∀(u, v) ∈ E (2c)

ftpuv ∈ B ∀t ∈ T \ R,∀p ∈ P, ∀(u, v) ∈ A

(2d)

xpuv ∈ B ∀p ∈ P , ∀(u, v) ∈ E (2e)

The goal of (2) is to minimize the costs of connecting the terminals within all terminal

groups (2a) while ensuring the conservation of flows as formulated in (2b) using only admis-

sible edges and feasible pipe types. Note that we added the summation over the set of pipes

to allow for different (feasible) pipe types within a connection between a root and terminal.

We ensure that an edge is used only in one direction for each connection between rτ(t) and

terminal t and connect the decision variables ftpuv and xpuv in (2c). Note that we restrict

to feasible pipe types and admissible edges in our flow decision variable ftpuv and that (2e)

can be relaxed because (2d) enforces the integrality of xpuv. For simplicity, and with a slight

abuse of notation, we may capture all feasible x and f for (DO-U) in M(I)(DO-U), so that

(DO-U) can be compactly written as

(DO-U) min
∑

(p,(u,v))∈(P×E)\S0

xpuv · cpuv (3a)

s.t. x, f ∈ M(I)(DO-U) (3b)

Deterministic optimization with a directed formulation. To solve an ILO model efficiently,

it is important to have an ILO model that gives sharp LO-relaxation bounds [36]. The
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(a)

(b)
(c)

Figure 2: Example that shows the difference between the (DO-U) and (DO-D). Figure 2a shows a small
example from Figure 1 and 2 of [36] with two terminal groups, red and blue, and possible connections
between vertices denoted by dashed lines. The roots are denoted by circles that are filled with colors. The
remaining vertices are the terminals. The costs of using an edge equal 1 for all edges in the graph. The
optimal integer solution yields an objective of 3 because it requires three edges to connect all terminals.
Figure 2b shows a feasible fractional solution for (DO-U) where the colored arcs denote flows of 0.5 for the
corresponding root-terminal pairs, and the corresponding x decision variables equal 0.5 and are represented
by the solid black lines. This solution is infeasible for (DO-D) because there are directed cycles between the
two roots and the two terminals. Figure 2c shows a feasible solution for (DO-D) where the x and f decision
variables both equal 1. The red arcs represent the arborescence that connects both terminal groups, which
yields a solution with three edges.

formulation of (DO-U) can be sharpened to give better LO-relaxation bounds. The LO-

relaxation of (DO-U) now allows for directed cycles of flows of different terminals, which is

not tight. These directed cycles can appear for different terminals from one terminal group

or when two (or more) terminal groups are connected/overlapping in the solution. By ruling

out these directed cycles of flow in the LO-relaxation, a stronger model is obtained. See

Figure 2b for an illustrative example.

To rule out the directed cycles of flow, we introduce an ILO model (DO-D) that “directs”

the flow into consistent orientations. More specifically, (DO-D) improves over (DO-U) by

1) dynamically combining overlapping terminal groups effectively into one large terminal

group and 2) finding an arborescence (a directed tree) for this combined terminal group in

which one root is designated to send (artificial) flow to all other terminals in the combined

terminal group. In (DO-D), it is ensured that all flow in an arborescence has the same

orientation in the LO-relaxation. As a result, directed cycles are eliminated, as shown in

Figure 2c. Hence, the LO-relaxation from (DO-D) will be tighter than the LO-relaxation

from (DO-U). More details can be found in [36].

For (DO-D), the decision variable xpuv from (DO-U) remains the same. Compared to

11



(DO-U), the flow decision variable is extended by a terminal group index k ∈ K and the

resulting fktpuv is the flow sent from the root of terminal group k to terminal t via pipe p at

arc (u, v). Binary decision variable zkl is 1 when the root of the terminal group k sends flow

to all terminals of the terminal group l, and 0 else. When zkl = 1, binary decision variable

ykpuv equals 1 when flow from the root of terminal group k is sent over arc (u, v) through

pipe p, and 0 else. Lastly, binary decision variable ypuv equals 1 when pipe p at arc (u, v) is

used to send flow over by any of the created arborescences, and 0 else. An overview of all

decision variables is given in Table 3, which builds upon the notation from Table 2.

Table 3: Notation overview for the (DO-D) problem formulation and ILO model, which builds on the
notation from Table 2.

Sets

Q Set of non-terminal vertices, also called Steiner vertices: Q = V \ T .

T k...K Set of some terminal groups: T k...K = (T k)k∈{k,...,K}.

T k...K
r Set of some terminal groups without the corresponding root vertex:

T k...K
r = T k...K \ {rk}.

Decision Variables

fktpuv Binary variable equal to 1 if there is a flow over arc (u, v) ∈ A with pipe

type p ∈ P for a route between root rk of terminal group k ∈ K and

terminal t ∈ T k...K
r , and 0 otherwise.

ykpuv Binary variable equal to 1 if there is a flow over arc (u, v) ∈ A with pipe

of type p ∈ P from root rk of terminal group k ∈ K, and 0 otherwise.

ypuv Binary variable equal to 1 if there is a flow over arc (u, v) ∈ A with pipe

of type p ∈ P , and 0 otherwise.

zkl Binary variable equal to 1 if T k and T l are in the same arborescence and

rk is the root for both terminal groups, and 0 otherwise.

Using the extra notation, we get the following ILO model (DO-D):
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(DO-D)

min
∑

(p,(u,v))∈(P×E)\S0

xpuv · cpuv (4a)

s.t.
∑
p∈P

( ∑
u:(v,u)∈A

fktpvu

−
∑

u:(u,v)∈A

fktpuv

)
=


zkl if v = rk

−zkl if v = t

0 otherwise

∀k ∈ K,∀t ∈ T k...K
r

∀v ∈ V with τ(t) = l
(4b)

fktpuv ≤ ykpuv

∀k ∈ K,∀t ∈ T k...K
r

∀p ∈ P, ∀(u, v) ∈ A
(4c)

∑
k∈K

ykpuv ≤ ypuv ∀p ∈ P, ∀(u, v) ∈ A (4d)

ypuv + ypvu ≤ xpuv ∀p ∈ P, ∀(u, v) ∈ E (4e)

k∑
l=1

zlk = 1 ∀k ∈ K (4f)

zkk ≥ zkl

∀k ∈ K \ {1, K}

∀l ∈ K if l ≥ k + 1
(4g)

∑
p∈P

∑
u:(u,v)∈A

ypuv ≤ 1 ∀v ∈ V (4h)

∑
p∈P

∑
u:(u,t)∈A

ykpuv = 0 ∀k ∈ K \ {1},∀t ∈ T 1...k−1 (4i)

∑
p∈P

∑
u:(t,u)∈A

fktpuv = 0 ∀k ∈ K,∀t ∈ T k...K
r (4j)

∑
p∈P

∑
u:(u,v)∈A

ypuv ≤
∑
p∈P

∑
u:(v,u)∈A

ypuv ∀v ∈ Q (4k)

∑
p∈P

∑
u:(u,v)∈A

ykpuv ≤
∑
p∈P

∑
u:(v,u)∈A

ykpuv ∀k ∈ K,∀v ∈ V \ T k...K
r (4l)
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∑
u:(u,rl)∈A

ykpurl ≤ zkl


∀k ∈ K \K

∀l ∈ K if l ≥ k + 1

∀p ∈ P.

(4m)

fktpuv ∈ B

∀k ∈ K,∀t ∈ T k...K
r

∀p ∈ P, ∀(u, v) ∈ A
(4n)

xpuv ∈ B ∀p ∈ P ,∀(u, v) ∈ E (4o)

ypuv ∈ B ∀p ∈ P, ∀(u, v) ∈ A (4p)

ykpuv ∈ B

∀k ∈ K,∀p ∈ P

∀(u, v) ∈ A
(4q)

zkl ∈ B ∀k ∈ K,∀j ∈ {k . . .K} (4r)

The objective (4a) is similar to (2a), whereas the conservation of flows in (4b) differs

from (2b). This constraint ensures that each terminal is contained in an arborescence rooted

at rk for some k ∈ K. From each arborescence root rk, an artificial flow is sent to all

remaining terminals in the arborescence. Decision variables fktpuv activate ykpuv in (4c)

whenever flow is sent from root rk to terminal t via pipe p at arc (u, v). We ensure that

every arc is part of at most one arborescence in (4d). In case of an overlap, the corresponding

arborescences are forced to be merged into one arborescence. Similarly to (2c), (4e) allows

for only one direction on an edge. We enforce that every terminal group is rooted at exactly

one root in (4f), whereas (4g) enforces exactly one root in each arborescence.

Constraints (4h)-(4m) are not necessary for (DO-D) to produce feasible solutions but

are introduced to strengthen the model’s LO-relaxation [36]. In (4h), we ensure that every

vertex receives flow over at most one pipe. According to the definition of zkl, the root rk

can be only responsible for terminal groups l ≥ k. Consequently, (4i) prevents a connection

between root rk and a terminal from T 1...k−1. Constraints (4j) prevent a flow from leaving a

terminal. We denote flow-balance constraints in (4k) and (4l), also mentioned in [25, Section

2.2] for the SSTP, which state that the in-degree of a Steiner vertex cannot be larger than its

out-degree: (4k) enforces this in the overall solution whereas (4l) focuses on each terminal
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group. We enforce that the arborescence rooted at rk can use root rl if and only if zkl = 1

in (4m).

Finally, we include integrality constraints in (4n)-(4r). As (4n) already enforces integral-

ity on ykpuv, constraints (4p) and (4q) can be relaxed.

For simplicity, and with a slight abuse of notation, we may capture all feasible x, f, y,

and z for (DO-D) in M(I)(DO-D), so that (DO-D) can be written as

(DO-D) min
∑

(p,(u,v))∈(P×E)\S0

xpuv · cpuv (5a)

s.t. x, f,y, z ∈ M(I)(DO-D) (5b)

3. Accounting for uncertainty: two new problem formulations

In this section, we explain how uncertainty affects the ship pipe routing problem and

introduce two new optimization models to deal with it. Stochastic optimization (SO) and

robust optimization (RO) are techniques that address uncertainties and variability in real-

world optimization problems. They are different approaches for dealing with uncertainty; SO

requires more detailed distributional information and focuses on the average case, whereas

RO requires information on the support of the uncertain parameters and focuses on the

worst case. Although both models are well known in the mathematical literature, applying

these models in our practical context is novel [5, Section 6]. For more details about SO,

also known as Stochastic Programming in the literature, we refer to [4, 24], whereas [3, 12]

provide more information on RO.

3.1. Benefits of using SO and RO for pipe routing

Currently, diesel is the most used ship fuel [33]. As part of the energy transition, guide-

lines from the IMO [23] stimulate the maritime industry to transition to alternative, less

polluting fuels. However, no single alternative fuel is recommended to be used in the fu-

ture. The future mix of fuels used depends on many external factors, such as technology

improvements, availability, and future costs [33]. In our framework, we consider two periods
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in time, the present and the future, and refer to them as the first stage and second stage, re-

spectively. Figure 3 shows the scenario tree schematically representing our problem setting.

At each stage, pipe routes can be changed by installing extra pipes. We assume that it is

not necessary to remove unused pipes. In the first stage, we consider one scenario, typically

diesel. However, in the second stage, we consider multiple scenarios, each corresponding

to a different (future) fuel type and possibly different pipe routes. For example, a future

scenario could be methanol, which, unlike diesel, can be routed through rooms next to the

waterside and requires double-walled pipes [30]. Because of these different characteristics,

methanol might need different pipes and routes than diesel.

Diesel

Methanol: s = 2Diesel: s = 1 . . . LNG: s = SFuture: Second stage

Present: First stage

Figure 3: Two-stage scenario tree that schematically represents the problem setting we are studying.

Ship designers optimize for the economic situation of a ship at the start of construction

[34, 35]. As a result, ships are already sub-optimal at delivery due to ongoing technological

developments. Changing the ship’s pipe network after construction is not preferable. For

example, retrofitting a ship from diesel to methanol is expensive because of the ship’s down-

time and the required complex maintenance. To make ships future-proof for both economic

and sustainability reasons, alternative fuels must be taken into account in the design phase.

To illustrate the importance of considering future fuels, we use the example from Fig-

ure 1b. The first two branches from the scenario tree in Figure 3 are considered in this

example: transitioning from diesel to diesel or methanol, respectively. For both fuel types,

we need to connect the fuel tanks and the engine room with a pipe route. More specifically,

vertices 22 and 32 in Figure 1b represent different fuel tanks, diesel, and methanol, respec-

tively, whereas vertex 8 denotes the engine room. Figures 4a and 4b show a deterministic

and robust pipe route for this example, respectively. Because Figure 4a represents the deter-

ministic solution, the pipe route is only optimal for the first stage, in which the diesel tank
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1 2 3 4 5 6

7 8 9 10 12

13 14 16 17 18

19 20 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(a) Deterministic pipe route.

1 2 3 4 5 6

7 8 9 10 12

13 14 16 17 18

19 20 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

(b) Robust pipe route.

Figure 4: Example of a deterministic and robust pipe route connecting fuel tanks (vertex 22 for diesel
and vertex 32 for methanol) with the engine room (vertex 8). The purple and green lines represent single
and double-walled pipes, respectively. The solid lines denote pipes installed in the first stage, whereas the
dashed lines denote pipes installed in the second stage if the methanol scenario takes place. The gray dashed
lines represent the remaining edges.

gets connected to the engine room. However, it is unknown which fuel type will be used

in the future and therefore which scenario will be realized. If diesel persists in the future,

the pipe route will not need to change. However, in case methanol occurs in the future,

we need to build an extra pipe route in order to connect the methanol tank and the engine

room, which is denoted by the green dashed line. Depending on the retrofit costs and the

probabilities of the second scenario, a different pipe routing in the first stage can be optimal.

For example, Figure 4b shows a robust solution that does not need any installations in the

future. Although this route seems inefficient for the diesel scenario, it prepares the ship for

a possible transition to methanol in the future. The only way to make the best pipe routing

decisions is to include uncertainty in our mathematical models explicitly.

3.2. Extension of the deterministic problem formulation to SO and RO

This section extends the deterministic pipe routing problem formulations to SO and

RO formulations. As mentioned in Section 2.1, we need to introduce a set of second-stage

17



scenarios s ∈ S, where each scenario corresponds to one fuel type. We reuse all previously

introduced notations for (DO-U) and (DO-D) but then for each future scenario, which will be

indicated by superscript (s) for scenario s. For example, I(s) = (G,P , T (s), P (s), C(s), E(s))

denotes a problem instance in scenario s (in which T (s) for example denotes all the corre-

sponding terminal groups) and S(s) captures the decisions taken in scenario s. The cost of

installing a pipe p ∈ P at a particular edge (u, v) ∈ E is given by c
(s)
puv = cpuv · λ(s) where

λ(s) > 1 is the inflation rate. These costs are captured in C(s) = (c
(s)
puv)p∈P,(u,v)∈E,s∈S . For an

overview of the notation for the new problem formulations, see Table 4.

Table 4: Notation overview for (RO), (SO) and their ILO models, which builds on the notation from
Table 2 and 3.

Sets

S Set of scenario indices, indexed from 1 to S.

Decision Variables

d Continuous variable that captures the worst-case retrofit costs for the

(RO-U) and (RO-D) models.

Using the new notation, we get the following robust optimization problem in which we

anticipate the worst-case future scenario:

(RO)

min
S∈M(I)

(
F (I, ∅,S) + max

s∈S
min

S(s)∈M(I(s))

(
F (I(s),S,S(s))

))
(6a)

= min
S∈M(I)

( ∑
(p,(u,v))∈S\S0

cpuv︸ ︷︷ ︸
First stage costs

+max
s∈S

min
S(s)∈M(I(s))

∑
(p,(u,v))∈S(s)\S

c(s)puv︸ ︷︷ ︸
Second stage costs

)
. (6b)

We can rewrite (RO) to an undirected ILO model denoted by (RO-U) that (commercial)
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ILO solvers can solve:

(RO-U)

min
∑

(p,(u,v))∈(P×E)

xpuv · cpuv + d (7a)

s.t. d ≥
∑

(p,(u,v))∈(P (s)×E(s))

(x(s)
puv − xpuv) · c(s)puv ∀s ∈ S (7b)

x(s)
puv ≥ xpuv (7c)

x, f ∈ M(I)(DO-U) (7d)

x(s), f(s) ∈ M(I(s))(DO-U), (7e)

where continuous decision variable d captures the worst-case retrofit costs. We force x
(s)
puv = 1

when xpuv = 1 in (7c), as we can reuse pipe p ∈ P at edge (u, v) ∈ E in scenario s ∈ S. We

can also rewrite (RO) to a directed ILO model (RO-D) that is based on (DO-D). So (RO-D)

is the same as (RO-U) above, but with M(I)(DO-U) replaced by M(I)(DO-D).

The stochastic optimization problem (SO), which aims to minimize the sum of expected

costs, can be written as:

(SO)

min
S∈M(I)

(
F (I, ∅,S) + ES

[
min

S′∈M(IS)

(
F (IS,S,S′)

)])
(8a)

= min
S∈M(I)

( ∑
(p,(u,v))∈S\S0

cpuv︸ ︷︷ ︸
First stage costs

+ES

[
min

S′∈M(IS)

∑
(p,(u,v))∈S(s)\S

c(s)puv

]
︸ ︷︷ ︸

Second stage costs

)
, (8b)

where S denotes a discrete random variable for the future scenario with a known distribution,

i.e., Pr(S = s) is known for all s ∈ S.

We can rewrite (SO) to an undirected ILO model denoted by (SO-U) that (commercial)
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ILO solvers can solve:

(SO-U)

min
∑

(p,(u,v))∈(P×E)

xpuv · cpuv +
∑
s∈S

ρ(s)
∑

(p,(u,v))∈(P (s)×E(s))

(x(s)
puv − xpuv) · c(s)puv (9a)

s.t. x(s)
puv ≥ xpuv (9b)

x, f ∈ M(I)(DO-U) (9c)

x(s), f(s) ∈ M(I(s))(DO-U). (9d)

where ρ(s) represents the probability of scenario s ∈ S. We can also write (SO) to a directed

ILO model (SO-D) that is based on (DO-D). So (SO-D) is the same as (SO-U), but with

M(I)(DO-U) replaced by M(I)(DO-D).

4. Results

To highlight different aspects of the 2S-SSFP and the proposed models, we consider

three graphs of different sizes and with different levels of modeling realism. This section will

discuss our experiments on these graphs and report the corresponding results. Section 4.1

elaborates on the small graph from Figure 1b, whereas Section 4.2 and Section 4.3 discuss

the artificial and realistic graphs, respectively. We compare the scalability of the models

and study the relative gains of taking uncertainty into account. Both (DO-U) (2) and (DO-

D) (4) are deterministic models that do not consider the uncertainty of the second stage

and only optimize for the first stage, which is a naive approach compared to SO and RO.

In the following, DO will mainly serve as a benchmark to compare with SO and RO. All

experiments are executed on a supercomputer with 32 cores and CPU 2.4GHz using the

Gurobi solver [20] for our Python code, which is available upon request.

4.1. Small graph: an example of the added value from SO

This section will discuss an example that shows the added value from SO and gives

insight into the cost difference between the three mathematical models. We use the small
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and simple graph from Figure 1b, which is a grid graph where the costs of installing a

single-walled pipe in the first stage equals 1, i.e.,

c1uv = 1, ∀(u, v) ∈ E .

We assume that double-walled pipes are more expensive than single-walled ones for all

three graphs. More specifically, we set the cost ratio between double-walled and single-walled

pipes equal to 2, i.e.,

c2uv = 2c1uv, ∀(u, v) ∈ E .

We assume that the costs of installing pipes are higher in the future than in the present,

but we do not know to what extent. Therefore, we use the smallest integer that is greater

than 1 for the ratio between future and present costs of installing pipes, i.e.,

c
(s)
puv

cpuv
= λ(s) = 2, ∀s ∈ S,∀p ∈ P ,∀(u, v) ∈ E .

Here, λ(s) = 2 is a constant increase rate for the costs of installing pipes.

In the example from Figure 1b, we start with a diesel scenario in the first stage and

transition to either a diesel or methanol scenario in the second stage. In the following, ρ(2)

denotes the probability of the methanol scenario in the future, which consists of a transition

from diesel to methanol. Since there are only two scenarios in this example, the likelihood

of the first scenario is also known: ρ(1) = 1 − ρ(2). We can algebraically compute the DO,

RO, and SO costs for this example. There are three pipe routes for the problem instance

in Figure 1b. The first two routes are DO and RO, as shown in Figures 4a and 4b. DO

installs four single-walled pipes in the first stage and possibly four double-walled pipes in the

second stage, whereas RO installs three single-walled pipes and four double-walled pipes in

the first stage. Figure 5a shows the third route, which installs three single-walled and three

double-walled pipes in the first stage and one double-walled pipe in the second stage in the
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case of the methanol scenario. This route saves costs in the first stage but still prepares for

a possible transition in the second stage. As mentioned, the second stage costs of installing

a pipe are twice as high compared to the first stage. For a fair comparison, we also consider

the expected second-stage costs of installing pipes for DO, which we compute by multiplying

the second-stage costs by the probability of the methanol scenario. As a result, the expected

DO costs increase linearly with ρ(2). The sum of the expected first and second-stage costs

for the three routes are:

ER1(ρ
(2)) = 4 + 16ρ(2)

ER2(ρ
(2)) = 11

ER3(ρ
(2)) = 9 + 4ρ(2),

where R1 and R2 denote the objective values for the DO and RO solution, and R3 represents

the objective value for the solution from Figure 5a. Note that both λ(s) and ρ(2) determine

the slope of R1 and R3. Figure 5b visualizes the expected costs, where the x-axis and the

y-axis show ρ(2) and the sum of the expected first- and second-stage costs, respectively. RO

yields a horizontal line because this model does not depend on probabilities.

SO takes the minimum of all three options:

ERSO(ρ
(2)) = min

{
4 + 16ρ(2), 11, 9 + 4ρ(2)

}
. (10)

ER3 intersects with ER1 at ρ(2) = 5
12

and with ER2 at ρ(2) = 1
2
. Between these two values,

it holds that ERSP < min {ER1,ER2}, which shows the value of taking uncertainty into

account. However, this result is based on the assumption that ρ(2) is known, which is not

always the case in practice. Another way to quantify the added value of SO is the value of the

stochastic solution (VSS), which is the difference between the expectation of the expected

value solution (EEVS) and the optimal objective value of the SO. In this example, VSS

equals the difference between ER1 and ERSO, which ranges between 0 and 9 (82% of the SO

objective). In other words, the relative gains of SO are relatively high in this example.
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Figure 5: Figure 5a shows the third pipe route option for the example of Figure 1b. Note the similarity
with Figure 4b, except the dashed line between vertices 26 and 32, which denotes that we possibly install a
pipe there in the second stage. Figure 5b shows the expected costs of the three routes and (10) in Figure 1b.
The shaded area indicates the interval of ρ(2) values for which ERSO(p2) ≤ min {ER1(p2),ER2(p2)}.

4.2. Artificial instance: a comparison of the models

In this section, we compare the scalability of the three models and show the relative

gains of considering uncertainty. To this end, we introduce an artificial graph, which is a

5-by-5 grid graph. The costs of installing a single-walled pipe are randomly drawn from a

uniform distribution between 1 and 10, i.e.,

c1uv ∼ U [1, 10], ∀(u, v) ∈ E .

The installation costs of double-walled pipes are again c2uv = 2c1uv, ∀(u, v) ∈ E . The ter-

minals are randomly chosen from all vertices. For a parameter study, we vary the number

of scenarios between two and four, the number of terminals between three and five, and

the number of terminal groups between one and three, which amounts to 27 different pa-

rameter settings in total for the artificial graph. To account for randomness, we generate

100 instances for each parameter setting, resulting in 2700 different instances for the same
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artificial graph. For the sake of simplicity, we assume that every terminal group can install

all pipe types on every edge of the graph and that each scenario is equally probable, i.e.,

ρs =
1
S
,∀s ∈ S.

Figure 6a shows the average compilation and run time for (SO-U) and (SO-D) over all

the 2700 instances, respectively. The figure shows that directed formulations require more

compilation time but yield a considerably shorter run time. We zoom in on this statement

with Figure 6b, which displays the run times of (SO-U) and (SO-D) with the total number

of terminals per scenario (i.e., the number of terminal groups multiplied by the number of

terminals per terminal group). We see that (SO-D) is generally faster than (SO-U), typically

when the number of terminals is large.

It is interesting to zoom in on the worst- and best-case instances in terms of run time

for (SO-U). The best-case instance contains two scenarios, one terminal group per scenario,

and three terminals per terminal group. These terminals lie close to each other, resulting

in shorter run times. The worst-case instance contains more terminals, terminal groups,

and scenarios, which leads to longer run times, probably due to an increased number of

decision variables and constraints. When the terminals are spread across the whole graph,

the routing problem becomes more complex, resulting in longer run times.
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Figure 6: Figure 6a shows the average of the compilation and run times from (SO-U) and (SO-D). Figure 6b
shows the run times of (SO-U) and (SO-D) with the total number of terminals per scenario (i.e., the number
of terminal groups multiplied by the number of terminals per terminal group). The green line indicates
where the run times of (SO-U) and (SO-D) are equal.

24



Because DO, RO, and SO are entirely different models, comparing them with one measure

is not trivial. Therefore, we compare them to each other’s objective in Table 5. In the DO

objective, we divide the first-stage costs of the three models by the first-stage costs of DO.

We see that RO yields a higher ratio than SO, which is caused by the conservatism of RO.

SO and RO are 29% and 62% more expensive than DO in the DO objective, respectively.

In the RO objective, we compute the objective value of the three solutions in case of the

worst-case scenario and divide it by the RO objective value. We find that the objectives of

SO and RO are closer to each other than those of DO and RO. Compared to RO, DO and

SO are 29% and 9% more expensive, respectively. Hence, considering the uncertainty for

the worst case yields a relative gain of 22%. Finally, in the SO objective, we compute the

objective value of the three solutions in the average case with equal probabilities for each

scenario and divide it by the SO objective value. DO and RO perform comparably in this

objective as both lie approximately 5% from the optimal objective value. In other words,

the VSS amounts to approximately 5%, which is the expected gain from solving the SO

instead of DO.

Model \ objective DO RO SO

DO 1.000 1.286 1.057
RO 1.623 1.000 1.048
SO 1.225 1.116 1.000

Table 5: Comparison of the models’ average relative performances for three different objectives in artificial
instances.

The following elaborates on the first- and second-stage costs of all three models. We

compare the first-stage costs of DO and RO in Figure 7a. We divide the RO costs by

the DO costs and find a right-skewed distribution, where the lower bound of this ratio

yields 1. Figure 7b shows how the models perform in the first and second stages. Note

that we compute the expected costs in the SO objective, which means that we compute

the second stage costs for DO and RO in case of equal probabilities for each scenario, i.e.,

ρ(1) = ρ(2) = 0.5. We see that DO has the lowest first-stage costs but is relatively expensive

in the second stage, whereas both SO and RO require a bigger investment in the first stage
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but have considerably lower second-stage costs. When the terminals are close to each other

in the first stage but far apart in the second stage, DO seems affordable in the first stage

and yields high costs in the second stage.
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Figure 7: Figure 7a shows a distribution of the RO costs divided by the DO costs for all 2700 instances.
Figure 7b shows boxplots that represent a comparison of all three models in the SO objective.

4.3. Realistic instance: an example of an application

In this section, we apply the three models to a realistic graph to show what robust pipe

routing looks like in practice. We collaborated with a shipyard to study a ship consisting

of four decks. This graph is based on a schematic overview of [31], as shown in Figure 8,

which computes possible locations of the methanol tanks in a ship currently fueled by diesel.

Note that the figures differ slightly from the original paper due to an improvement in the

methodology. This ship contains a moonpool, which is an opening in the floor that gives

access to the water below, enabling operators to lower tools into the sea. Pipes cannot go

through these rooms, making pipe routing more difficult, as it restricts routes. A cargo ship

hold would do the same, as pipes cannot enter the cargo space. However, a work ship like

this gives more variation since cargo ships have limited spaces and equipment in front of the

cargo hold. We represent the 3D network of compartments in the ship as a graph; vertices

26



(a) Deck 1

(b) Deck 2

(c) Deck 3

(d) Deck 4

Figure 8: Figures 8a-8d shows an overview of the four decks of the ship from [31], where each number
represents a room. Green rooms denote methanol tanks, while red rooms cannot serve as methanol tanks
as they are already occupied. Rooms 24, 38, and 70 denote the moonpool.
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denote rooms, and edges represent connections between adjacent rooms. The resulting graph

contains 75 vertices and 156 edges. We use the Manhattan distance between the vertices

for the costs c1uv of installing a single-walled pipe in the first stage. The installation costs

of double-walled pipes are again c2uv = 2c1uv, ∀(u, v) ∈ E .

We assume that we start with diesel in the first stage and transition to diesel or methanol

in the second stage. We use the locations of the current diesel tanks of the ship as terminals

for the diesel scenario and the locations of the methanol tanks computed in [31] as terminals

for the methanol scenario. Diesel pipes cannot be routed through the double bottom or

through rooms adjacent to the water. Whereas diesel can be routed through either single-

or double-walled pipes, methanol requires double-walled pipes due to safety regulations [30].

A mathematical overview of the realistic instance is shown below:

• T = T (1) = {37, 42, 53, 54, 63, 65}

• T (2) = {1− 11, 22, 23, 36, 37, 42, 48− 54, 62, 63, 65, 66, 68}

• P = P = P (1) = {1, 2}

• P (2) = {2}

• F = {1− 30, 31, 33, 34, 35, 36, 40, 41, 43, 44− 48, 52, 56, 58, 59, 61, 68, 72, 73, 75}

• E = E(1) = {(u, v) : u ∈ V \ F , v ∈ V \ F , u ∼ v, u < v}

• E(2) = E ,

where vertex 42 represents the engine room and set F represents the rooms in which we

cannot install diesel pipes. We ran all models on the realistic graph and show our findings

in Table 6. For SO, we assume equal probabilities for the scenarios in the second stage, i.e.,

ρ(1) = ρ(2) = 1
2
. We see that the models with directed formulations require more compilation

time, probably caused by an increase in the number of decision variables and constraints,

but yield considerably shorter run times. When focusing on the undirected formulations,

we see that the best integer solution is found relatively quickly and that the solver needs
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a relatively long time to close the gap, whereas directed formulated models close the gap

within almost a second.

Deterministic Stochastic Robust
(DO-U) (DO-D) (SO-U) (SO-D) (RO-U) (RO-D)

Compilation time 0.034 0.054 0.361 0.593 0.359 0.566
Run time 0.127 0.045 450.333 0.894 566.527 1.137
Decision variables 1,092 1,405 10,920 12,171 10,921 12,172
Constraints 765 1,609 8,391 14,957 8,393 14,959

Table 6: Result overview of running all models on the realistic graph.

The optimal routes according to DO and RO are displayed in Figure 10. We did not

include the optimal route according to SO as it is similar to RO’s solution. All three figures

use different vertex colors denoting different connections with lower and upper decks. In

Figure 9, we see that the DO solution only contains single-walled pipes and avoids rooms

adjacent to the water. Figure 10a and 10b show that the RO solution uses single and double-

walled pipes to prepare for diesel and methanol. The RO solution shows three main insights:

1) the pipe route goes via the starboard side of the moonpool to the engine room due to

room 37, which contains a tank as well; 2) the double bottom contains a center pipeline

that connects rooms 1-11 with room 23, which is adjacent to room 37; and 3) single-walled

pipes are placed to connect the diesel tanks to the engine room, as they cannot use the

aforementioned pipeline in the double bottom.
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Figure 9: Optimal DO pipe route for the realistic graph, which only consists of single-walled pipes.
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Figure 10: Optimal RO pipe route for the realistic graph. Figure 10a shows the single-walled pipe route,
whereas Figure 10b represents the double-walled pipe route.
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5. Conclusion

Motivated by ship pipe routing under the uncertainty of the energy transition, we have

introduced the 2S-SSFP and corresponding DO, SO, and RO models. For each of these

three models, we have used both undirected and directed flow formulations based on [36].

We have applied them to three graphs to highlight different aspects of the 2S-SSFP and the

proposed models.

Our experiments show that considering uncertainty can yield relative gains up to 22%.

An application to a graph representing an actual ship shows three insights: 1) we install

double-walled pipes in the center of the double-bottom to connect methanol tanks with the

engine room; 2) we use a combination of single- and double-walled pipes on the other decks,

and 3) we route the pipe network via the starboard side. Furthermore, we find that DO is

typically the cheapest in the first stage but has considerable second-stage costs. SO and RO

invest more in the first stage, which results in lower second-stage costs. DO performs the

worst when the first stage contains terminals that lie close to each other, whereas the second

stage consists of widespread terminals over the graph. The run times of the models increase

when the number of scenarios, terminals, and terminal groups increases, especially when

the terminals are widespread over the graph. More specifically, the directed formulations

require longer compilation times but yield considerably shorter run times than the undirected

formulations, which is in line with the findings in [36]. The difference in run times between

directed and undirected formulations increases as the number of terminals increases.

For future research, we suggest studying methods that perform well on larger graphs to

take more ship details into account, as an ILO model typically does not scale well. Possible

scaleable methods are (meta-)heuristics or the L-shaped method for SO. Additionally, we

could make the model more realistic by allowing multiple fuel types within one scenario. The

energy transition might consist of multiple stages with different scenarios. Consequently,

multi-stage SO could be helpful in this case. Finally, we could make the costs of installing

pipes dependent on their location on the ship. For example, installing pipes near an engine

room might be more expensive due to safety measures.
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