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Abstract—In transmission networks, power flows and network
topology are deeply intertwined due to power flow physics.
Recent literature shows that a specific more hierarchical network
structure can effectively inhibit the propagation of line failures
across the entire system. In particular, a novel approach named
tree partitioning has been proposed, which seeks to bolster
the robustness of power networks through strategic alterations
in network topology, accomplished via targeted line switching
actions. Several tree partitioning problem formulations have
been proposed by considering different objectives, among which
power flow disruption and network congestion. Furthermore,
various heuristic methods based on a two-stage and recursive
approach have been proposed. The present work provides a
general framework for tree partitioning problems based on
mixed-integer linear programming (MILP). In particular, we
present a novel MILP formulation to optimally solve tree parti-
tioning problems and also propose a two-stage heuristic based on
MILP. We perform extensive numerical experiments to solve two
tree partitioning problem variants, demonstrating the excellent
performance of our solution methods. Lastly, through exhaustive
cascading failure simulations, we compare the effectiveness of
various tree partitioning strategies and show that, on average,
they can achieve a substantial reduction in lost load compared
to the original topologies.

Index Terms—Tree partitioning, controlled islanding, mixed-
integer linear programming, cascading failures, line switching

I. INTRODUCTION

Power systems are the backbone of modern society, whose
functioning nowadays significantly relies on a continuous
and stable power supply. Consequently, their reliability is of
paramount importance: any disruption or instability in the
power supply can have severe economic and societal implica-
tions. Historical power blackouts have shown that transmission
line failures play a critical and often initiating role in the
unfolding of cascading failures [1], [2]. The complex interplay
of grid topology and power flow physics gives rise to intricate
failure patterns, often exhibiting a non-local propagation of
line failures [3], [4], [5], [6], [7].

Several emergency measures can be deployed to support
frequency and voltage stability and mitigate cascading failures
in transmission power systems, among which dynamic line
rating, generation re-dispatch, load shedding, and the acti-
vation of fast-reacting reserves. When these measures fail,
a last-resort emergency measure to stop cascading failures
is controlled islanding, which splits the network into sepa-
rate connected components called “islands” [8]. By confining
failures within isolated islands, this approach helps first to
stabilize and later to restore the system more effectively.

However, despite the widespread attention that controlled
islanding has received in the literature [9], [10], [11], [12],

Fig. 1. Tree partitioning of the IEEE-73 network with provable line failure
localization properties. The three clusters connected in a tree-like manner have
been obtained by switching off only three transmission lines (in red).

[13], its practical implementation has been limited [14]. A re-
cent paper [14] proposes an alternative less drastic emergency
measure, named tree partitioning, that takes advantage of the
same network flexibility in terms of line switching actions.
Line switching is a consolidated electricity grid management
paradigm that received a lot of attention also in the opti-
mal transmission switching literature [15], [16], where line
switching actions aim at maximizing economic efficiency of
generation dispatch.

Unlike controlled islanding, which creates disconnected
components, tree partitioning modifies the power network to
obtain a hierarchical structure with clusters interconnected
in a tree-like topology (see Figure 1). As shown in [14],
[17], any line failure in a network after tree partitioning
causes a power flow redistribution (and hence possible sub-
sequent failures) only within the affected cluster. Thus, a tree-
partitioned network has the same ability to locally confine
line failures and mitigate cascading failures as the correspond-
ing islanding strategy, while offering several advantages: (i)
avoiding load shedding, (ii) reduced impact on the surviving
network (needing fewer switching actions and less power flow
redistribution), (iii) no need for generator adjustments and
(iv) no need for re-synchronization when resuming normal
operations [14].

Different problem formulations have been proposed to de-
termine the best tree partitioning strategy, focusing on min-
imizing power flow disruption [14] or network congestion
[17]. The first formulation aims to minimize the impact of
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switching actions on the transient stability of the network,
considered also often in the controlled islanding literature [10],
[13], [18]. In the second formulation, the goal is to minimize
network congestion, ensuring minimal line overloading after
partitioning. These problem variants have been addressed with
two-stage approaches, with the network congestion variant also
explored via recursive algorithms. However, existing methods
are heuristic and provide no guarantees for optimal switching
actions in tree partitioning.

This paper introduces a general framework for tree partition-
ing problems and describes approaches based on mixed-integer
linear programming (MILP) to solve them. More specifically,
the main contributions of this paper are as follows:

• We develop a novel MILP formulation that unifies exist-
ing problem variants, obtaining for the first time optimal
tree partitioning solutions.

• We propose a heuristic two-stage approach based on
MILP to improve the scalability for large networks.

• We extensively compare the performance of our proposed
solution methods on a large collection of test cases,
demonstrating that the exact approach achieves signifi-
cantly better solutions, while the heuristic method obtains
good solutions with considerably lower runtimes.

• We compare the performance and effectiveness of various
tree partitioning strategies through extensive cascading
failure simulations, showing that, on average, tree parti-
tioning can achieve a substantial reduction in lost load
compared to the original topologies.

The rest of the paper is structured as follows. Section II
presents definitions and mathematical preliminaries. Sec-
tion III introduces a general tree partitioning formulation and
its problem variants. In Section IV, we describe solution meth-
ods to solve tree partitioning problems. Section V presents
numerical experiments of the tree partitioning problems, as
well as cascading failure simulations. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

The goal of this section is to describe the power network
model we consider in this work (cf. Section II-A), introduce
the notion of tree partitions (cf. Section II-B), and review the
failure localization properties that power networks have after
tree partitioning (cf. Section II-C).

A. Power network model

We model an electrical transmission network as a connected,
directed graph G = (V,E), where V = {1, 2, . . . , n} is the
set of vertices (buses) and E ⊆ {(i, j) : i, j ∈ V } is the set of
edges (transmission lines). Let n and m denote the number of
buses and lines, respectively. Each bus i ∈ V has a net power
injection pi, where pi > 0 is interpreted as injected power
and pi ≤ 0 as consumed power. Each line (i, j) ∈ E has a
capacity cij > 0, denoting its rating, i.e., the maximum power
that the line can safely carry.

In this paper, we consider a lossless DC power flow model in
which generation always matches demand, i.e.,

∑n
i=1 pi = 0.

We refer to any such vector p of power injections as balanced.

Let θi ∈ [θmin, θmax] denote the phase angle of bus i, where
θmin, θmax ∈ R denote the minimum and maximum phase
angles, respectively. For each line (i, j), let fij ∈ R denote the
active power flow and let bij > 0 denote the line susceptance.
Given a vector of power injections p, the corresponding line
flows f and phase angles θ are obtained by solving the DC
power flow equations:

pi =
∑

j:(i,j)∈E

fij −
∑

j:(j,i)∈E

fji, ∀ i ∈ V, (1a)

fij = bij(θi − θj), ∀ (i, j) ∈ E. (1b)

Equation (1a) ensures flow conservation, and (1b) captures
the flow dependency on susceptances and angle differences.
The DC power flow equations (1) admit a unique power flow
solution f for each balanced injection vector p.

B. Tree partitions

To introduce the notion of tree partition, we first quickly
revise some key graph theory concepts. Given a graph G =
(V,E), an edge e ∈ E is called a cut-edge or bridge if its
removal would disconnect the graph. A k-partition of G is
the collection P = {V1,V2, . . . ,Vk} of k non-empty, disjoint
vertex sets V1,V2, . . . ,Vk, called clusters, such that

⋃k
i=l Vl =

V . We denote by K = {1, 2, . . . , k} the set of cluster indices.
Given a partition P , an edge (i, j) ∈ E is called an internal
edge if both i and j belong to the same cluster and cross edge
otherwise. The set of cross edges is denoted by EC(P).

Given a partition P of the graph G, the corresponding
reduced graph GP = (K,EC(P)) is the graph whose vertices
are the clusters in P and where an edge is drawn for each cross
edge connecting two different clusters (see Figure 2). Note that
it is possible for the reduced graph to have multiple edges
between two vertices, and thus to be a multigraph. We say
that P is a tree partition of G if the corresponding reduced
graph GP is a tree. The cross edges of a tree partition are
automatically cut-edges for the graph G.

In general, a graph G admits multiple tree partitions,
including the trivial one where all nodes are in the same
cluster. There is a unique tree partition that is maximal by
inclusion [19]. We refer to this as the irreducible tree partition.

(a) (b)

Fig. 2. (a) A graph G with colors representing a partition P into three
clusters. (b) The reduced graph GP that corresponds to the partition in (a).



3

C. Failure localization

When a transmission line outage occurs (either due to failure
or intentional disconnection), the power flow it carried is
redistributed globally across the remaining lines according
to power flow physics. This redistribution can cause line
flows to increase, decrease, or even reverse direction. Some
of the remaining lines can then become overloaded and are
deactivated by automatic safety relays, leading to failure
propagation in the network. This phenomenon is not localized:
as shown in [20] using real-world data, line failures can trigger
subsequent line failures even very far away from the initial
contingency.

It was shown in [14], [17], [19], [7] that line failures do
not propagate across cut-edges, meaning that, if one considers
the clusters determined by the irreducible tree partition, line
failures only impact lines flows within the same cluster. These
results have been made rigorous in [7], [21] under the DC
power flow approximation using the so-called line outage
distribution factors (LODF) [22], [23], a standard tool in the
power systems literature to compute the post-contingency line
flows. In particular, [7], [21] show that finer tree partitions of
the same network lead to sparser LODF matrices. Although
a formal proof of the same result for the AC power flow
model is lacking, there is substantial numerical evidence from
AC simulations [21] that tree partitions effectively localize an
overwhelming majority of line failures also in this setting.

Most power networks, however, have a highly meshed
structure, making their irreducible tree partition trivial and
thus very prone to non-local line failure propagation [17]. In
the next section, we formulate an optimization problem that
aims to enhance the robustness of a power network against
cascading line failures by refining its irreducible tree partition
using line-switching actions.

III. TREE PARTITIONING PROBLEM FORMULATIONS

In light of the strong interplay between network topology
and line failure propagation described in Section II-C, tree
partitioning strategies [14], [17], [19] aim to slightly modify
the topology of a given power network to enhance failure
localization using line-switching actions.

Given a power network G = (V,E), we want to identify
the optimal subset E ⊂ E of transmission lines to switch off
to maximize the failure localization properties of the post-
switching network GE = (V,E \E) in terms of its irreducible
tree partition. This involves identifying a partition P and a set
of lines E such that, once the lines in E are deactivated using
switching actions, P becomes a tree partition for the post-
switching network GE . We will refer to GE as the (resulting)
tree-partitioned network.

Various formulations of the tree partitioning problem have
been proposed, but the core structure is the same and can be
described as follows. Given a power network G = (V,E) and
k ≥ 2 coherent generator groups G1,G2, . . . ,Gk ⊂ V , the goal
is to identify a k-partition P = {V1,V2, . . . ,Vk} and a subset
of lines E ⊂ EC(P) that minimize a specific risk function
r(E) subject to the following constraints:
(a) the post-switching network GE = (V,E\E) is connected;

(b) P is a tree partition of GE ;
(c) the partition is such that coherent generators belong to the

same cluster, i.e., Gl ⊆ Vl, for every l ∈ K := {1, . . . , k}.

Constraint (c), which we refer to as the coherent generator
grouping constraint, arises naturally when thinking of tree par-
titioning as an emergency measure against cascading failures,
as proposed by [14]. In this context, tree partitioning inherits
several design principles behind islanding schemes [10], [13],
[18]. In particular, it is key to minimize the impact on the
transient stability, that is, the ability of the power network
to maintain frequency synchronization when subjected to a
severe disturbance [24]. It is therefore important to maintain
generator coherency: synchronous generators should prefer-
ably be grouped together in the same cluster. In fact, non-
coherent generator groups might lead to generator tripping
and, eventually, the collapse of the network [10]. Various
other additional constraints can be added to this core problem,
capturing either desired features of the partition P , or physical
properties of the power network.

Several choices can also be made for the objective function
r(E), but they all try to capture the risk of removing from
service the selected lines in E by quantifying the impact of
such switching actions. Deactivating lines redistributes power
flows (as discussed in Section II-C) and may influence system
stability. Thus, the optimal tree partition and switching actions
depend on the specific application. In the next two sections,
Sections III-A and III-B, we explore two variants of the tree
partitioning problem introduced by [14], [17].

A. Minimizing power flow disruption

In controlled islanding, the impact of switching actions
on the rest of the network is usually quantified using the
power flow disruption, defined as the total sum of absolute
flows on the switched-off lines. For a tree-partitioned network,
constraint (a) ensures that the network remains connected and
thus there is no actual power disruption – one of its key
advantages over islanding. Nevertheless, it is still reasonable to
consider the same quantity, i.e., the sum of the absolute flows
on the lines in E selected to be switched off, as a proxy for
the impact of line-switching actions on the network, namely

r(E) :=
∑

(i,j)∈E

|fij |.

Using this objective function, we can now formulate pre-
cisely the tree partitioning problem considering power flow
disruption (TP-PFD). Given a power network G = (V,E) and
k coherent generator groups G1,G2, . . . ,Gk ⊂ V , the goal of
TP-PFD is to identify a k-partition P = {V1,V2, . . . ,Vk} and
a set of lines E ⊂ E to switch off such that the power flow
disruption

∑
(i,j)∈E |fij | is minimized while constraints (a),

(b), and (c) are satisfied:

min
∑

(i,j)∈E

|fij |,

s.t. (a), (b), (c).
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B. Minimizing network congestion

Tree partitioning has been proposed not only as an emer-
gency measure but also as a tool in the planning phase to
obtain a network that is simultaneously more reliable and
requires less effort to mitigate disturbances [17], [25]. In this
context, the impact of line-switching actions can be quantified
differently. Specifically, [17] proposes to look at the congestion
on the lines in the post-switching network GE , after the power
flow redistribution induced by the selected switching actions.

We define the congestion level of a single line (i, j) ∈ E
as the non-negative ratio |fij | / cij , and we say that a line
(i, j) ∈ E is congested if its congestion level exceeds one.
For a given power network G = (V,E), we define the network
congestion as

Γ(G) := max
(i,j)∈E

|fij | / cij .

i.e., as the maximum congestion level over all network lines.
If Γ(G) ≤ 1, then the network has no congested lines.

The authors in [17] propose a variant of the tree-partitioning
problem in which the goal is to minimize the impact of switch-
ing actions on the network congestion level. In our framework,
this amounts to considering as the objective function the post-
switching network congestion Γ(GE), i.e.,

r(E) := Γ(GE).

Here Γ(GE) is calculated on the network GE assuming that
the power injections p are unchanged, and the post-switching
power flows are recalculated using DC power flow equations
(1). The rationale behind this problem formulation is that,
when tree partitioning a network, it is desirable to switch off
a set of lines E so that the network congestion on the post-
switching network GE is as low as possible and, in particular,
remains below one. However, due to the complex interplay
between power network topology and power flow physics,
it is hard to ensure no congestion upfront. Nevertheless,
slight network congestion may still occur, but it can often be
alleviated with remedial actions [14].

We can now formulate the tree partitioning problem con-
sidering network congestion (TP-NC). Given a power network
G = (V,E) and k coherent generator groups G1,G2, . . . ,Gk ⊂
V , the goal of TP-NC is to identify a k-partition P =
{V1,V2, . . . ,Vk} and a set of lines E ⊂ E to be switched
off such that the network congestion of the post-switching
network Γ(GE) is minimized while satisfying constraints (a),
(b), (c) and (1):

min Γ(GE),

s.t. (a), (b), (c), (1).

Unlike TP-PFD, TP-NC incorporates the power flow model,
making it a more complex optimization problem, as discussed
further in Section IV.

C. Alternative tree partitioning problem formulations

The tree partitioning framework presented earlier in this
section is rather general and can be tailored further depending
on the specific target application. Besides the two formulations

for minimizing power flow disruption and network congestion
presented in the previous two sections, another tree partition-
ing variant was proposed by [14] in which the objective is to
minimize the sum of line overloads, that is

r(E) =
∑

(i,j)∈E\E

max{|f (E)
ij | − cij , 0},

where f
(E)
ij denotes the power flow on line (i, j) on the post-

switching network GE .
Similarly, one could consider other variants of the tree

partitioning problem by considering other objective functions
or even by adding additional constraints. In particular, we can
directly extend any problem formulation from the controlled
islanding literature into our tree partitioning framework. Re-
cent studies consider, for example, minimizing power imbal-
ance and DC-OPF [26].

The main methodological contributions in this paper revolve
around MILPs, which is not suitable if a nonlinear AC power
flow model is considered. This limitation also arises for other
nonlinear constraints, such as those related to voltage and
frequency stability. However, as shown in [27], one could
resort to Benders’ decomposition approach to address these
constraints, but this is outside the scope of this paper.

IV. SOLUTION METHODS

In this section, we present two different approaches to
solving tree partitioning problems. The first approach is to
formulate the tree partitioning problem as a MILP, which can
be solved optimally. The second approach decomposes the
tree partitioning problem into two subsequent optimization
problems, which results in faster but possibly sub-optimal
solutions. We refer to the first and second approaches as single-
stage and two-stage approaches, respectively.

A. Single-stage approach

The combinatorial nature of the general tree partitioning
problem lends itself well to MILP. In particular, as we only
consider linear objective functions and constraints in TP-
PFD and TP-NC, we can formulate these problems as an MILP
and solve them to optimality without the need to resort to
heuristic methods.

We first present a general MILP formulation for tree par-
titioning problems. In the rest of the paper, we refer to any
line that is switched off (i.e., it belongs to the subset E) as
inactive, and active otherwise. Let xil ∈ {0, 1} denote whether
bus i ∈ V belongs to cluster l ∈ K. Let yijl ∈ {0, 1} denote
whether line (i, j) ∈ E is an internal edge of cluster l ∈ K,
i.e., both endpoints i and j belong to cluster l. Let zij ∈ {0, 1}
denote whether (i, j) ∈ E is an active line and let wij ∈ {0, 1}
denote whether line (i, j) ∈ E is an active cross edge. Finally,
let qij ∈ R represent the commodity flow on line (i, j) ∈ E.
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The general tree partitioning problem can be formulated as

min r(E), (2a)
s.t. xil = 1, ∀l ∈ K, ∀i ∈ Gl, (2b)

k∑
l=1

xil = 1, ∀i ∈ V, (2c)

yijl ≤ xil, ∀(i, j) ∈ E,∀l ∈ K,
(2d)

yijl ≤ xjl, ∀(i, j) ∈ E,∀l ∈ K,
(2e)

yijl ≥ xil + xjl − 1, ∀(i, j) ∈ E,∀l ∈ K,
(2f)∑

(i,j)∈E

qij −
∑

(j,i)∈E

qji = si, ∀i ∈ V, (2g)

qij ≥ −(n− 1)zij , ∀(i, j) ∈ E, (2h)
qij ≤ (n− 1)zij , ∀(i, j) ∈ E, (2i)
k∑

l=1

yijl + wij = zij , ∀(i, j) ∈ E, (2j)∑
(i,j)∈E

wij = k − 1, (2k)

xil ∈ {0, 1}, ∀i ∈ V,∀l ∈ K, (2l)
yijl ∈ {0, 1}, ∀(i, j) ∈ E,∀l ∈ K,

(2m)
wij ∈ {0, 1}, ∀(i, j) ∈ E, (2n)
zij ∈ {0, 1}, ∀(i, j) ∈ E, (2o)
qij ∈ R, ∀(i, j) ∈ E. (2p)

The objective function (2a) is to minimize some risk func-
tion r(E). Constraints (2b) group coherent generators within
the same cluster. Constraints (2c) ensure that each bus belongs
to exactly one cluster. Constraints (2d) to (2f) state that a line
(i, j) is an internal edge of cluster l if and only if i and j
belong to the same cluster l. Note that if a line (i, j) is not
an internal edge, i.e., yijl = 0 for all l ∈ K, then this readily
implies that (i, j) is a cross edge. Constraints (2g) to (2i)
represent single commodity flow constraints, which ensure that
the post-switching network is connected. Here, we set si = −1
for all i ∈ V \ {1} and s1 = n − 1. Constraints (2j) ensures
that if line (i, j) is an internal edge, it must always be an
active line. Otherwise, we have that wij = zij , i.e., a line is
active if and only if it is an active cross edge. Constraint (2k)
ensures that the post-switching graph contains exactly k − 1
active cross edges. Together with the single-commodity flow
constraints, this guarantees that the identified clusters must be
connected in a tree-like manner, hence guaranteeing that the
active cross edges are cut-edges for the network. Finally, (2l)
to (2p) define the variable domains.

We now discuss how to modify (2) to formulate TP-PFD and
TP-NC. The MILP formulation for TP-PFD is

min
∑

(i,j)∈E

|fij |(1− zij), (3a)

s.t. (2b) to (2p). (3b)

Note that we only need to replace the objective function, which
is to minimize sum of the absolute power flows of the inactive
lines. The single-stage approach is particularly effective for
TP-PFD, as we will show in Section V.

To formulate TP-NC, we introduce a new variable γ ≥ 0
that represents the network congestion. Furthermore, we intro-
duce the power flow variables fij ∈ R for each line (i, j) ∈ E
and bus angle variables θi ∈

[
θmin, θmax

]
for each bus i ∈ V

to represent the DC power flow equations (1) as constraints.
The MILP formulation for TP-NC is then given by

min γ, (4a)
s.t. (2b) to (2p), (4b)

γ ≥ |fij |/cij , ∀ (i, j) ∈ E, (4c)∑
(i,j)∈E

fij −
∑

(j,i)∈E

fji = pi, ∀ i ∈ V, (4d)

fij ≤ bij(θi − θj) +Mij(1− zij), ∀ (i, j) ∈ E, (4e)
fij ≥ bij(θi − θj)−Mij(1− zij), ∀ (i, j) ∈ E, (4f)
fij ≤ Mijzij , ∀ (i, j) ∈ E, (4g)
fij ≥ −Mijzij , ∀ (i, j) ∈ E, (4h)
γ ≥ 0, (4i)
fij ∈ R, ∀ (i, j) ∈ E, (4j)

θi ∈
[
θmin, θmax

]
, ∀ i ∈ V. (4k)

Constraints (4c) bounds the network congestion from below
by each line congestion level. Constraints (4d) ensures flow
conservation at each bus. Constraints (4e) to (4h) represent
the DC power flow constraints with switching actions. A valid
big-M value is given by Mij = bij |θmax− θmin| for each line
(i, j) ∈ E. Finally, (4i) to (4k) represent the variable domains.

B. Two-stage approach

Tree partitioning problems can be naturally decomposed
into two consecutive stages, which are illustrated in Figure 3.
In the first stage, one identifies a partition P that will serve
as the candidate tree partition. In the second stage, one selects
the optimal subset of cross edges E ⊂ EC(P) whose removal
turns P into a tree partition.

The two-stage approach is useful when the single-stage ap-
proach becomes intractable. On the other hand, such a heuristic
approach may lead to sub-optimal results: there is no guarantee
that the identified partition leads to the best switching actions
in general. Nevertheless, we may obtain reasonable results
with the advantage of having lower runtimes. We will now
discuss the two stages separately in more detail.

1) First stage – Tree Partition Identification (TPI): The first
stage, which we call the Tree Partition Identification (TPI)
problem, aims to find a k-partition of the power network that
respects the generator coherency constraints and will serve as
desired tree partition on the post-switching network.

The TPI problem gives rise to the heuristic nature of the
two-stage approach: namely, it is hard to say in advance what
the optimal partition is with respect to truly optimal line-
switching actions. However, switching off too many lines or
lines with large power flows often leads to large power flow
redistribution and results in severe congestion in the resulting
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Fig. 3. Illustration of the two-stage approach. (a) A power network G with three generator groups. (b) A 3-partition P respecting the generator coherency
constraints. (c) A tree partition P of GE , where the red lines E are switched off.

network. We thus seek a partition such that the resulting line-
switching actions have minimal impact on the network. One
can make several choices for the objective function of TPI,
depending on the considered formulation. As we are aiming
to minimize power flow disruption in TP-PFD, a logical choice
is to also minimize power flow disruption for the TPI problem.
Furthermore, having low-weight cross edges leads to low
power flow redistributions, making this objective function a
good candidate for the TP-NC problem.

The MILP for TPI is very similar to (3), see Appendix A
for its formulation. The main differences are (i) the exclusion
of activated cross edges since all cross edges are deactivated
in TPI and (ii) a modification of the single commodity flow
constraints to ensure connectivity within each cluster.

One may observe that the TPI problem is identical to the
controlled islanding problem. An alternative objective function
that is often considered in the controlled islanding literature
is the minimization of power imbalance. However, based
on our numerical experiments, this objective function is not
appropriate for the considered tree partitioning problems since
the resulting partition may contain cross edges with very high
power flows.

Another widely used method in the controlled islanding
literature is spectral clustering. This is also used in the two-
stage tree partitioning method by [14], [17]. However, we
remark neither of the aforementioned studies considers the
inclusion of generator coherency constraints in their spectral
clustering method.

2) Second stage – Optimal Line Switching (OLS): Having
identified a good candidate partition P in the first stage, the
next step is to determine a set of lines E to be switched off
such that P becomes a tree partition of the post-switching
network GE . We formulate the second stage as an optimization
problem, named the Optimal Line Switching (OLS) problem.
Given a power network G = (V,E) and a k-partition P , the
goal of the OLS problem is to remove a subset of cross edges
E ⊂ EC(P) to minimize some risk function r(E) under the
constraint that P is a tree partition of GE .

An alternative formulation of the OLS problem uses the
notion of the reduced graph. Recall that the reduced graph of
G given a k-partition P is defined as GP = (K,EC(P)), i.e.,

as the graph whose vertices are the clusters of P indexed from
1 to k and whose edges are the cross edges between them.
Solving the OLS problem is thus equivalent to computing
a spanning tree T on the reduced graph GP , such that the
removal of lines E = EC(P) \ T minimizes the risk function
r(E) on the post-switching network GE .

For TP-PFD, the OLS problem is equivalent to the maximum
spanning tree problem [14]. Observe that the spanning tree
with maximum weight implies that the set of switched-off
lines E is of minimum weight. As minimum spanning tree
problems can be solved optimally in polynomial time, we can
use the negative of the absolute line weights and solve the
OLS problem efficiently as well.

For TP-NC, the OLS problem is more involved as it does not
reduce to a polynomial-time solvable spanning tree problem.
It is particularly difficult since for any given subset E , we need
to recalculate the power flows on the post-switching graph GE

in order to obtain the network congestion Γ(GE). In [17], the
OLS problem was solved using a brute-force algorithm that
enumerates all possible spanning trees. However, since their
number is exponential in the number of clusters k, any brute
force formulation is intractable for large instances. Instead,
we formulate the OLS problem as MILP and solve it as
such. We refer to Appendix B for a description of the MILP
formulation.

V. NUMERICAL EXPERIMENTS

In this section, we describe our numerical experiments and
discuss the results. More specifically, in Section V-A and
Section V-B, we compare the performance between the single-
stage approach (1-ST) and two-stage approach (2-ST) in solv-
ing TP-PFD and TP-NC, respectively, while in Section V-C,
we run DC cascading failure simulations to compare the
effectiveness of different tree partitioning approaches against
cascading failures.

In our numerical experiments, we use a subset of test
cases from the PGLIB-OPF library [28]. From each test case,
we extract a power network G = (V,E), where the power
injections p and flows f are computed by solving a DC-OPF
problem.
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We obtained generator groups that result in feasible tree par-
titions using the following procedure. We compute a minimum
spanning tree for each instance, using the negative absolute
power flows as edge weights. This spanning tree is iteratively
split into k sub-trees. At each iteration, we select the largest
sub-tree and divide it into two parts such that the ratio between
the number of generators in either sub-tree is as close to one
as possible.

We ran all experiments on Intel Xeon Gold 6130 CPU
processors using 16 cores. Our code is implemented in
Python, and we use the commercial software Gurobi 9.5.2
to solve MILPs. The implementation is openly available at
https://github.com/leonlan/tree-partitioning.

For solving an instance with the single-stage approach, we
impose a time limit of 600 seconds for the MILP solver. When
the runtime of the corresponding result is 600 seconds, this
indicates that the solution may be sub-optimal. For the two-
stage approach, we set a 300-second time limit for solving
each of the two separate stages.

A. Results for TP-PFD

This section presents the results related to the TP-PFD
variant as presented in Section III-A. Table I presents the
computed power flow disruption and runtime of both methods
for various power networks and values of k. We also report the
percentage difference in power flow disruption, comparing 2-
ST with respect to 1-ST. The results show that 1-ST produced
optimal solutions for all but the two largest instances. 2-ST
obtained optimal solutions in 22 out of 40 instances. For the
other instances, 14 were solved with a gap of less than 15%,
whereas the remaining 4 instances achieved a gap of larger
than 34%. The runtimes of 1-ST were within several seconds
in 34 out of 40 instances but increased drastically for larger
problem instances. In contrast, runtimes of 2-ST seem to scale
better: the longest measured runtime was only 31 seconds.
In summary, the results show that 1-ST is highly effective
at solving TP-PFD optimally for the considered instances.
Moreover, 2-ST obtained optimal results for at least half of
the instances and can be considered a fast alternative to 1-ST
to produce high-quality solutions for larger instances.

B. Results for TP-NC

This section presents the results related to the TP-NC variant
as presented in Section III-B. We remark that TP-NC is
significantly harder to solve than TP-PFD: especially for large
power networks and larger values of k, TP-NC could not be
solved with the single-stage approach using the 600-second
time limit. We, therefore, decided to use a warm-started
solution for all instances larger than GOC-179. In particular,
we use the solution obtained from solving TP-PFD using 1-ST
and use this as the initial solution when solving TP-NC with
1-ST. This approach makes a direct comparison between the
1-ST and 2-ST approaches unfair, but it allows us to find (near-
)optimal solutions to evaluate the solution quality of 2-ST.

Table II reports the results from running 1-ST and 2-ST on
the considered power network instances. All networks start

TABLE I
RESULTS FOR TREE PARTITIONING WITH AS OBJECTIVE MINIMIZING THE

POWER FLOW DISRUPTION.

Objective value (PFD) Runtime (s)

Name k 1-ST 2-ST % gap 1-ST 2-ST

EPRI-39 2 50 50 0.00 0.09 0.06
3 50 50 0.00 0.12 0.07
4 50 67 34.00 0.08 0.09
5 34 67 97.06 0.13 0.12

IEEE-57 2 158 158 0.00 0.12 0.10
3 155 155 0.00 0.17 0.12
4 172 172 0.00 0.20 0.15
5 172 172 0.00 0.26 0.25

IEEE-118 2 267 267 0.00 0.22 0.25
3 277 277 0.00 0.23 0.24
4 786 786 0.00 0.27 0.29
5 812 812 0.00 0.31 0.42

GOC-179 2 252 252 0.00 0.29 0.27
3 1944 1944 0.00 1.04 0.44
4 2796 2796 0.00 5.40 0.55
5 2796 2796 0.00 66.74 0.72

IEEE-300 2 193 193 0.00 0.45 0.51
3 312 312 0.00 0.54 0.66
4 909 909 0.00 0.63 0.80
5 1006 1148 14.12 0.78 1.05

GOC-500 2 560 560 0.00 0.74 0.99
3 740 800 8.11 0.96 1.32
4 1221 1281 4.91 1.65 1.60
5 1236 1381 11.73 2.61 1.92

SDET-588 2 135 135 0.00 0.73 0.96
3 436 436 0.00 0.80 1.24
4 561 561 0.00 1.03 1.56
5 568 768 35.21 1.22 1.77

GOC-793 2 673 673 0.00 0.93 1.28
3 917 975 6.32 1.27 1.63
4 917 1030 12.32 2.19 4.44
5 1048 1480 41.22 3.31 15.04

RTE-1888 2 788 835 5.96 2.80 4.27
3 1623 1670 2.90 3.80 5.24
4 3757 3804 1.25 48.67 6.18
5 5245 5361 2.21 600.00 30.84

RTE-2848 2 889 955 7.42 4.26 6.53
3 1624 1690 4.06 167.35 8.13
4 2259 2286 1.20 388.56 9.77
5 3197 3224 0.84 600.00 13.25

with network congestion of 1, which is a direct result of
initializing the networks with DC-OPF.

We first describe the results related to the objective value,
i.e., the network congestion. The warm-started version of 1-
ST obtained optimal solutions for 30 out of 40 instances. The
2-ST approach produced optimal solutions for 20 out of the 40
instances. For the remaining instances, 10 were solved with a
gap of at most 16%, and the other 10 were solved with a gap
larger than 26%. It was possible to find an optimal solution
resulting in no congested lines for 26 out of 40 instances. The
remaining 14 instances could not be solved without creating
congested lines. However, in 8 out of these 14 instances, the
network congestion remained quite reasonable, below 1.10.
Only for 6 instances the network congestion exceeds 1.58.

In terms of runtimes, we only discuss the results of 2-ST.
Overall, the runtimes of 2-ST are similar to those for solving

https://github.com/leonlan/tree-partitioning
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the TP-PFD problem with 2-ST. This is due to the TPI problem
being identical, and most of the time is spent on solving the
TPI problem. The difference in the runtimes between TP-PFD
and TP-NC is due to solving the OLS problem. This problem is
solved very fast: it took at most 5 seconds, with the exception
of RTE-1888 and k = 4, for which it took about 18 seconds.

In summary, the results for TP-NC show that it is possible
to partition a network optimally with low congestion in
most cases. However, minimizing the network congestion is
much harder than minimizing the power flow disruption, and
consequently, the single-stage approach is not a viable method
of solving TP-NC. Similar to the results for TP-PFD, the two-
stage method runs faster, but the resulting solutions are often of
lesser quality. One main difficulty when minimizing network
congestion is that line congestion is a local property: even
if many of the switched lines belong to the optimal set, there
may be a single line switching action that can cause extremely
high congestion on a nearby line. As a result, a partition
with minimal power flow disruption may not be optimal with
respect to the subsequent line-switching actions, since it does
not explicitly take into account this congestion.

C. Cascading failure simulations

In this final numerical experiment, we run cascading failure
simulations using the DC power flow model to compare the
effectiveness of different tree partitioning strategies. For a
given power network, a single cascading failure simulation
is initiated as follows. The simulation starts by removing
a selected line, which may result in multiple disconnected
components. Within each component, we readjust the power
imbalance if necessary, using proportional load shedding or
generation curtailing. More specifically, when a component
has more load than generation, then we lower all loads by
some proportion until it matches the generation. Otherwise, we
curtail the generation with some proportion to match the load.
After adjusting generation and load, we re-run the DC power
flow equations and identify the overloaded lines. If no lines
are overloaded or all loads are shed, we stop the cascading
failure simulation and register the total lost load. Otherwise,
the overloaded lines are removed, and the cascading failure
simulation continues.

For a given power network, we run a number of cascading
failure simulations by removing each line once, and we collect
the average lost load over all simulations. As a baseline,
we run a cascading failure simulation on the original power
network. We compare this with the power networks obtained
by solving TP-PFD and TP-NC using the original power
network and applying both the single-stage approach and two-
stage approach for k = 2, 3, 4. After tree partitioning, we run
DC-OPF on the network and then run the cascading failure
simulations. Results are labeled as PFD (1-ST), PFD (2-ST),
NC (1-ST), and NC (2-ST).

We only consider a subset of the power networks that
meet the following criteria. First, the average lost load of the
original network during the cascading failure simulations must
be more than 1% of the total network load. This excludes the
networks RTE-1888 and RTE-2848. Second, the networks after

TABLE II
RESULTS FOR TREE PARTITIONING WITH AS OBJECTIVE MINIMIZING THE

NETWORK CONGESTION.

Objective value (Γ) Runtime (s)

Name k 1-ST 2-ST % gap 1-ST 2-ST

EPRI-39 2 1.00 1.00 0.00 0.16 0.09
3 1.00 1.00 0.00 0.49 0.11
4 1.00 1.00 0.00 0.64 0.14
5 1.00 1.00 0.00 0.37 0.16

IEEE-57 2 0.88 1.01 14.77 1.03 0.15
3 0.88 1.01 14.77 2.23 0.19
4 0.88 1.02 15.91 8.45 0.32
5 0.88 1.02 15.91 11.04 0.38

IEEE-118 2 1.00 1.00 0.00 1.64 0.32
3 1.00 1.00 0.00 4.87 0.34
4 1.48 1.48 0.00 9.75 0.56
5 1.48 1.48 0.00 150.38 0.72

GOC-179 2 1.04 1.07 2.88 15.40 0.44
3 1.58 1.63 3.16 268.10 0.57
4 1.58 1.63 3.16 600.00 0.78
5 1.42 1.63 14.79 600.00 1.17

IEEE-300 2 1.06 1.16 9.43 600.00 1.01
3 1.09 1.16 6.42 600.00 1.26
4 1.09 1.38 26.61 600.00 1.64
5 1.09 1.63 49.54 600.00 2.16

GOC-500 2 1.00 1.00 0.00 2.11 1.35
3 1.00 1.00 0.00 2.52 1.74
4 1.00 1.00 0.00 3.59 2.34
5 1.00 1.00 0.00 4.91 2.84

SDET-588 2 1.02 1.44 41.18 204.12 1.53
3 1.00 1.32 32.00 256.37 2.12
4 1.00 1.29 29.00 182.36 2.56
5 1.00 1.26 26.00 19.10 3.15

GOC-793 2 1.05 2.06 96.19 600.00 2.22
3 1.00 1.57 57.00 600.00 3.08
4 1.01 1.57 55.45 600.00 4.93
5 1.07 1.64 53.27 600.00 14.77

RTE-1888 2 1.00 1.00 0.00 9.56 5.49
3 1.00 1.00 0.00 11.18 6.87
4 1.00 1.00 0.00 12.77 23.40
5 1.00 1.00 0.00 21.15 34.96

RTE-2848 2 1.00 1.00 0.00 15.84 8.77
3 1.00 1.00 0.00 31.00 11.43
4 1.00 1.00 0.00 48.46 13.36
5 1.00 1.00 0.00 144.15 17.89

tree partitioning must have complete results for the cascading
failure simulations. This criterion excludes IEEE-118 because
running DC-OPF for k = 4 is infeasible after tree partitioning.

Figure 4 shows the results of the cascading failure simula-
tions, where the values represent the average lost load relative
to the total load of the original network before cascading
failures. The results for tree-partitioned networks are averaged
over all considered values of k = 2, 3, 4. Our simulations
reveal that, on average, tree partitioning reduces the lost
load due to cascading failures when compared to the original
network. The original network shows 21.1% average lost load,
while the tree-partitioned networks perform better: PFD (1-
ST) at 15.9%, PFD (2-ST) at 16.5%, NC (1-ST) at 15.3%,
and NC (2-ST) at 16.7%. The single-stage approach slightly
outperforms two-stage methods, and NC (1-ST) is marginally
better than PFD (1-ST), though the differences are small.
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Fig. 4. Average lost loss (as % of initial network load) during cascading
failure simulations. Results compare the original network against four tree-
partitioned networks: power flow disruption (PFD) and network congestion
(NC), each solved with single-stage (1-ST) and two-stage (2-ST) approaches.

When looking specifically at the individual test cases, tree
partitioning shows a large reduction in lost load for EPRI-
39, IEEE-300, and SDET-588. In particular, the lost load is
reduced from 35% to 10% for the IEEE-300 network. Mixed
results appear for IEEE-57, GOC-179, and GOC-793: here,
some tree partitioning methods perform slightly better than the
original network, whereas others perform slightly worse. Only
GOC-500 shows no benefit from tree partitioning: in all cases,
the lost load is slightly higher than for the original network,
with the maximum difference being 2.2% for NC (2-ST).

The results demonstrate that tree partitioning can help to
reduce lost load in cascading failures. However, further analy-
sis and investigation are required to thoroughly understand the
impact, even when tree partitioning cannot result in a stable
network, like in the case of IEEE-118.

VI. CONCLUSION

This work explores tree partitioning strategies in trans-
mission networks, which are emerging as a valid alternative
emergency measure to mitigate cascading failures. The key
idea is altering the network topology strategically via line-
switching actions to create a more hierarchical structure that
prevents the global propagation of failures.

In this paper, we present a new comprehensive and unified
framework based on MILP for tree partitioning problems and
show how it can encompass many variants already proposed
in the literature. In particular, it can accommodate vari-
ous objective functions, among which power flow disruption
and network congestion, and include constraints related to
grouping coherent generators. Moreover, we provide exten-
sive numerical results for various tree partitioning problems,
comparing results between our proposed exact formulation and
two-stage heuristic. We demonstrate that the exact approach
achieves better solutions while the heuristic approach obtains
good solutions with considerably lower runtimes. Lastly, by

means of extensive cascading failure simulations, we compare
the reduction in lost load with respect to the original topologies
that various tree partitioning strategies can achieve.

Although our two-stage heuristic approach has shown
promise in enhancing scalability, we believe its performance
can be enhanced even further by improving the quality of
the network partition identified in the first stage, either by
including more engineering details or by using more advanced
ideas proposed in the study of complex networks.

Furthermore, exploring tree partitioning strategies using
the AC power flow model was beyond the scope of this
paper, whose core focus was providing a unified optimization
framework using solely linear constraints. In future work, we
hope to account for this more realistic power flow model, as
well as including generation and load adjustments as decision
variables.

APPENDIX A
MILP FORMULATION FOR TPI

The MILP formulation for TPI follows largely the same
constraints as (3). The main differences are that cross edges
are always inactive, and the single commodity flow constraints
must be slightly adjusted to accommodate connectivity within
clusters. For each generator group Gl, l ∈ K, we select
one generator bus that represents the source node for the
corresponding cluster. Define si = n− 1 if i ∈ V is a source
bus and si = −1 otherwise. The MILP formulation of TPI is
then given by

min
∑

(i,j)∈E

|fij |(1− zij), (5a)

s.t. (2b) to (2f), (2h) and (2i), (5b)
(2l), (2m), (2o) and (2p), (5c)∑
l∈K

yijl = zij , ∀(i, j) ∈ E, (5d)∑
(i,j)∈E

qij −
∑

(j,i)∈E

qji ≤ si, ∀i ∈ V. (5e)

Constraints (5d) ensure that internal edges are active while
cross edges are inactive. Constraints (5e) ensure that source
nodes have an outflow of at most n− 1 commodity units and
other nodes have an inflow of at least 1 unit.

APPENDIX B
MILP FORMULATION FOR OLS

The MILP formulation for OLS (as part of solving TP-
NC) uses the same constraints as (4). However, now that a
candidate partition P = {V1, . . . ,Vk} has been identified, we
can fix all partitioning variables in the MILP. In particular,
the MILP for OLS is given by (4) in combination with the
following constraint:

xil = 1, ∀l ∈ K, ∀i ∈ Vl. (6)
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