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Abstract We present the Basin Hopping with Skipping (BH-S) algorithm for stochastic optimisation,
which replaces the perturbation step of basin hopping (BH) with a so-called skipping proposal from the
rare-event sampling literature. Empirical results on benchmark optimisation surfaces demonstrate that
BH-S can improve performance relative to BH by encouraging non-local exploration, that is, by hopping
between distant basins.
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1 Introduction and background

In the literature on global optimisation of a non-convex energy landscape a source of inspiration has been
methods from the theory of rare-event sampling. Examples include the methods of cross-entropy for com-
binatorial and continuous optimisation [25] and, more recently, splitting for optimisation [4]. In stochastic
optimisation algorithms such as random search [26], basin hopping [14, 31], simulated annealing [12] and
the multistart method [9, 16], one or more initial points X0 are perturbed in order to discover new neigh-
bourhoods (or ‘basins’) of lower energy, which may then be explored by a local procedure such as gradient
descent. As such algorithms discover progressively smaller energy values, the remaining lower-energy basins
form a decreasing sequence of sets. Viewing the optimisation domain heuristically as a probability space
and these basins as events, the discovery of smaller energy values can then also be likened to rare-event
sampling.

In this analogy, the local perturbation step plays a similar role to the proposal step in a Markov Chain
Monte Carlo (MCMC) sampler (see [3], [23]). Thus in order to enhance performance, one may explore
the use of alternative MCMC proposal distributions developed in the context of rare event sampling as
alternative perturbation steps within stochastic optimisation routines. This is the approach we take in the
present paper.

To illustrate the potential benefit of this approach consider an energy landscape having multiple, well-
separated basins whose minimum energies are approximately equal to the global minimum. Then if X0

lies in one such basin, separation means that local perturbations are not well suited to the direct discovery
of another basin. Instead, algorithms using local perturbations to minimise over such a landscape should
be non-monotonic, accepting transitions from X0 to states of higher energy in the hope of later reaching
lower-energy basins. In contrast, since non-local perturbation steps offer the possibility of direct moves
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between distant low-energy basins, they may possibly be effective on such surfaces within a monotonic
optimisation algorithm. In this paper we explore the use of a particular non-local perturbation, the ‘skipping
perturbation’ of [19].

Although other non-local perturbations have been proposed in the literature (see for example [1, 22,
13, 27, 28, 30] in the context of MCMC), skipping has the advantage of being just as straightforward to
implement as a local random walk perturbation. That is, it requires no additional information about the
energy landscape beyond the ability to evaluate it pointwise.

We explore its use within the basin hopping (BH) algorithm [14, 31], which combines local optimisation
with perturbation steps and requires only pointwise evaluations of the energy function f . The resulting
‘basin hopping with skipping’ (BH-S) algorithm is thus as generally applicable as the BH algorithm.

The BH algorithm works as follows: the current state Xn is perturbed via a random walk step to
give Yn which is, in turn, mapped via deterministic local minimisation to a local minimum Xn+1. This
local minimum point is then either accepted or rejected as the new state with probability given by the
Metropolis acceptance ratio, and the procedure is repeated until a pre-determined stopping criterion is
met. Due to its effectiveness and ease of implementation, the BH algorithm has been used to solve a wide
array of optimisation problems (see [8, 20, 21] for more details).

In contrast with the non-monotonic BH algorithm, BH-S is monotonic and replaces the random walk
step with a skipping perturbation over the sublevel set of the current state Xn. Like a flat stone skimming
across water, this involves repeated perturbations in a straight line until either a point of lower energy
is found, or the skipping process is halted. The BH-S algorithm, which was first outlined in [19], thus
provides a direct mechanism to escape local minima which contrasts with the indirect approach taken by
BH. Another perspective is that BH-S alters the balance between the computational effort expended on
local optimisation versus the effort spent on perturbation, typically increasing the latter while decreasing
the former (cf. Table 3.1 below).

Through the use of benchmark functions, the aim of the present paper is to offer guidance on tuning
the method and to present a systematic overview on the types of optimisation problem on which BH-S
tends to outperform BH. The rest of the paper is structured as follows: Section 2 introduces the algorithms,
empirical results are presented and discussed in Section 3, and Section 4 concludes.

2 The BH-S algorithm

Consider a global optimisation problem on a rectangular subdomain D ⊂ Rd, of the form

min f(x) s.t. x ∈ D :=
d∏

i=1

[li, ui], (2.1)

for some scalars li ≤ ui, i = 1, . . . , d. In the rest of the paper, we will often refer to f as the energy function
and to its graph as the energy landscape. This terminology, which is similar to that of simulated annealing,
is appropriate since the BH algorithm was originally conceived as a method to find the lowest energy
configuration of a molecular system [31]. In this section we review the BH algorithm and then introduce
basin hopping with skipping (BH-S).

2.1 Basin hopping algorithm

The core idea of the basin hopping algorithm [31], which is presented in Algorithm 1, is to supplement
local deterministic optimisation by alternating it with a random perturbation step capable of escaping
local minimaB. More specifically, inside the RandomPerturbation procedure at step 5 of Algorithm 1 a
random perturbation W ∈ Rd is drawn and added to the current state Xn giving a state Yn = Xn +W .
Most commonly, the increment W is either spherically symmetric or has independent coordinates. The
state Yn becomes the starting point of a deterministic local minimisation routine. In our implementation
of Algorithm 1 the LocalMinimisation procedure at step 6 is performed using the limited-memory BFGS
algorithm [15], a quasi-Newton method capable of incorporating boundary constraints (although we note
that other choices are possible). The resulting local minimum Un is then either accepted or rejected as the
new state with probability equal to

min

(
1, exp

(
−f(Un)− f(Xn)

T

))
,
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where T ≥ 0 is a fixed temperature parameter. This means, in particular, that downwards steps for which
f(Un) < f(Xn) are always accepted. The BH algorithm prescribes to repeat this basic step until a pre-
defined stopping criterion is satisfied. Commonly used stopping criteria for the BH algorithm include,
among others, a limit on the number of evaluations of the function f or the absence of improvement over
several consecutive iterations [20, 24]. The monotonic basin hopping method introduced in [14] is the BH
variant corresponding to the limiting case T = 0, in which all steps that increase the energy are rejected.

Algorithm 1: Basin hopping
1 Generate a random initial state Y0 ∈ D;
2 X0 = LocalMinimisation(Y0);
3 n = 0;
4 while Stopping criterion for {Xj}j≤n is not satisfied: do
5 Yn = RandomPerturbation(Xn);
6 Un = LocalMinimisation(Yn);
7 Generate V ∼ Uniform([0, 1]);

8 if V < min
(
1, exp

(
− f(Un)−f(Xn)

T

))
then

9 Xn+1 = Un;
10 else
11 Xn+1 = Xn ;
12 end
13 Increase n by 1;
14 end

Basin hopping can thus be viewed as a random walk on the set of local minima of the energy landscape,
which because its transition probabilities favour downhill moves to lower minima, is capable of finding the
global minimum and, hence, of solving global optimisation problems. Its transition probabilities depend
in a complex way on the current position, the landscape, and the perturbation step. The BH-S algorithm
introduced in the next section modifies these transition probabilities, aiming to accelerate optimisation.

2.2 Skipping perturbations and the BH-S algorithm

In this subsection we introduce the BH-S algorithm, which differs from BH only in the perturbation step of
line 5 in Algorithm 1. Instead of the random walk perturbation described above, the RandomPerturbation
procedure described in Algorithm 2 below is applied in order to obtain Yn. The LocalMinimisation and
acceptance steps remain identical to those in Algorithm 1.

Given the current state Xn and a fixed probability density q on Rd, the random walk perturbation of
the BH algorithm can be understood as drawing a state Yn from the density y 7→ q(y −Xn).

In contrast the skipping perturbation of BH-S depends on both the current state Xn and a target set
C ⊆ Rd of states. The target set Cn for the n-th skipping perturbation is the sublevel set of the energy
function f at the current point Xn, i.e.,

Cn := {x ∈ D : f(x) ≤ f(Xn)} ⊂ Rd. (2.2)

A state Z1 is drawn according to the density q just as in the random walk perturbation and, if Z1 does
not lie in the target set Cn, further states Z2, Z3, . . . are drawn such that Xn, Z1, Z2, . . . lie in order on a
straight line, with each distance increment |Zj+1 − Zj | having the same distribution as that of |Z1 −Xn|
conditioned on the line’s direction Z1−Xn

|Z1−Xn| . The first state of this sequence to land in the target set Cn

becomes the state Yn. If Cn is not entered before the skipping process is halted, then Yn is set equal to
Xn.

More precisely, let x = (r, φ) be polar coordinates on Rd with the angular part φ lying on the d − 1
dimensional unit sphere Sd−1. Write φ 7→ qφ(φ) for the marginal density of q with respect to the angular
part φ, which we may call the directional density (and which we assume is strictly positive). For each
φ ∈ Sd−1 denote by

qr|φ(r|φ) :=
qr,φ(r, φ)

qφ(φ)

the conditional jump density, i.e., the conditional density of the radial part r given the direction φ. To
construct the skipping perturbation, set Z0 = Xn and draw a random direction Φ ∈ Sd−1 from the
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directional density qφ. A sequence of i.i.d. distances R1, R2, . . . is then drawn from the conditional jump
density qr|Φ, defining a sequence of modified perturbations {Zk}k≥1 on Rd by

Zk+1 := Zk + ΦRk+1, k = 0, 1, . . .

Since this modification of the BH perturbation is more likely to generate states Zk lying outside the
optimisation domain D, we apply periodic boundary conditions.

If Zk ∈ Cn for some k ≤ K, where K is a pre-defined maximum number of steps called the halting
index, then we set Yn = Zk in Algorithm 1 and continue to the LocalMinimisation and acceptance steps.
Alternatively if Zk /∈ Cn for all k ≤ K we set Yn = Xn. Note that although in [19] the halting index K

can be randomised, in the present setting with a known bounded domain D it is sufficient to consider only
fixed halting indices.

For clarity, in the remainder of the paper we will understand the BH algorithm to mean setting K = 1
in Algorithm 2. In all simulations we set the perturbation q to be a spherically symmetric and Gaussian
with standard deviation σ, although other choices are possible (see the discussion in Section 4.1 of [19]).
In the next section we explore for which types of energy function f BH-S offers an advantage over BH,
and also discuss the choice of halting index.

Algorithm 2: RandomPerturbation subroutine for BH-S
Input : State Xn ∈ Rd

Output: Randomly perturbed state Yn ∈ Rd

1 Set Z0 = Xn ;
2 Generate an initial perturbation W distributed according to the density w 7→ q(w −Xn) ;
3 Calculate the direction

Φ =
(W −Xn)

∥W −Xn∥
;

Set k = 1 and Z1 := W ;
4 while f(Zk) > f(Xn) and k < K do
5 Generate an independent distance increment R distributed as ∥W −Xn∥ given Φ ;
6 Set Zk+1 = Zk + ΦR ;
7 Increase k by one ;
8 end
9 Set Yn := Zk;

3 Empirical results

In this section we aim to explore on which types of optimisation problem BH-S tends to outperform BH
and vice versa using a set of benchmark energy landscapes with known global minima from [6, 10, 29].
To facilitate discussion of landscape geometry we initially restrict attention to two-dimensional energy
functions, before considering higher dimensions in Section 3.6.

In Subsection 3.3 we show that, if an energy landscape has distant basins (recall that with the word
‘basin’ we refer to the neighbourhood of a local minimum) then BH-S tends to offer an advantage. Other-
wise, as described in Subsection 3.4, BH is to be preferred since any benefit from BH-S is then typically
outweighed by its additional computational overhead. We also explore the effect of the state space dimen-
sion d on the performance of both algorithms and offer guidance on tuning the BH-S method, including
strategies to improve exploration of challenging energy landscapes.

3.1 Methodology

For each benchmark energy landscape, we compare the performance of BH-S to that of BH with temper-
ature T = 1, in both cases taking the density q of the initial perturbation as the centred Gaussian

q ∼ N (0, σ2 · Id), (3.1)

where Id is the d× d identity matrix and the parameter σ allows for tuning, as follows. Both the BH and
BH-S algorithms are run on a set of uniformly distributed initial states I := {X(n)

0 ∈ D, n = 1, . . . , |I|}.
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These initial states are used sequentially until the computational budget of 300 seconds of CPU time
has elapsed, and the corresponding set of final states is recorded. To account for numerical tolerance,
we consider a run to to have successfully identified the global minimum x∗ ∈ D if its final state lies
in G := {x ∈ Rd : ||x − x∗|| ≤ 10−5} (this choice excludes all non-global minima for all benchmark
landscapes).

The performance of each algorithm is then assessed with respect to two metrics:

– Reliability, defined as the proportion of runs terminating in G,
– Efficiency, defined as the number of runs terminating in G.

We write ρc and ρs for the reliability of the BH and BH-S algorithms respectively, while ϵc and ϵs
denote their respective efficiencies. The BH and BH-S algorithms are individually tuned for each function
by selecting σ and K to maximise their efficiency.

In order to understand the role played by the skipping perturbation, we also record diagnostics on
the average size of perturbations. For each new state Xn+1 ̸= Xn accepted in Algorithm 1, define the
perturbation distance J as ∥Yn − Xn∥, the Euclidean distance between the state Xn at step n and its
perturbation Yn. For each run of an algorithm, the mean J of these perturbation distances is recorded.
Then for each 300 second budget, the expected mean jump distance υ is the average υ := N−1 ∑N

n=1 J
(n),

where N is the number of runs realised within the time budget. For the BH-S algorithm, υ is calculated
separately for the accepted random walk perturbations (that is, those for which Yn = Z1 in Algorithm 2)
and the accepted skipping perturbations (those for which Yn = Zk with k ≥ 2 in Algorithm 2), denoting
these by υ1 and υs respectively.

The simulations were conducted on a single core using Python 3.7, using the basinhopping routine
in SciPy version 1.6.2 for the BH algorithm. Results for all considered landscapes are presented in the
Appendix.

3.2 Exploratory analysis

As an exploratory comparison between BH and BH-S, their relative efficiency ρs/ρc and reliability ϵs/ϵc
were calculated for each benchmark energy landscape and plotted in Figure 3.1.

Fig. 3.1: Scatterplot of relative efficiency E = ln(ϵs/ϵc) versus relative reliability P = ln(ρs/ρc) for the
BH and BH-S algorithms on benchmark energy landscapes

Landscapes in the first quadrant of Figure 3.1 represent cases where the BH-S algorithm exhibits both
greater reliability and greater efficiency than BH. The common feature among these landscapes, which are
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plotted in the Appendix, might be called distant basins: that is, basins separated by sufficient Euclidean
distance that the random walk performed by the BH algorithm is unlikely to transition directly between
them. While indirect transitions between such basins may be possible, they require a suitable combination
of steps to be made. Such indirect transitions may carry significant computational expense, for example
if suitable combinations of steps are long or relatively unlikely. In the BH-S algorithm, by contrast, the
linear sequence of steps taken by the skipping perturbation enables direct transitions even between distant
basins.

Conversely, landscapes lying in the lower-left quadrant of Figure 3.1 represent cases where the BH-S
algorithm is both less reliable and less efficient than BH. As explored more extensively later in Subsection
3.4, for each of these landscapes, if the energy of the state Xn is close to the global minimum value f(x∗)
then the corresponding sublevel set Cn has almost zero volume. This means that even if the skipping
perturbation traverses the distance between basins, the states Z1, . . . , Zk are unlikely to fall in Cn due to
its small volume. Since the BH algorithm is non-monotonic, it does not suffer from the same issue and
outperforms BH-S for these landscapes.

Figure 3.1 displays a positive correlation between relative efficiency and relative reliability. However
for several landscapes (which lie near the vertical axis) the performance of BH and BH-S cannot be clearly
distinguished on the basis of reliability alone. As confirmed by the Appendix, this is typically because both
algorithms have reliability close to 100%. Nevertheless the algorithms differ in their efficiency, with BH-S
observed to be more efficient than BH for each such landscape. One surface also lies in each of the second
and fourth quadrants.

Table 3.1: CPU time spent on the perturbation and local minimisation steps by the BH and BH-S algorithms
for the test functions discussed in Sections 3.3–3.5, normalised by efficiency.

Time spent
Efficiency , s

BH BH-S

Location in Figure 3.1 Function Perturbation Local
Minimisation

Skipping
Perturbation

Local
Minimisation

First quadrant
(Section 3.3)

Egg-holder 0.72 6.76 0.73 0.19

Modified Rosenbrock 0.46 13.53 0.22 0.10

Third quadrant
(Section 3.4)

Mishra-03 0.02 1.75 1.74 3.21

Whitley 0.01 0.68 4.92 1.58

Special cases
(Section 3.5)

Rosenbrock 0.01 0.13 0.05 0.01

Styblinksi 0.02 0.06 0.06 0.01

Further exploratory analysis is provided in Table 3.1, which indicates average CPU time spent on the
perturbation versus the local minimisation steps for each algorithm. To facilitate comparisons between the
two algorithms, in each case the total time spent is normalised by the algorithm’s efficiency (as defined in
Section 3.1). This demonstrates that the BH algorithm invests a large majority of processor time in the
local minimisation step, with relatively little devoted to the perturbation step. While the ratio between
processor time spent on local minimisation and perturbation is more problem-dependent for BH-S, the
balance appears to be shifted in favour of perturbation.

The BH-S perturbation step is more expensive by construction, since it requires between 1 and K

evaluations of the energy function f (depending on the sublevel set of the current state), whereas each BH
perturbation requires just one evaluation of f . However in Table 3.1, for the Damavandi, Schwefel, Modified
Rosenbrock and Egg-holder functions for which BH-S works well (cf. Figure 3.1), after normalisation the
BH-S algorithm spent approximately the same or less CPU time than BH on perturbation, in addition to
spending less time on local minimisation. Thus for these landscapes which favour BH-S, perturbation steps
were not only less frequent for BH-S (again, after normalisation by efficiency) than BH, but the monotonic
BH-S perturbations also reduced the total computational burden arising from the local minimisation step.

Conversely it was noted above that for landscapes in the third quadrant of Figure 3.1, if the energy
of the state Xn is close to the global minimum value f(x∗) then the corresponding sublevel set Cn has
almost zero volume. This represents the worst case for the BH-S perturbation: if the states Z1, . . . , Zk all
lie outside the sublevel set then the perturbation requires the maximum number k of evaluations of the
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energy function, but nevertheless the perturbed state Yn is rejected and Xn+1 = Xn, so the optimisation
procedure does not advance. Indeed for the Mishra-03 and Whitley functions in Table 3.1, the efficiency
normalised CPU time invested in perturbations is two orders of magnitude greater for BH-S than for
BH. For these landscapes, the efficiency normalised computational burden from local minimisation is also
observed to be greater for BH-S than for BH, although the reasons for this are less clear.

Guided by the exploratory analysis of Figure 3.2, in Sections 3.3–3.5 we study both algorithms’ per-
formance on specific energy landscapes in greater detail.

3.3 Landscapes favouring the BH-S algorithm

(a) Modified Rosenbrock function (b) Egg-Holder function

(c) Sublevel set C = {x ∈ R2 : f(x) < 100}
of the Modified Rosenbrock function (d) Sublevel set C = {x ∈ R2 : f(x) < −700}

of the Egg-Holder function

Fig. 3.2: Examples of energy landscapes from the first quadrant of Figure 3.1

Figure 3.2 plots two landscapes from the first quadrant of Figure 3.1–that is, landscapes which favour
the BH-S algorithm over BH. For each landscape, the sublevel set of a level above the global minimum
f(x∗) is also plotted. The Modified Rosenbrock energy function is given by

f(x) = 74 + 100(x2 − x21)
2 + (1− x1)

2 − 400 exp

[
− (x1 + 1)2 + (x2 + 1)2

0.1

]
,

and we take the domain D = [−2, 2]2, with global minimum x∗ = (−0.95, −0.95) [6].
The Egg-Holder energy function is

f(x) = −(x2 + 47) sin

(√
|x2 +

x1
2

+ 47|
)

− x1 sin

(√
|x1 − (x2 + 47)|

)
,

and we take the domain D = [−512, 512]2, with global minimum at x∗ = (512, 404.2319) [10].
From Figure 3.2a, the modified Rosenbrock function has two basins: a larger basin with a U-shaped

valley and a smaller, well-shaped basin. To transition from the minimum of the valley to the minimum
of the well, the BH algorithm would require a relatively large perturbation step landing directly in the



8 Maldon Goodridge et al.

Table 3.2: Reliability ρ and efficiency ϵ of the BH and BH-S algorithms, with and without the application
of periodic boundary conditions, for the test functions discussed in Sections 3.3–3.5.

Location in Figure 3.1 Function Boundary Condition ρc ϵc ρs ϵs

First quadrant
(Section 3.3)

Egg-Holder
Periodic 1.8% 77 29.4% 280

Non-periodic 1.4% 58 81.7% 815

Modified Rosenbrock
Periodic 18.8% 783 100% 1249

Non-periodic 17.2% 597 96.7% 321

Third quadrant
(Section 3.4)

Mishra-03
Periodic 77.9% 811 6.2% 78

Non-periodic 49.6% 474 68.4% 576

Whitley
Periodic 90.1% 137 13.9% 33

Non-periodic 86.8% 138 13.4% 34

Special cases
(Section 3.5)

Rosenbrock
Periodic 100% 942 100% 1376

Non-periodic 100% 1006 100% 1524

Styblinski
Periodic 99.7% 366 99.9% 932

Non-periodic 99.4% 526 92.3% 784

well, otherwise the local optimisation procedure would take it back to the minimum of the valley. Even for
an optimal choice of σ, which would require a priori knowledge about the landscape, such perturbations
would be unlikely.

In contrast, if the initial point X0 lies at the minimum of the valley, the BH-S algorithm aims to skip
across the domain and enter its sublevel set C0 as defined in (2.2). From Figure 3.2c, this will correspond
to entering an approximately circular basin near the point (−1,−1) in the domain. By Algorithm 2, the
skipping perturbation has the potential to enter that basin provided that the straight line issuing from
X0 in the initial direction Φ in Algorithm 2 intersects it. In particular, this ability is robust to the choice
of standard deviation σ provided that the halting index K is chosen appropriately (see the discussion on
tuning in Subsection 3.7 below).

From Figure 3.2b the Egg-Holder function has multiple basins, many of which have near-global minima.
Figure 3.2d shows that the deepest basins lie in four groups, one group per corner of the domain. Within
each group, the basins are close in the Euclidean distance and so perturbations are likely to enter different
basins within that group. Also, the basins in each group have similar depths (that is, similar local minimum
energies), making the acceptance ratio in Algorithm 1 high for such within-group perturbations. As a result
the BH algorithm is likely to walk regularly between within-group local minima. Also from Figure 3.2b, the
Egg-Holder function has shallower basins distributed throughout its domain. As discussed in Subsection 3.2
these provide an indirect, although potentially computationally expensive, route for BH to cross between
the four groups of Figure 3.2d.

However between groups the Euclidean distance is large, creating the same challenge for BH as with
the modified Rosenbrock function: even for optimally chosen σ, which would require a priori knowledge of
the landscape, transitions between groups are relatively rare.

In contrast, the BH-S algorithm is capable of moving between the four groups in Figure 3.2d provided
the initial direction Φ of its skipping perturbation intersects a different group. The likelihood of such
an intersection is increased by both the length of the skipping chain and the use of periodic boundary
conditions in the BH-S algorithm, and is again robust with respect to the choice of standard deviation σ.

Regarding the application of periodic boundary conditions to the domain D, we have argued that
they are natural for BH-S, since otherwise long skipping chains would tend to exit the domain D. In
contrast, they are not implemented for the BH algorithm in the results of Figure 3.1 and Table 5.1. One
may therefore ask whether it is their use, rather than the skipping perturbation of BH-S, which yields
any observed improvement. To explore this, Table 3.2 illustrates the effect of imposing periodic boundary
conditions on the performance of both the BH and BH-S algorithms. Interestingly the performance of
BH-S on the Egg-Holder landscape is improved without their use (a fact which appears to be driven by
the proximity of its global minimiser x∗ to the boundary). In general, it is clear from Table 3.2 that for
both algorithms their benefit or disbenefit is problem-dependent and the skipping perturbation explains a
distinct and material part of the observed improvements relative to BH.
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It can be observed from Table 5.1 that the expected mean jump distances υs and υc (defined in
Subsection 3.1) typically satisfy υs >> υc for landscapes in the first quadrant of Figure 3.1. This confirms
quantitatively the success of BH-S in hopping between distant basins. The cost of this feature is that the
BH-S skipping perturbation is more computationally intensive than the random walk perturbation of BH.

Without skipping (that is, using the halting index K = 1 in Algorithm 2), BH-S would reduce to the
monotonic basin hopping method of [14] and the initial perturbation W of Algorithm 2 would simply be
either accepted or rejected. One may therefore also ask whether this increase in the expected mean jump
distance is induced by the skipping mechanism of BH-S, or simply by its monotonicity. To address this,
recall that Algorithm 2 first perturbs the current state Xn to give an initial perturbation Z1 := W . Then
if f(W ) > f(Xn), the initial perturbation is modified to Z2, and so on, until either a state Zk is generated
with f(Zk) ≤ f(Xn) or skipping is halted. If such a Zk is found then it may be accepted by setting
Xn+1 = Zk or rejected. The Appendix records the proportion of accepted BH-S perturbations Xn+1 = Zk

for which k > 1. Indeed, for many landscapes in the first quadrant of Figure 3.1 this proportion is 100%.
That is, for such landscapes, each accepted perturbation Xn+1 required the skipping mechanism since
none of the initial perturbations had lower energy than the current state Xn.

3.4 Landscapes favouring the BH algorithm

Figure 3.3 plots two landscapes from the third quadrant of Figure 3.1, on which the BH algorithm out-
performs BH-S, each with two sublevel sets above the global minimum f(x∗). The Mishra-03 function
is

f(x) :=

√
| cos

(√
|x21 + x22|

)
|+ 0.01(x1 + x2),

and the domain D = [−10, 10]2 gives x∗ = (−8.466,−10) [10]. The Whitley function f : R2 → R, given
by

f(x) :=
2∑

i=1

2∑
j=1

((
100(x2i − xj)

2 + (1− xj)
2
)2

4000
− cos

(
100(x2i − xj)

2 + (1− xj)
2 + 1

))
,

has global minimum x∗ = (1, 1) on the domain [0, 1.5]2 [10].
From Figure 3.3a, the Mishra-03 function is highly irregular and has many basins which appear almost

point-like. Figure 3.3e confirms that the situation outlined in Section 3.2 applies to this landscape. That
is, for states Xn with energy close to the global minimum value f(x∗), the corresponding sublevel set Cn

has almost zero volume and the states Z1, Z2, . . . , of Algorithm 2 are unlikely to fall in Cn.
The deepest basins of Mishra-03 form groups arranged in concentric circular arcs. Since the Euclidean

distances both within and between these groups are relatively small, the BH algorithm is able to move
frequently both within and between groups without requiring precise tuning of the standard deviation
parameter σ. In particular, it outperforms BH-S on this landscape.

Similarly from Figure 3.3d, the deepest basins of the Whitley function can be seen either as forming
one group, or as a small number of groups close to each other. Thus, as for Mishra-03, the BH algorithm
is able to move frequently between them while nevertheless being robust to the choice of the standard
deviation parameter σ. As with Mishra-03, however, from Figure 3.3f the sublevel sets Cn corresponding
to near-global minimum states Xn have low volume. Thus it is more challenging for BH-S to transition
between the deepest basins, and BH outperforms BH-S on this landscape.

These limitations of the BH-S routine can be mitigated by alternating between a monotonic and non-
monotonic perturbation step. In Subsection 3.8 we provide a discussion on how this alternating perturbation
can be implemented.

3.5 Special cases

It was noted in Section 3.2 that for several landscapes lying near the vertical axis, both BH and BH-S
algorithms have reliability close to 100%. For these surfaces BH-S typically has greater efficiency simply
because of its monotonicity, since no further computational effort is expended on local optimisation once
the global optimum is reached. The Holder Table and Carrom Table landscapes have multiple distant
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(a) Mishra-03 Function (b) Whitley Function

(c) Sublevel set C = {x : f(x) < 1} of the Mishra-03
function

(d) Sublevel set C = {x : f(x) < 5} of the Whit-
ley function

(e) Sublevel set C = {x : f(x) < −0.01} of the
Mishra-03 function

(f) Sublevel set C = {x : f(x) < 0.1} of the Whitley
function

Fig. 3.3: Examples of energy landscapes favouring the BH algorithm

‘legs’, each leg being the basin of a global minimum point. In this case, the ability of BH-S to skip between
distant basins is not reflected in either its efficiency or its reliability, although it would clearly be beneficial
if the goal was to identify the number of global minima in the landscape.

3.6 Scaling with dimension

In this section we aim to illustrate the performance of the BH-S algorithm as the dimension of the optimi-
sation problem increases. For this we focus on Schwefel-07, a landscape with ‘distant basins’ which is also
defined for higher dimensions. It is given by the function fd : Rd → R, where

fd(x) = 418.9829× d−
d∑

i=1

xi sin(
√

|xi|),
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and has global minimum (421.0)d on the domain Dd = [−500, 500]d [10].

(a) Percent of samples in desired basin: ρ (b) Total trials in desired basin: ϵ

Fig. 3.4: Comparison of BH and BH-S performance when applied to the Schwefel-07 function while varying
the dimension d of the domain D. We set σ = 20 for both algorithms and the BH-S has halting index
K = 50. These parameters were close to optimal for both algorithms. Each simulation used a CPU time
budget of 300s.

From Figure 3.4a, the reliability and also the efficiency of both algorithms decrease approximately
linearly with increased dimension. Recall that relative to BH, the strength of BH-S lies in its ability to
transition directly between distant basins. From Algorithm 2, in order to transition directly to the global
minimum basin, it is necessary for the line from the current state in the random direction Φ to intersect
that basin. As Φ is drawn from a space of dimension d − 1, heuristically this becomes less likely as d

increases.
In contrast, the BH algorithm should rely to a greater extent on indirect transitions from its current

state to the global minimum. By statistical independence, the probability of a particular indirect transition
is the product of the probabilities of its constituent steps. Since the probability of each step decays with
dimension as discussed above for BH-S, this suggests that the performance of BH will degrade more rapidly
with dimension than BH-S.

This is borne out in Figure 3.4a, where BH fails to locate x∗ within the 300 second budget for any
dimension d ≥ 4, while BH-S continues to locate x∗ (albeit with decreasing reliability and efficiency) until
dimension d = 11. Indeed, the reliability of BH-S for this landscape is above 50% for dimensions d ≤ 7.

3.7 Tuning

Both BH and BH-S have the parameter σ, the standard deviation of the centred Gaussian density q used
to generate the initial perturbation. As noted above, the initial perturbation is analogous to a Metropolis-
Hastings (MH) proposal in MCMC. The MH literature highlights the importance of tuning such proposals,
guided either by theory or by careful experimentation [5, 17]. Following this analogy, in this section we
explore the choice of σ and also of the BH-S halting index K. To facilitate this discussion we restrict
attention to the two-dimensional Egg-Holder function.

Figure 3.5 plots the reliability and efficiency of both BH and BH-S as σ varies between 0 and 300
(recall that the domain D = [−512, 512]2; also, we set K = 25 for BH-S). Clearly, for both algorithms σ

should not be very small (≤ 10). In that case the random walk step W is likely to land in the same basin
as the current point Xn, so that the local optimisation step maps the perturbation back to Xn and the
algorithms do not advance.

We note first from Figure 3.5 that both the reliability and efficiency of the BH algorithm increase
approximately linearly within this range as σ increases. As discussed in Section 3.3, this reflects the fact
that as σ increases, direct transitions between the four groups of deepest basins become more likely. In
contrast, and again confirming the discussion in Section 3.3, both the efficiency and reliability of BH-S
appear to be rather robust to the choice of σ.

Figure 3.6 illustrates the impact on reliability and efficiency of the choice of halting index K. From
Algorithm 2, the maximum linear distance covered by the skipping procedure is

∑K
k=1 Rk, where each Rk
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(a) Percentage of trials which successfully reported
the correct global minimum

(b) Total number of trials which successfully reported
the correct global minimum.

(c) Total perturbation steps conducted during the
300s time budget.

Fig. 3.5: Comparison of individually tuned BH-S and BH performances on the Egg-holder function. Set-
up: CPU time budget of 300 seconds; stopping criteria: 50 perturbations; the halting index for skipping
perturbation is set to K = 25 for all simulations.

(a) Percent of samples in desired basin: ρs (b) Total trials in desired basin: ϵs

Fig. 3.6: Performance and efficiency results for the BH-S applied to the Egg-holder function for various
combinations of K and σ. A CPU time budget of 300s was applied to all simulations.

is distributed as the radial part of a centred Gaussian with standard deviation σ. This suggests that K

should not be too small, and the plot of efficiency in Figure 3.6b indicates that K should be at least 5 in
our example (by default we take K = 25).

It is seen that provided (K ≤ 5), increasing K tends to increase reliability while decreasing efficiency.
This reflects the fact that larger K allows the skipping procedure to travel further, thus increasing the
likelihood of a direct transition to the global minimum basin, after which the BH-S algorithm would stop
due to its monotonicity. In this way, greater K increases reliability. On the other hand, greater K increases
the length of unsuccessful skipping trajectories. That is, each time the perturbed state Yn of Algorithm 2
is not accepted (after the local minimisation step of Algorithm 1), the landscape is evaluated up to K
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times without advancing the optimisation. This implies that increased K also typically leads to decreased
efficiency.

The tuning considerations discussed above for the BH-S algorithm can be summed up as follows. It
should first be checked that σ is large enough that the initial perturbation regularly falls outside the
basin of the current state Xn. Having selected σ, K should then be taken large enough that the skipping
procedure regularly enters the sublevel set Cn. A practical suggestion here is to choose K so that Kσ

exceeds the diameter of the domain D.

(a) Percent of samples in desired basin: ρ (b) Total trials in desired basin: ϵ

Fig. 3.7: Performance of the BH-S algorithm on the Schwefel-07 function for different combinations of
domain dimension d and perturbation variance σ. Note: the halting index was set to K = 50 with a CPU
time budget of 300s for all simulations.

Figure 3.7 confirms these guidelines in higher dimensions, by plotting the BH-S reliability and efficiency
in dimensions up to 10 as σ varies with the fixed choice K = 50. It confirms that these performance metrics
are relatively robust to the value of σ, provided that σ is sufficiently large.

3.8 Alternating BH-S and BH

In this section we explore a hybrid approach which is intended to overcome the challenges identified in
Section 3.4 for the monotonic BH-S algorithm by regularly including non-monotonic BH steps. Figure 3.8
plots the reliability and efficiency metrics for this hybrid algorithm on various landscapes, as the ratio
between BH-S and BH steps varies.

(a) (b)

Fig. 3.8: Performance of the hybrid algorithm with varying proportions of BH to BH-S steps.

It can be seen that for the Mishra-03 and Whitley functions of Section 3.4, this hybrid improves both
reliability and efficiency compared to BH-S. Indeed, the performance of a 1:1 ratio of BH and BH-S steps
is comparable to that of BH for these landscapes. Further, on the landscapes of Section 3.3, this 1:1 ratio
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achieves performance superior to that of BH and somewhat comparable to that of BH-S. Thus if little is
known about the problem’s energy landscape a priori, these results indicate that the 1:1 hybrid is to be
preferred.

4 Discussion and future work

Basin hopping with skipping (BH-S) is a global optimisation algorithm inspired by both the basin hopping
algorithm and the skipping sampler, an MCMC algorithm. As such, the MCMC literature also suggests
potential extensions of this work. In adaptive MCMC parameter tuning is an online procedure driven by
the progress of the chain [2]. A similar idea has been proposed for BH in [7] and is part of the of the SciPy
implementation of the BH method. We believe it could be interesting as future work to devise an adaptive
scheme for the halting index K and the standard deviation σ, possibly reducing in this way the amount of
tuning required to implement BH-S.

During the preparation of this paper we also explored the idea of sampling several directions and
skipping in all of them simultaneously. As a negative finding, we report that preliminary results were
clear that computational effort is best spent searching over a single, rather than multiple, directions. Our
heuristic explanation is that the line is the shortest route between two sets, and so is the most efficient
way to cover distance. An alternative, more sophisticated approach would be to introduce multiple BH-S
particles which explore the energy landscape in a coordinated way. This could for instance be inspired
by selection-resampling procedures as in sequential Monte Carlo sampling [18], or by an optimisation
procedure such as particle swarm optimisation [11].
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Appendix

Table 5.1 records the results for all landscapes in Figure 3.1. For each landscape, both BH and BH-S were
hand tuned in order to maximise their efficiency as defined in Section 3.1. The following notation is used:

– ρc and ρs are the reliability of BH and BH-S respectively;
– ϵc and ϵs are the efficiency of BH and BH-S respectively;
– υ1 is the expected mean jump distance among random walk steps;
– υs is the expected mean jump distance among skipping transitions, i.e., when k > 1;
– Ps is the probability that, conditional on the BH-S perturbation being accepted, skipping had occurred

(k > 1);
– ν1 and νs are the expected mean jump distances among random walk steps (k = 1) and skipping steps

(k > 1), respectively.

Table 5.1: Performance metrics for the BH and BH-S algorithms on all landscapes in Figure 3.1.

BH BH-S

Function σ ρc ϵc ν1 σ K ρs ϵs ν1 νs Ps

Carrom Table

2 99.8 556 1.5
√
2 10 100 925 2.9 9.4 86.8

Cross in Tray

2 96.5 446 1.7
√
2 10 100 676 2.7 9.3 85.1

Cross Leg Table

0.4 15.5 48 0.8
√
2 10 12.7 45 1.8 6.6 45.7

Damavandi

0.1 0.2 3 0.5 0.3 150 32.9 28 N/A 34.9 100

Eggcrate

1 99.7 377 1 1 10 99.7 647 1.9 7.6 94.8

Egg-holder

100 2.2 13 12.5 10 25 38.7 116 7.1 178.1 98.6
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BH BH-S

Function σ ρc ϵc ν1 σ K ρs ϵs ν1 νs Ps

El Attar Vidyasagar Dutta
EAVD

8 99.6 231 3.2 5 10 63.4 393 4.8 5.8 39.3

Freudenstein-Roth

2 82.6 176 1.6
√
2 10 97.2 551 4.9 11.3 99.5

Holder Table

2 99.8 453 1.4
√
2 10 100 695 2.4 9.1 82.4

Keane

2 47 272 1.8 0.9 25 53.6 301 1.6 12.4 96.6

Mishra-03

2 65.9 56 1.8
√
2 10 5.4 17 1.6 12.1 96.7

Modified Rosenbrock

0.4 5.3 1 0.8 0.4 25 83.8 31 N/A 7.7 100

Price 02

2 44.4 234 1.8 0.9 25 60.6 208 N/A 17.1 100

Rana

200 5.5 13 17.6 5 75 20.5 18 1.8 224.5 98.5

Rosenbrock

0.2 99.3 149 0.6 2 10 100 695 N/A N/A 0
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BH BH-S

Function σ ρc ϵc ν1 σ K ρs ϵs ν1 νs Ps

Schwefel-07

10 4.1 38 4 7 25 61.9 275 N/A 181.6 100

Styblinski Tang

1 99.6 537 1.2 1 10 100 840 N/A 8.7 99.8

Whitley

0.4 86.4 121 0.7 0.7 50 31.8 21 0.6 17 37.7

Zirilli

0.2 99.9 707 0.6
√
2 10 97.9 987 1.9 5.3 49.4
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