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A First-Order Gradient Approach for the
Connectivity Optimization of Markov Chains

Christian P.C. Franssen, Alessandro Zocca, and Bernd F. Heidergott

Abstract—Graphs are commonly used to model various com-
plex systems, including social networks, power grids, transporta-
tion networks, and biological systems. In many applications, the
connectivity of these networks can be expressed through the
Mean First Passage Times (MFPTs) of a Markov chain modeling
a random walker on the graph. In this paper, we generalize the
network metrics based on Markov chains’ MFPTs and extend
them to networks affected by uncertainty, in which edges may
fail and hence not be present according to a pre-determined
stochastic model. To find optimally connected Markov chains,
we present a parameterization-free method for optimizing the
MFPTs of the Markov chain. More specifically, we present an
efficient Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm in the context of Markov chain optimization.
The proposed algorithm is suitable for both fixed and random
networks. Using various numerical experiments, we demonstrate
scalability compared to established benchmarks. Importantly,
our algorithm finds an optimal solution without requiring prior
knowledge of edge failure probabilities, allowing for an online
optimization approach.

Index Terms—Network analysis and Control, Markov pro-
cesses, Optimization, Simultaneous Perturbation Stochastic Ap-
proximation, Optimization algorithms.

I. INTRODUCTION

GRAPHS are widely used to describe complex systems,
such as social networks, power grids, transportation

networks, and biological systems. In many applications, it
is often useful to study the dynamical properties of these
networked systems by analyzing the behavior of random walks
on them. Such a random walk can be specified as a Markov
chain by explicitly giving all transition probabilities between
each pair of nodes. Mean first passage times (MFPTs) charac-
terize the connectivity properties of the given network, as they
describe the expected time for the random walker starting at
a given node to reach another specific node for the first time,
for a review, see [1], [2]. MFPTs are studied in various fields
where phenomena can be modeled with Markovian dynamics,
for instance, in biology [3] or chemistry [4], [5].

In this paper, we focus on analyzing and minimizing mean
first passage times (MFPTs) in Markov chains. MFPTs serve
as building blocks for several important metrics of network
connectivity and robustness. Examples include the effective
graph resistance or Kirchhoff index [6], [7], the DW-Kirchhoff
index [8], and the Kemeny constant [9], all of which can be
expressed as weighted combinations of MFPTs.

C.P.C. Franssen and B.F. Heidergott are with the Department of Operations
Analytics, VU Amsterdam, 1081 HV, Amsterdam, The Netherlands (email:
c.p.c.franssen@vu.nl, b.f.heidergott@vu.nl).

A. Zocca is with the Department of Mathematics, VU Amsterdam, 1081
HV, Amsterdam, The Netherlands (email: a.zocca@vu.nl).

A central theme in the literature is how to optimally
design or modify edge weights to improve such metrics; see,
e.g., [10], [11]. In this context, optimizing edge weights can
be equivalently interpreted as designing an optimal exploration
policy over the graph. Indeed, since edge weights define the
transition probabilities of the associated random walk, they
implicitly determine how the graph is traversed. From this
perspective, the problem becomes one of policy optimization,
where the goal is to identify the Markov chain that minimizes
a specified MFPT-based performance criterion.

The resulting problem is generally non-convex, but restrict-
ing the set of solutions to reversible Markov chains can turn the
problem into a convex one. For example, the minimization of
the Kemeny constant can be made convex by constraining the
stationary distribution of the Markov chain and consequently
can be solved using semi-definite programming [11], [12].
However, the restriction to reversibility has a severe impact on
the achievable objective value (see [12] for an example), which
motivates our research into a gradient-based optimization
method that does not rely on convexity and thus allows one
to drop the reversibility condition on the network.

In the present paper, we deviate from the standard ap-
proaches in the literature by formulating and solving more
general and possibly non-convex optimization problems for
network connectivity. In particular, we allow for more general
MFPT-based objective functions. Moreover, we extend the
existing literature by considering settings in which network
edges can fail with some (possibly correlated) probability.
For instance, this can be of particular interest when modeling
power grids where transmission lines may fail due to climatic
disasters (wildfires, floods, storms, etc.). Therefore, in the rest
of the paper, we distinguish between the fixed support case, in
which the set of edges of the network is fixed, and the random
support case, where there is uncertainty in the support of the
graph, i.e., edges fail stochastically.

Our main contributions are as follows:
• We generalize the existing metrics for network con-

nectivity based on MFPTs, accommodating both linear
combinations and general (smooth) functions. Moreover,
we introduce a broader class of network optimization
problems with the new generalized connectivity metric as
an objective function. We consider both the fixed support
case and the non-trivial random support case.

• If the considered graph is Hamiltonian, we derive explicit
bounds for the sum of the MFPTs if we assume reversibil-
ity in Proposition III.2, and we show that we can obtain
a strictly better solution by relaxing the reversibility
assumption.

ar
X

iv
:2

40
3.

11
74

4v
3 

 [
m

at
h.

O
C

] 
 9

 M
ay

 2
02

5



2

• We modify the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm [13], [26] specifically for
the context of Markov chain optimization to solve possi-
bly non-convex policy optimization problems, both in the
fixed support setting (see Theorem IV.3), as well as in the
random support setting (see Theorem V.2). A key feature
of our approach is a tailored perturbation and projection
scheme that guarantees all iterates remain valid Markov
chains, thereby respecting the hard constraints intrinsic to
the problem of Markov chain optimization. Concurrently,
we allow for constraining the stationary distribution of
the Markov chain. We show that our method outperforms
a benchmark in terms of scalability and can seamlessly
integrate an online optimization approach. Our relatively
simple yet powerful extension of SPSA underscores the
versatility of first-order methods in studying network
connectivity.

• We demonstrate our approach in the context of surveil-
lance applications taken from [11]. Specifically, by re-
laxing the reversibility assumption, we can design much
more efficient stochastic surveillance algorithms for the
fastest detection of intruders and anomalies in networks,
both in the fixed support setting and in the random
support setting.

The paper is organized as follows. Section II introduces the
notation and some preliminaries. In Section III, we describe
the Markov chain optimization problem with the generalized
MFPT metric as objective in the fixed support setting and
provide conditions for its convexity. In the same section, for
some special graphs of interest, we also derive explicit bounds
for the so-called “price of reversibility”. We derive closed-
form expressions for the derivative of MFPTs with respect
to the parameters of the Markov chain in Section IV, and
leverage them to introduce an SPSA-type method for the
optimization of Markov chains. In Section V, we consider
the problem in the random support setting, explicitly list
sufficient conditions for convexity, and explain how to modify
our algorithm accordingly. In Section VI, we demonstrate
SPSA’s scalability and its handling of correlated edge presence
in the random support setting. We present an application of
SPSA in a surveillance context in Section VII. Using our
SPSA, we obtain a solution that, leveraging directionality
and irreversibility, strictly improves reversible solutions. We
conclude with a discussion of further research in Section VIII.

II. NOTATION AND PRELIMINARIES

We consider a finite, directed, and simple graph G = (V,E),
with set of nodes V = {1, . . . , N} and set of directed edges
E ⊂ V × V . We denote by Ei the set of edges leaving node
i, i.e., Ei = {ℓ ∈ E : ℓ = (i, j), j ∈ V }. Given G = (V,E),
we consider the vector x ∈ [0,∞)|E| whose elements are the
edge weights of G , that is, xℓ = x(i,j) is the weight of edge
ℓ = (i, j) ∈ E. We denote the vector of weights of the edges
leaving node i ∈ V by

x(i,·) =
(
x(i,j)

)
(i,j)∈Ei

, (1)

and, consequently, the vector x can be seen as the concatena-
tion of these vectors, i.e.,

x =
[
x(1,·) . . . x(N,·)

]
. (2)

Throughout the paper, we specifically consider weights that
induce a Markov chain on a graph G . More formally, let P =
P(G ) be the set of stochastic matrices associated with G , i.e.,
the collection of N × N matrices P such that Pij ≥ 0 if
(i, j) ∈ E and Pij = 0 otherwise. Then, for x ∈ [0,∞)|E|

and
∑

ℓ∈Ei
xℓ > 0, for all i ∈ V , we define the Markov chain

associated with x through

P (x) = P (x,G ) =
∑

ℓ=(i,j)∈E

xℓ∑
ℓ∈Ei

xℓ
eie

⊤
j ∈ P, (3)

where ei ∈ RN is the vector with a 1 in the ith position and
zeros elsewhere. For our analysis, we work with the following
constraint sets:

X pos =
{
x ∈ R|E| : xℓ ≥ 0, ∀ ℓ ∈ E

}
,

X (pos,ε) =
{
x ∈ R|E| : xℓ ≥ ε, ∀ ℓ ∈ E

}
,

for ε > 0 small, and

X eq =
{
x ∈ R|E| :

∑
ℓ∈Ei

xℓ = 1, ∀ i ∈ V
}
.

Let
X = X pos ∩ X eq, and Xε = X (pos,ε) ∩ X eq.

With this notation, (3) is a Markov chain for x ∈ X pos, if∑
ℓ∈Ei

xℓ > 0, for all i ∈ V . Note that the latter is implied for
x ∈ X eq. Therefore, it is natural to encode the normalization
in (3) into the set of feasible weights via X pos. Then, for
x ∈ X , (3) simplifies to

P (x) = P (x,G ) =
∑

ℓ=(i,j)∈E

xℓeie
⊤
j ∈ P. (4)

Throughout the paper, we will refer to a general stochastic ma-
trix associated with G as P if there is no explicit dependence
on x.

The Markov chain associated with a given stochastic matrix
P ∈ P(G ) describes a random walk on the graph G . More
formally, if Xn ∈ V denotes the node of the network at which
the random walker resides at time n ∈ N, we assume that for
every i, j ∈ V , the transition probabilities from node i to
node j only depend on the current node and are given by the
corresponding element of the matrix P , i.e.,

Pij = Prob(Xn+1 = j | Xn = i)

= Prob(Xn+1 = j | Xn = i, . . . ,X0).

Then, {Xn}n∈N is a (homogeneous) Markov chain with node
transition matrix P .

Throughout the paper, we assume that G is strongly con-
nected. This assumption implies that any P (x) is irreducible
whenever x ∈ Xε. In an irreducible Markov chain, all nodes
in the graph “communicate”, i.e., for all (i, j) ∈ V ×V , there
exists an index k ∈ N, such that P k

ij > 0. An irreducible P (x)
has a unique stationary distribution π = π(P (x)), for which
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π ≥ 0,
∑N

i=1 πi = 1, and πP (x) = π (where following the
standard convention, we treat π as a row vector). We denote

X π̂ = {x ∈ X : π(P (x)) = π̂}, and X π̂
ε = X π̂ ∩ Xε,

as sets inducing Markov chains P π̂ = {P ∈ P : π(P ) = π̂}
with fixed stationary distribution π̂ via (4).

The value πj of the stationary distribution of P can be
interpreted as the long-run fraction of visits to node j by
the random walker. In particular, if P is irreducible (but not
necessarily aperiodic), it a.s. holds that

Πij = lim
n→∞

1

n

n∑
m=1

Prob(Xm = j | X0 = i)

= lim
n→∞

1

n

n∑
m=1

(Pm)ij = lim
n→∞

1

n

n∑
m=1

1(Xm = j),

where 1(·) being the indicator function. The matrix

Π = (Πij)i,j∈V

is called the ergodic projector of P . In fact, the limits Πij are
independent of the initial node i (i.e., πj = Πij , for all j ∈ V )
so that Π has equal rows, all equal to the unique stationary
distribution π = (πj : j ∈ V ) of P .

For a Markov chain P , let M ∈ RN×N
≥0 be the matrix of

the mean first passage times, where for every i, j ∈ V

Mij = E [min{n ≥ 1 | Xn = j,X0 = i}]

denotes the mean number of steps it takes a random walker to
go from i to j. From the irreducibility of P and the finiteness
of the set of nodes V , it follows that Mij < ∞ for every
i, j ∈ V . The entries of M can be interpreted as “distances”
or “connectivity metrics” between nodes: if Mij < Mik, then
node j is reachable from node i on average in fewer steps than
node k. The deviation matrix of P is defined as

D = (I − P +Π)−1 −Π. (5)

Given Π and D, the mean first passage time matrix M can be
obtained using the following closed-form expression [9], [21]:

M = (I −D + 1̄1̄⊤dg(D)) · dg(Π)−1, (6)

where 1̄ is an appropriately sized vector of ones and dg(·)
denotes the diagonal matrix formed by placing the elements
of the argument matrix on the diagonal.

A Markov chain P is reversible if it satisfies the following
condition
(R) P satisfies the detailed balance equations

πi(P )Pij = πj(P )Pji, ∀ i, j ∈ V,

see [14]. In the following, we let Prev = {P ∈ P :
πi(P )Pij = πj(P )Pji, ∀ i, j ∈ V } denote the set of reversible
Markov chains. In Lemma II.1, we will show that P (x) via
(3) is a surjective map from

X (sym,1) = X sym ∩

x ∈ X pos :
∑

(i,j)∈E

x(i,j) = 1

 ,

where X sym =
{
x ∈ X pos : x(i,j) = x(j,i), ∀ (i, j) ∈ E

}
, to

Prev. Furthermore, P (x) becomes a bijection if we only
consider strongly connected graphs.

Lemma II.1. P (x) via (3) is a surjective mapping from
X (sym,1) to Prev. Furthermore, P (x) is a bijection when
X (sym,1) is restricted to induce strongly connected graphs.

Proof. See Appendix C.

A frequently used quantity to study network connectivity
is the effective graph resistance or Kirchhoff index. For a
graph (G , x), x ∈ X sym, the effective graph resistance
Rtot(x) is defined using the effective resistance matrix R(x) =
R(G , x) ∈ RN×N

≥0 as follows

Rtot(x) = Rtot(G , x) =
∑
i<j

Rij(x), (7)

where the effective resistance Rij(x) between node i and j
can be expressed in terms of the mean first passage matrix M
corresponding to the Markov chain P (x) as

Rij(x) =
1∑

ℓ∈E xℓ
(Mij +Mji) , (8)

where R(x) is symmetric by construction [10]. If the effective
graph resistance is small, then a random walker on the
corresponding graph quickly reaches any node from any other
node. Therefore, Rtot(x) is a measure of connectivity, with
lower values of Rtot(x) corresponding to higher connectivity.
The effective graph resistance is used as a proxy for robustness
in the design and control of power transmission networks
(see [15]): a low effective graph resistance indicates that all
nodes in the network are well connected so that, in the event
of transmission line failures, electricity can still efficiently
flow throughout the surviving network [16], [17]. This concept
extends naturally to communication networks [18], [19], and
air transportation networks [20].

III. MARKOV CHAIN CONNECTIVITY ON FIXED GRAPHS

Let us consider a generic metric of the connectivity of a
Markov chain P expressed as the (weighted) sum of MFPT’s,
defined as

S(P,C) =
∑
i,j

Cij(P )Mij , (9)

where C(P ) ∈ RN×N
≥0 is a matrix of non-negative weights

Cij(P ) ≥ 0 that may depend on the Markov chain P itself.
One may choose these weights such that Cij(P ) > Ckl(P ) to
express the fact that the decision-maker values the connectivity
of i to j more than the connectivity from k to l. In this
way, it becomes possible to focus the network optimization
problem around a subset of nodes or specific clusters of the
given network. A standard choice for C(P ) is

Cπ
ij(P ) = πi(P )πj(P ), (10)

which yields the Kemeny constant K = S(P,Cπ). The
Kemeny constant is a measure of the strength of connectivity
of a Markov chain and is frequently used in graph analysis
(e.g., see [11], [21], [22]).
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Another canonical choice is to take C(P ) as the scalar
matrix C 1̄ = 1̄1̄⊤ − I . If

∑
ℓ∈E xℓ = 1, we recover the DW-

Kirchhoff (directed & weighted) index introduced by [8] as a
generalization of the effective graph resistance (7).

In this paper, our goal is to find optimally connected Markov
chains by minimizing S(P,C). From now on, we will treat
C as a scalar matrix; however, it is important to note that our
optimization techniques also apply to cases where C varies
with P (as long as C(P ) is three times differentiable), for
example, when optimizing the graph’s Kemeny constant.

A. Optimizing Markov chain connectivity

Let us formulate the problem of designing an optimally
connected Markov chain P ∈ P on a graph G as

min
P∈P

S(P,C). (11)

We also consider the variant of the optimization problem (11)
with an additional constraint specifying a target stationary
distribution π̂ ∈ (0, 1)N for P , that is,

min
P∈Pπ̂

S(P,C). (12)

This version of the problem is studied in [11] in the context of
finding a stochastic surveillance policy P for network surveil-
lance, where the policy is designed to visit nodes in proportion
to the anticipated probability of intruder appearances at each
node, represented by π̂.

If P is reversible and C = C π̂ = (π̂iπ̂j)i,j∈V , for fixed
stationary distribution π̂, problem (12) has been shown to be
convex [11]. Note that dropping the π(P ) = π̂ constraint
causes the problem to become non-convex, since the set of
reversible Markov chains is not convex due to the presence
of non-linearity in condition (R). However, in the following
theorem, we show how optimization via X (sym,1) preserves
convexity when generalizing (12) to (11), thus relaxing the
π(P ) = π̂ constraint while also allowing for any non-negative
and symmetric C.

Theorem III.1. Let C ∈ RN×N
≥0 be symmetric. Consider the

optimization problem

min
x∈X (sym,1)

S(P (x), C). (13)

Then, the reversibility condition (R) is satisfied for P (x) via
(3) for all strongly connected (G , x) and the problem in (13)
is convex. Moreover, if C is a matrix with identical entries
Cij = c > 0, then (13) is a strictly convex problem.

Proof. As argued earlier, we can model all P that satisfy
condition (R) using X (sym,1), which is clearly convex in view
of its linear constraints. To show the convexity of S(P (x), C),
we use the convexity of all pairwise resistance distances
Rij(x) in any undirected weighted graph (G , x) shown in [10].
It follows that for any symmetric matrix C ∈ RN×N

≥0 we can
rewrite

S(P (x), C) =
∑
i<j

Cij(Mij +Mji) =
∑
i<j

CijRij(x).

Thus, being the sum of convex functions, S(P (x), C) is
convex.

To show strict convexity, assuming C with identical entries
c > 0, we use the fact that the effective graph resistance
Rtot(x) =

∑
i<j Rij(x) is strictly convex [10]. Indeed, we

can simply rewrite

S(P (x), C) =
∑
i<j

cRij(x) = c
∑
i<j

Rij(x),

and strict convexity follows when c > 0.

Remark III.1. We do not need to explicitly model the con-
straint that (G , x) is strongly connected in Theorem III.1,
since any graph, where Cij > 0 and i and j are in separate
components, has S(P (x), C) = ∞ (due to Mij = ∞).

Note that in the more general case where the matrix C is
symmetric but contains non-identical entries, problem (13) is
only convex but not necessarily strictly convex. Moreover, the
findings in Theorem III.1 carry over to problem (12) since
enforcing a fixed stationary distribution π(P ) = π̂ eliminates
the non-linearity in (R), and so P π̂ is convex.

Condition (R) makes the optimization problem (11) convex,
but adding it also dramatically restricts the set of possible so-
lutions. In the next subsection, we show the negative impact of
the reversibility condition on the optimal solution for S(P,C),
providing a strong rationale for addressing the problem without
assuming reversibility:

min
x∈X

S(P (x), C), (14)

where P (x) via (4), and the analogous problem for (12):

min
x∈X π̂

S(P (x), C). (15)

Note that these problem classes can be extended to cases
where C depends on P , as is the case, for instance, in the
minimization of the Kemeny constant, see (10).

B. The price of reversibility

In the following, we consider a specific case that allows for
comparing analytical reversible and non-reversible solutions to
(11). To that end, consider a directed graph G that is Hamil-
tonian, which means that G admits a path, called Hamiltonian
cycle, that starts and ends at the same node, visiting all other
nodes in the graph exactly once. The following theorem states
that if G is a Hamiltonian graph and if we assume unit weights
C = C 1̄ for the mean first passage times in (9), then the
optimal solution of (11) yields a Hamiltonian cycle on G .

Proposition III.1. Let G = (V,E) be a directed Hamiltonian
graph. Then, the Markov chain

P̂ = argmin
P∈P

S(P,C 1̄), (16)

corresponds to a Hamiltonian cycle on G , that is, P̂ is
irreducible, and each row has one entry equal to 1 and all
other entries equal to 0. Furthermore, its optimal value equals

S(P̂ , C 1̄) =
N3 −N2

2
. (17)

Proof. The proof straightforwardly follows from [43, Theorem
2], see Appendix D.
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If the graph G admits a Hamiltonian cycle and we assume
reversibility, the following lower and upper bounds hold for
the optimal Markov chain P̂ .

Proposition III.2. Let G = (V,E) be a directed Hamiltonian
graph with N ≥ 3 nodes. Consider the optimization prob-
lem (16) with P satisfying (R) as an additional constraint;

P̌ = argmin
P∈Prev

S(P,C 1̄) (18)

Then, the following inequality holds for its optimal value:

N3 − 2N2 +N ≤ S(P̌ , C 1̄) ≤ N4 −N2

6
. (19)

Proof. See Appendix E.

Inspecting propositions III.1 and III.2, we conclude that one
always obtains strictly worse solutions by assuming reversibil-
ity, since N3−N2

2 < N3 − 2N2 +N for any N ≥ 3.

C. Illustration of the price of reversibility

We demonstrate the price of reversibility in the case of a
directed version of the Petersen graph, see Fig. 1. Here, the
edges with missing arrows can be traversed in both directions.
For this instance, the optimal non-reversible Markov chain,
see (16), is visualized in Fig. 2.
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Fig. 1. Directed Petersen Graph, N = 10.
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Fig. 2. Global optimal non-reversible solution P̂ , which yields an optimal
value of S(P̂ , C 1̄) = 450.

This graph allows for multiple tours, so the global minimum
is not unique. For sake of comparison, we show the optimal

reversible Markov chain as in (18), after having excluded the
one-directional edges of the graph, see Fig. 3, since these
edges cannot be used in a reversible P .
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Fig. 3. Global optimal reversible solution P̌ , which yields an optimal value
of S(P̌ , C 1̄) = 1529.

IV. FIRST-ORDER DERIVATIVES AND APPROXIMATIONS

Simultaneous Perturbation Stochastic Approximation
(SPSA) is a gradient-based optimization technique that is
particularly effective in scenarios involving complex, noisy,
and high-dimensional problem spaces. The key ingredient
of SPSA is that the gradient of the objective function is
approximated by using only two measurements, regardless
of the dimensionality of the parameter space. Thus, SPSA
significantly reduces the computational burden compared
to traditional finite-difference methods [13], [23]. Working
towards our final SPSA-based algorithm, we first provide
analytical expressions for the derivatives of Markov chains.
Subsequently, we show how to extend SPSA to approximate
these derivatives.

Consider the generic optimization problem

min
x∈Rd

J(x),

where the function J is assumed to be three times continuously
differentiable with respect to x. The SPSA gradient proxy of
J in x [13] is obtained as follows:

G(x) = G(x,∆, η) =
J(x+ η∆)− J(x− η∆)

2η
∆, (20)

where ∆ ∼ Radd is a perturbation vector with entries inde-
pendently and uniformly distributed over {−1, 1}. We can find
a stationary point of J using the following basic stochastic
approximation recursion initiated at some initial point x(0),

x(k + 1) = x(k)− α(k)Gk(x(k)), (21)

for k ∈ N, with step size sequence {α(k)}k∈N and gradient
proxy Gk(x(k)) = G(x(k),∆(k), η(k)) depending on se-
quences {∆(k)}k∈N, and {η(k)}k∈N. The algorithm converges
strongly to a point x for which ∇J(x) = 0 if appropriate
sequences {α(k)}k∈N, {∆(k)}k∈N, and {η(k)}k∈N are used
(for a convergence result, see [13]).

As we show in Appendix A, standard SPSA is not applica-
ble for solving problem (14), since the constraints imposing
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X are hard constraints and therefore cannot be violated.
Therefore, we adapt the generic SPSA algorithm in (21)
to operate within the constraint set X . First, we derive in
Section IV-A an analytical expression for the steepest feasible
descent on X eq. Then, in Section IV-B, we introduce a version
of SPSA that estimates this descent direction, ensuring that
x± η∆ ∈ X eq. Subsequently, Section IV-C presents an SPSA
variant following [26], designed to maintain feasibility of the
perturbed values x ± η∆ with respect to X pos across all
iterates of x. To ensure this, we require that each iterate x
is projected back onto the restricted set X (pos,ε), so that the
resulting perturbations remain within X pos. Combining these
two components yields an SPSA algorithm that guarantees
x± η∆ is feasible for any x ∈ Xε; see Section IV-D. Hence,
SPSA effectively solves problem (14) over Xε. Lastly, we
discuss how to apply SPSA to the extended problem (15) in
Section IV-E, where a similar approach is used to optimize
over X π̂

ε .

A. Analytical derivatives
1) Directional derivatives: Denote the set of all feasible

directions leaving x ∈ Xε with respect to the set X as

D(x;X ) = {δ ∈ R|E| : ∥δ∥2 ≤ 1 ∧ ∃η : x+ ηδ ∈ X}.

Then, we can define the directional derivative for a contin-
uously differentiable function J(x) in the feasible direction
δ ∈ D(x;X ) as

∂δJ(x) = lim
η→0

J(x+ ηδ)− J(x)

η
.

In Theorem IV.1, we provide analytical directional derivatives
for Π, D, and M .

Theorem IV.1. Let x ∈ Xε such that P (x) ∈ P and take
δ ∈ D(x,X ). The directional derivative of Π with respect to
δ is given by

∂δΠ = ΠP ′D,

and that of D by

∂δD = −ΠD +DP ′D,

where we use the abbreviation P ′ = ∂δP (x). Moreover, for
M = M(P (x)) the following identity holds

∂δM =
(
−D′ + 1̄1̄⊤dg(D′)

)
· dg(Π)−1

+
(
I −D + 1̄1̄⊤dg(D)

)
·
(
−dg(Π)−1dg(Π′)dg(Π)−1

)
,

with Π′ = ∂δΠ and D′ = ∂δD.

Proof. The differentiation of π with respect to P reduces
the problem to the well-studied problem of differentiation of
parameterized Markov chains. The explicit solution follows,
e.g., from [24], where it is also shown that π is analytic in
the entries of P . For the differentiability of D, we refer to
[25], while that of M follows from (6) using the fact that
(A−1)′ = −A−1A′A−1.

Following Theorem IV.1, we can explicitly solve for direc-
tional derivatives of S(P (x), C) in direction δ ∈ D(x;X ):

∂δS(P (x), C) =
∑
i,j

Cij(∂δM)ij .

2) Steepest descent direction: We will now show how
to analytically find the steepest feasible direction δ(x) ∈
D (x;X ) provided x ∈ Xε and for ε > 0 small, that is, for
J(x) = S(P (x), C) we solve

δ(x) = argmin
δ∈D(x;X )

∂δJ(x), (22)

For any x ∈ Xε, x is strictly feasible with respect to non-
negativity constraints of X , i.e., x > 0. Therefore, a feasible
direction δ ∈ D(x;X ) preserves that P (x + ηδ) ∈ P , for
η sufficiently small. We can derive the necessary conditions
for δ by writing the equality constraints in X as a system of
equations Ax = b, where

AN×|E| =

1̄
⊤
|E1|

. . .
1̄⊤|EN |

 , and b = 1̄. (23)

It follows that for any feasible direction δ ∈ D(x;X ) it must
hold that A[x+ δ] = b which implies Aδ = 0. Consequently,
all feasible δ ∈ D(x;X ) are in the null space of A.

Let B =
[
v1 . . . v|E|−r

]
form an orthonormal basis for

the null space of matrix A, where r is the rank of matrix A. In
the specific case for finding δ(x), c.f. (22), A has N linearly
independent rows and thus r = N . To find B, we perform the
singular value decomposition

A = UΣV ⊤,

where U ∈ RN×N is a real orthogonal matrix, Σ a diagonal
matrix with singular values of A on its diagonal in descending
order and V ⊤ ∈ R|E|×|E| also is a real orthogonal matrix.
Then, B corresponds to the last |E| − r columns of V .

Having obtained orthonormal basis B, we can compute
directional derivatives ∂viJ(x) for each basis vector vi, i =
1, . . . , |E| − r in order to find the steepest feasible descent
direction like the gradient but within the subspace spanned by
the null space of A:

δ′(x) = −
|E|−r∑
i=1

∂viJ(x) · vi = −B

 ∂v1J(x)
...

∂v|E|−r
J(x)

 , (24)

for all x ∈ Xε and normalizing the direction to unit length
yields δ(x) = δ′(x)/∥δ′(x)∥2.

B. SPSA via steepest feasible descent on X eq

Let us consider the following proxy of the steepest feasible
descent direction for a function J(x) in x ∈ X eq:

δ̃(x) = δ̃(x,∆, η) (25)

=
J(x− ηB∆)− J(x+ ηB∆)

2η
B∆,

where B =
[
v1 . . . v|E|−r

]
, such that Col(B) = N (A),

where A as in (23), and perturbation vector ∆ ∈ R|E|−r.
Note that in the unconstrained case, A is the null matrix and,
consequently, B = I so that we retrieve the expression in (20).

Consider the following assumptions:
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(A0) J(x) is three times continuously differentiable with
respect to x on X eq;

(A1) ∆ ∼ {−1, 1}|E|−r.
The following theorem shows that, if these latter assumptions
hold, then δ̃(x) is an estimate of the steepest feasible descent
direction δ′(x).

Theorem IV.2. Let δ̃(x) as in (25). Moreover, let us satisfy
(A0) and (A1). Then, it holds that

E∆

[
δ̃(x)

]
= δ′(x) +O(η2). (26)

Proof. See Appendix F.

Note that the estimation in Theorem IV.2 simply ignores
the norm constraint ∥δ(x)∥2 ≤ 1 in (22) by considering δ′(x)
instead of δ(x).

C. Keeping SPSA on X pos

In the previous subsection, we have shown how the equality
constraint can be incorporated via a base transformation and
a steepest feasible descent direction staying on X eq can be
found. In the following, we illustrate how to adjust SPSA so
that x + η∆ ∈ X pos. For this, we adapt Algorithm (21) as
follows

x(k + 1) = ProjX (pos,ε) [x(k)− α(k)Gk (x(k))] , (27)

for k ∈ N, where ProjZ(x) is the projection of x to point
closest in the closed convex set Z in the L2-norm (viz.,
the element-wise projection ProjX (pos,ε)(x) = max(ε, x)), and
perturbation scalar {η(k)}k∈N in Gk (x(k)) sufficiently small.
The latter can be ensured by setting η(k) ≤ ε, for all k ∈ N,
as this ensures feasibility of perturbations in Gk (x(k)), for
any ∆ ∼ {−1, 1}; see (20). Effectively, the algorithm is
applied on an interior set X (pos,ε) ⊂ X pos, for some ε small.
This approach can be extended for more generic constraints
using numerical projections based on sequential quadratic
programming [23].

As shown by [26], one could apply a constrained SPSA
on the original set X pos. To that end, introduce {ε(k)} → 0
for k → ∞, so that X (pos,ε(k)) → X pos, for k → ∞. Then,
Algorithm (21) can be adapted as follows

x(k + 1) = ProjXpos [x(k)− α(k)Gk (ProjX (pos,ε(k)) [x(k)])] ,

for k ∈ N, and is shown to converge a.s. [26].

D. The overall SPSA algorithm

By integrating the approaches from Sections IV-B and IV-C,
we obtain the following SPSA algorithm:

x(k + 1) = ProjXε

[
x(k) + α(k)δ̃k(x(k))

]
, (28)

for k ∈ N, and δ̃k(x(k)) = δ̃(x(k),∆(k), η(k)), for J(x) =
S(P (x), C). We simply assign ε > 0 an arbitrarily small
value. Furthermore, note that the operator ProjXε

[·] can be
easily implemented using the projection on a (scaled) simplex
for each x(i,·), for all i ∈ V , as in [27].

To state the convergence result for (28), the following addi-
tional assumptions for the sequences {∆(k)}k∈N, {α(k)}k∈N,
and {η(k)}k∈N are sufficient:
(A2) ∆(k) ∼ {−1, 1}|E|−r is uniformly distributed for all k,

{α(k)} = {α/(α0 + k + 1)γa}, and {η(k)} = {η/(k +
1)γη}, with α > 0, α0 ≥ 0, 1

2 < γα ≤ 1, and γη >
(1− γα)/2;

(A3) 0 < η < ε/
√

|E| − r, for ε > 0.
Note that (A2) extends the assumption on {∆(k)}k∈N in (A1)
to all iterations k ∈ N. Furthermore, (A3) ensures that for all
k ∈ N and each realization ∆, x(k)±ηB∆ > 0. Consequently,
P (x(k)± ηB∆) is an irreducible Markov chain and therefore
S(P (x(k)), C) is properly defined for all k ∈ N.

Theorem IV.3. If assumptions (A0), (A2) and (A3) are
satisfied, the algorithm in (28) converges almost surely to a
stationary point of S(P (x), C).

Proof. See Appendix G.

An alternative approach for solving (14) over Xε would be
to parameterize x(u) = A†b + Bu ≥ ε, u ∈ R|E|−r, where
A† = A⊤(AA⊤)−1 is the pseudo-inverse of A as in (23),
B is an orthonormal basis for the null space of A, and b is
an appropriately sized vector of ones. Then, one can solve it
using a constrained SPSA explained in Section IV-C:

minu∈R|E|−r S(P (x(u)), C)
s.t. x(u) ≥ ε.

(29)

Note that applying SPSA on this problem formulation pro-
vides an equivalent steepest feasible descent estimator as
in Theorem IV.2; however, to the best of our knowledge,
there does not exist an off-the-shelf method for projecting
on the constraint x(u) = A†b + Bu ≥ ε. One potential
approach is to numerically solve the projection on the polytope
{u ∈ R|E|−r : Bu ≥ ε − A†b}, but this tends to be
more computationally expensive compared to the well-studied
projection on the probability simplex for projecting on Xε.

E. Constraining the stationary distribution

Theorem IV.2 and Theorem IV.3 straightforwardly extend
to the stationary distribution constrained case. To that end, let
us find for feasible x ∈ X π̂

ε = Xε ∩ X π̂ ,

δ(x) = argmin
δ∈D(x;X π̂)

∂δS(P (x), C). (30)

Then, let [
Aπ̂ bπ̂

]
= rref

([
A1 1̄
A2 π̂

])
, (31)

where the operator rref (T ) takes the row-reduced echelon
form of a matrix T , A1 is equal to the matrix in (23) and
A2 =

[
(A2)1 . . . (A2)N

]
, such that

(A2)i = π̂i ·
[
ej
]
j:(i,j)∈Ei

, ∀ i ∈ V.

Using the row-reduced echelon form ensures that we omit
any linear dependencies induced by constraining the stationary
distribution. It follows that Aπ̂ ∈ Rrπ̂×|E| has rπ̂ linearly
independent rows and bπ̂ ∈ Rrπ̂ . Subsequently, we compute
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the orthonormal basis Bπ̂ for the null space of Aπ̂ and δ(x)
using (24) and normalizing after. Finally, the SPSA algorithm
becomes, for k ∈ N,

x(k + 1) = ProjX ˆ̂π
ε

[
x(k) + α(k)δ̃k(x(k))

]
, (32)

Unlike in the previous setting, there is no straightforward
closed-form projection on ProjX π̂

ε
[·]. However, we can use

Dykstra’s projection method of iteratively projecting on con-
vex sets, see [28], provided these projections can be carried
out quickly. To find ProjX π̂

ε
[x], let X π̂

ε = X 1 ∩X 2 ̸= ∅, with

X 1 =
{
x ∈ R|E| :

∑
ℓ∈Ei

xℓ = 1, ∀ i ∈ V, π̂P (x) = π̂
}
,

X 2 =
{
x ∈ R|E| : ε ≤ x ≤ 1− ε

}
.

One can project on X 1 using some linear algebra, see Ap-
pendix B. The projection on X 2 is straightforwardly done
through:

(ProjX 2 [x])ℓ =


1− ε if xℓ > 1− ε,

ε if xℓ < ε,

xℓ otherwise.

Then, it is known that Dykstra’s projection method (strongly)
converges to ProjX 1∩X 2 [x] = ProjXπ̂

ε
[x], as proved in [28].

Note that strong convergence does not imply convergence
in finitely many iterations (see [29] for a well-illustrated
example). For Dykstra’s projection method, the number of it-
erations required to compute ProjX 1∩X 2 [x] typically increases
with the distance between x and ProjX 1∩X 2 [x]. To ensure
convergence within a reasonable number of iterations, one
can bound the step size α(k)δ̃(x(k)) in (28) for each step k.
In all our numerical experiments, we saw a sufficiently rapid
convergence, mainly due to choosing a relatively small step
size α(k), see Sections VI and VII.

V. AN EXTENSION OF MARKOV CHAIN CONNECTIVITY TO
RANDOM GRAPHS

In certain scenarios, graph structures are limited by the
partial nature of our information. For instance, in transporta-
tion networks, the accessibility and availability of routes
can fluctuate unpredictably due to extreme weather events
[30], while power grids and communication networks exhibit
analogous uncertainty, where the presence and reliability of
the connection lines are subject to variability [31]–[33]. In
surveillance settings, the environment can be characterized
by its susceptibility to changes, for example, through the
potential obstruction of connections between various locations
within the monitored area, often resulting from the presence
of physical obstacles and impediments [34], [35].

A. Redistribution function

We now introduce a framework to analyze the connectivity
of a Markov chain on a graph whose vertex set is fixed, but
the edge set is random. We assume that only a subset of
risky edges Ẽ ⊂ E are affected by uncertainty. Any risky
edge (i, j) ∈ Ẽ fails (and therefore becomes inaccessible)

with probability qij ∈ [0, 1]. Furthermore, we assume that
G (V,E \ Ẽ) is strongly connected. If a risky edge (i, j)
fails, it means that the original probability mass Pij must be
redistributed over the remaining elements in the ith row of P .
Given a realization of accessible edges E ⊆ Ẽ, we calculate
the adjusted Markov chain Q(P, E) = (Qij(P, E))(i,j)∈V 2 ,
where

Qij(P, E) =

{
Pij

1−
∑

k:(i,k)∈Ẽ\E Pik
if (i, j) ∈ E ;

0 otherwise,
(33)

for which it holds that Q(P, E) = P if E = Ẽ. The expected
Markov chain connectivity of P is then defined as

EE [S(Q(P, E), C)] =

2|Ẽ|∑
i=1

Prob(Ei) · S(Q(P, Ei), C), (34)

where Ei ∈ 2Ẽ is a realization of the risky edges that
are accessible. In the specific case where edge failures are
independent, the probability of observing a specific edge set
E can be explicitly calculated as

Prob(E) =
∏

(i,j)∈Ẽ\E

qij ·
∏

(i,j)∈E

(1− qij). (35)

To find a Markov chain P with good connectivity properties
while being robust in the uncertainty of the graph, we solve

min
P∈P

EE [S(Q(P, E), C)] . (36)

Note that enforcing the constraint π(P ) = π̂, i.e.,

min
P∈Pπ̂

EE [S(Q(P, E), C)] , (37)

does not guarantee that the following constraint holds

EE [π(Q(P, E))] = π̂. (38)

As stated in the following theorem, we can obtain convexity
for problem (36) (and problem (37)) if we assume reversibility
of Q(P, E) together with the concurrent failure of reciprocal
edges, that is, if edge (i, j) ∈ Ẽ fails, then (j, i) ∈ Ẽ also
fails.

Theorem V.1. Let C ∈ RN×N
≥0 be symmetric. Consider the

stochastic optimization problem

min
x∈X (sym,1)

EE [S(Q(x, E), C)] , (39)

where Q(x, E) = Q(P (x), E). It follows that the reversibility
condition (R) is satisfied for P (x) via (3) for all strongly con-
nected (G , x) Moreover, let reciprocal edges fail concurrently.
Then, (39) is a convex problem. Additionally, if C is a matrix
with identical entries Cij = c > 0, (39) is strictly convex.

Proof. Assuming that the edges fail concurrently, we construct
a new Markov chain where the edge weight of a failed edge
is removed, see (33). Then, the optimization problem in (39)
reduces to

min
x∈X (sym,1)

2|E|∑
l=1

Prob(El) · S(Q(x, El), C). (40)
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First, the feasible region X (sym,1) is convex, being described
only by linear constraints. We now show that S(Q(x, E), C)
is a convex function in x, for all realizations E . Given the
symmetric failure of the edges, it follows that Q(x, E) remains
reversible for any E . Therefore, S(Q(x, E), C) is convex in x.

It remains to show that if C is a matrix with identical entries
Cij = c > 0, (40) is strictly convex. This holds because, in
this case, S(Q(x, E), C) is strictly convex in x for all E and
the sum of strictly convex functions is strictly convex.

Using a similar argument as in Remark III.1, strongly
connectedness in (40) is enforced via the objective function.

Considering the limitations of reversible solutions demon-
strated for the deterministic setting in Section III-B, we will
focus on exploring non-reversible solutions for (36) through

min
x∈X

EE [S(Q(x, E), C)] , (41)

where Q(x, E) = Q(P (x), E) with P (x) via (4), and for (37):

min
x∈X π̂

EE [S(Q(x, E), C)] . (42)

Similarly to Section IV, we solve these problems over Xε

and X π̂
ε , respectively, which ensures that the SPSA algorithm

remains applicable under the given constraints.

B. SPSA for Markov chains on random graphs

When solving the problem formulated in (36), an ideal sce-
nario involves having access to perfect information regarding
the probabilities of edge failure. However, this is not the case
in many practical applications where edge failure probabilities
must be inferred from the data. In these cases, obtaining an
exact analytical expression for EE [S(Q(P, E), C)] as in (34)
becomes a difficult task.

Furthermore, the complexity of real-world systems often
gives rise to intricate interdependencies between these failure
probabilities. For instance, geographically close transmission
power lines may have correlated failures due to extreme
weather events, thereby introducing an additional layer of
complexity into the modeling process [36]. Accurate esti-
mation of these correlations based on data is a notoriously
difficult task, making the evaluation of EE [S(Q(P, E), C)]
problematic.

We now show how SPSA is easily adapted to handle
the random support setting, that is, we solve the stochastic
optimization problem (41), where it is assumed that the
distribution of E is unknown.

Assume that the realizations of E = (E1, . . . , EL) are subse-
quently presented to the decision maker. In the following, we
derive an estimator for the steepest feasible descent direction

δE(x) = argmin
δ∈D(x;X )

∂δEE [S(Q(x, E), C)],

using graph realizations E . To that end, first, observe that

EE [S(Q(x, E), C)] = lim
L→∞

1

L

L∑
l=1

S(Q(x, El), C), (43)

and for any feasible direction δ ∈ D(x,X ),

∂δEE [S(Q(x, E), C)] = lim
L→∞

1

L

L∑
l=1

∂δS(Q(x, El), C),

which follows from the independence between observations
E , chosen δ, and the finiteness of the collection of possible
graph realizations. It then follows that

δ′E(x) = −
|E|−r∑
i=1

∂vi

[
lim

L→∞

1

L

L∑
l=1

S(Q(x, El), C)

]
· vi

= −
|E|−r∑
i=1

[
lim

L→∞

1

L

L∑
l=1

∂viS(Q(x, El), C)

]
· vi

= −
|E|−r∑
i=1

EE [∂viS(Q(x, E), C)] · vi, (44)

where vi are the orthonormal basis vectors in B =[
v1 . . . v|E|−r

]
obtained using the system of equations

Ax = b as in Section IV. Note that the constraint set Ax = b
is not affected by the realization E and, consequently, B
remains the same for all realizations of E . Finally, δE(x) =
δ′E(x)/

∑
ℓ∈E(δ

′
E(x))ℓ.

Given a finite number of graph realizations E , define

J̄(x) = J̄(x,E) = 1

L

L∑
l=1

S(Q(x, El), C), (45)

which is an unbiased estimator for EE [S(Q(x, E), C)] for any
L ∈ N. Now, let B =

[
v1 . . . v|E|−r

]
, such that Col(B) =

N (A), with A as in (23) and

δ̃E(x) = δ̃E(x,∆, η)

=
J̄(x− ηB∆)− J̄(x+ ηB∆)

2η
B∆, (46)

such that δ̃E(x) is an estimate of the steepest feasible descent
direction δ′E(x) in (44), see Theorem V.2.

Theorem V.2. Let δ̃E(x(k)), for some k, as in (46), where
J̄L(x; E) as in (45), and assume (A1) and (A3). Then, for any
L ∈ N, it holds that

E∆

[
EE

[
δ̃E(x)

]]
= δ′E(x) +O(η2). (47)

Proof. The proof is analogous to that of Theorem IV.2
using the fact that J̄L(x, E) is an unbiased estimator for
EE [S(Q(x, E), C)].

Theorem V.2 allows for so-called online optimization, where
graph realizations are presented on a streaming basis. In
this context, one can make an iteration k ∈ N, where
δ̃E,k(x(k)) = δ̃E(x(k),∆(k), η(k)) based on an observed
collection of realized edge sets E = (E1, . . . , EL). More
formally, our policy x(k) is updated via

x(k + 1) = ProjXε

[
x(k) + α(k)δ̃E,k(x(k))

]
, ∀ k ∈ N. (48)

The next theorem proves the convergence of this algorithm.
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Theorem V.3. If assumptions (A2) and (A3) are satisfied, then
the algorithm in (48) converges almost surely to a stationary
point of EE [S(Q(x, E), C)].

Proof. See Appendix H.

Note that enforcing the stationary distribution as in (37) can
be done similarly using the methods discussed in Section IV-E.

VI. NUMERICAL EXPERIMENTS

In this section, we demonstrate how we can numerically
minimize S(P (x), C) (or EE [S(Q(x, E), C)] in the random
support setting) on the feasible set X π̂

ε . For all experiments, we
choose ε = 10−4 and a single graph sample for our gradient
estimator, that is L = 1. Table I provides an overview of
the SPSA parameter settings. All numerical experiments were
performed on a laptop with a 1.8 GHz processor and 12 GB
RAM.

TABLE I
SPSA PARAMETERS FOR THE EXPERIMENTS OF THE NEXT SECTIONS.

Exp. sec. α α0 η γα γη
VI-A 0.01 100.000 10−8 0.602 0.200
VI-B 0.01 100.000 10−8 0.602 0.200
VII-1 1 500.000 10−8 0.602 0.200
VII-2 0.001 50.000 10−8 0.602 0.200

A. Scalability of SPSA vs. IPOPT

In this subsection, we show the numerical results for SPSA
for a network instance with N = 68 nodes in which we
progressively increase the size of the random support E and
compare them with the Interior Point OPTimizer (IPOPT)
solver as a benchmark. IPOPT is a non-commercial solver
capable of handling nonlinear (possibly non-convex) opti-
mization problems with constraints ensuring primal feasibility
while optimizing. It is readily available in the cyipopt
package [37].

Consider the grid with bidirectional edges in Fig. 4. The
edges in Ẽ that can fail (with probability 0.1) are displayed in
red and labeled. It can be easily verified that G = (V,E \ Ẽ)
is strongly connected. Our goal is to find a reversible policy
P (x) minimizing EE

[
S(Q(x, E), C π̂)

]
, such that its station-

ary distribution is uniform, i.e., π(P (x)) = 1
N . Note that

condition (R) implies that P (x) = P (x)⊤ and so we obtain
the following problem:

min
x∈X sym∩Xε

EE
[
S(Q(x, E), C π̂)

]
, (49)

which is strictly convex by Theorem V.1. Note that in the
current setting, we can parameterize the problem using a single
variable xij for each pair of bidirectional edges (i, j), (j, i) ∈
E. Accordingly, we can write the equality constraints in
X sym ∩ Xε using Ax = b, where

Ail =

{
1 if i is sender or receiver in edge l;

0 otherwise,

such that l corresponds to the lth edge in the lexicographic
ordering of E, and b = 1̄. We then apply the algorithm in

Fig. 4. Graph with N = 68 nodes similar to [11]. Red edges with labels
indicate risky edges with a nonzero failure probability.

(48) with ProjX sym∩Xε
[x] utilizing Dykstra’s algorithm (see

Section IV-E) and orthonormal basis B in δ̃E(x), such that
Col(B) = N (A).

To compare our SPSA approach, we formulate an equivalent
problem formulation of minimizing EE

[
S(Q(x(u), E), C π̂)

]
,

akin to (29). Then, we solve the problem using the IPOPT
solver with a tolerance of 10−1. To start the IPOPT, we first
collect a sample of 10 initial starting points and choose the one
with the lowest objective value. We provide the same initial
starting point to both SPSA and IPOPT methods and terminate
the SPSA algorithm if its objective value improves the IPOPT
optimal solution, which we denote by xIPOPT. We evaluate the
objective every l = 50.000 iterations by means of Polyak-
Rupert averaging [38], [39], that is, we consider an average
of the previous 50% of observations;

x̄
(l)
i =

1

l · i− ⌊l · i/2⌋

l·i∑
k=⌊l·i/2⌋

x(k),

and we terminate the algorithm if that solution improves
the IPOPT solution, i.e., |J(x̄(l)

i ) − J(xIPOPT)| < 10−3,
for J(x) = EE

[
S(Q(x, E), C π̂)

]
, or when a large number

K = 5 · 106 of iterations is achieved. However, in all our
experiments, convergence was reached in less than K steps.

We calibrate SPSA according to (28) with the settings as in
Table I and repeat the simulation for |Ẽ| = 0, 1, . . . , 15, where
Ẽ is the set of edges with the lowest labels included in Fig. 4.
We show the running time for IPOPT and the SPSA mean
and range for 10 repetitions for each |Ẽ| = 0, 1, . . . , 15 in
Fig. 5. Note that the situation |Ẽ| = 0 corresponds to the fixed
support case in which IPOPT is faster. However, our analysis
reveals that the running time of IPOPT demonstrates a pattern
closely resembling exponential growth. In contrast, SPSA is
not subject to a similar exponential increase in computational
demand. Specifically, SPSA tends to underperform in smaller
instances, which may be attributed to inadequate tuning of
hyperparameters. Nevertheless, it should be noted that the
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Fig. 5. Running time (in log(sec)) for SPSA and IPOPT for increasing size
Ẽ with range of running time depicted in blue.

running time of SPSA consistently remains below 1.2 hours
across all tested instances. A comparison of SPSA with
other solvers, such as the Sequential Least Squares Quadratic
Programming (SLSQP) solver from the Scipy package, gave
similar results to those presented in Fig. 5.

B. Correlated edge failures

This subsection considers the case of correlated failures,
which means that EE [S(Q(x, E), C)] cannot be easily com-
puted assuming the independence of edge failure. Therefore,
we cannot solve problem (49) efficiently using objective
evaluations as the probabilities for appearing graphs cannot
be calculated assuming independent edge failure as in (35).
Moreover, using a sample average approximation typically
causes scalability problems, especially when the set of failing
edges Ẽ becomes large. These cases are particularly favorable
for SPSA, which has no issues dealing with edge failure
correlations, as we can simply observe a sample of the
correlated distribution of graphs at each iteration for gradient
estimation.

In a second experiment, we solve the instance in which
the set of failing edges Ẽ includes the edges with labels 1,
2, 3, 8, and 9 in Fig. 4. We assume that each edge fails
with probability q = 0.5 and the joint failure of edges is
strongly correlated (0.85). Let J̄(x) denote a sample-average
approximation of EE [S(Q(x, E), C)] using a large sample
of 10.000 graphs following [40]. We ran the same SPSA
algorithm as in Section VI-A with parameters as in Table I and
terminated the algorithm when |J̄(x̄(l)

i ) − J̄(x̄
(l)
i−1)| < 10−3,

which we verify every l = 50.000 iterations. The result is
J̄(xcor) = 344, 08.

We compare the correlated solution with the uncorrelated
solution found using IPOPT (with tolerance 10−4), that is, we
assume in this setting i.i.d. edge failures with probability 0.5,
J̄(xuncor) = 350, 17. Note that the SPSA algorithm is able to
find a solution that is lower than the (estimated) objective by
roughly 1.74%.

VII. APPLICATION: ROBOTIC SURVEILLANCE

In this section, we validate the applicability of our method
in the context of surveillance, in which problem (12) has a

natural interpretation. Here, π̂i is the anticipated probability
that an intruder appears at a node i (e.g., uniform or based
on historical data), so that P (x) with π(P (x)) = π̂ that
minimizes S(P (x), C π̂) (or EE

[
S(Q(x, E), C π̂)

]
in the ran-

dom support setting), is a surveillance policy with a minimal
average number of steps to capture the intruder. Specifically,
this surveillance problem with C = C π̂ has been studied by
[11], in which the authors find the optimal surveillance policy
with minimal Kemeny constant assuming reversibility of P (x)
in the fixed support setting.

In the following, we first consider a surveillance problem
similar to that in [11] and then an analogous problem in the
random support setting.

1) Fixed support: Consider again the graph with N = 68
nodes shown in Fig. 4. Similarly to [11], we formulate an
optimization problem to find a stochastic surveillance policy
for an agent that visits each node with equal probability and
minimizes the Kemeny constant, namely

min
x∈X π̂

ε

S
(
P (x), C π̂

)
, (50)

where π̂ = 1
N . We apply SPSA as detailed in Section IV-E.

We terminate the algorithm if the condition

|S(P (x
(l)
i ), C π̂)− S(P (x

(l)
i−1), C

π̂))| < 10−3

is met, which we verify every l = 1.000 iterations. For the
parameters as in Table I, the algorithm terminated in 254
seconds and we present the resulting Markov chain in Fig. 6.
Note that the solution is only locally optimal and approximates
a Hamiltonian cycle.

To test the validity of a solution in a surveillance context,
we assume that 500 intruders appear uniformly at random in a
network node and reside there for 45 time units. For simplicity,
we assume that individual intrusions appear sequentially at
time 0, 45, 90, . . . . We initialize the surveillance agent uni-
formly at random on the graph, and after each time unit, the
surveillance agent instantaneously transitions to an adjacent
node according to the chosen surveillance policy P (x). If the
surveillance agents and the intruder are in the same node, the
intruder is caught.

We compare our non-reversible solution P (xnon-rev) with
the Markov chain with minimal Kemeny constant assuming
reversibility P (xrev) [11]. We report the results for 500 sim-
ulations in Table II, for each of the three solutions. As in
the experiment by [11], we see that the number of intruders
caught increases with a decrease in the Kemeny constant of
the surveillance policy; the policy with the lowest Kemeny
constant catches the most intruders. Inspecting the P (xnon-rev)
policy in Fig. 6, we see that a strong level of (clockwise)
directionality is achieved (note that the Hamiltonian cycle is
the extreme case of directionality), which the P (xrev) policy
cannot obtain. This directionality feature is crucial for our
approach to obtain lower MFPTs and, thus, higher intruder
detection rates.

rows
2) Random support: To show that non-reversible solutions

outperform reversible ones in the random support case, we
now consider an instance of the graph depicted in Fig. 4 in
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Fig. 6. Solution to (50) for the instance in Fig. 4. The thickness of each
arrow is proportional to the corresponding transition probability.

TABLE II
INTRUDERS CAUGHT (IN %) AND AVERAGE CONNECTIVITY VALUE

ACHIEVED BY OPTIMAL REVERSIBLE AND NON-REVERSIBLE STOCHASTIC
SURVEILLANCE POLICIES.

Fixed support
Sol. Min (%) Mean (%) Max (%) SD Obj. value
rev 19,00 26,36 32,40 1,94 192,7

non-rev 50,40 57,31 64,80 2,33 51,8
Random support

Sol. Min (%) Mean (%) Max (%) SD Obj. value
rev 17,80 23,72 31,00 2,02 266,3

non-rev 23,00 33,70 41,20 3,30 162,4

which a subset of risky edges can be inaccessible with some
probability.

To find a stochastic surveillance policy, we solve the fol-
lowing problem

min
x∈X π̂

ε

EE
[
S
(
Q(x, E), C π̂

)]
, (51)

where we aim to visit every node with equal probability in case
there is no failure in the graph (π̂ = 1

N ). The problem objective
is closely related to the expected Kemeny constant; however,
note that while C π̂ is fixed, the true expected Kemeny constant
is Cπ(Q(P,E)), which depends on the graph realization.

In this example, we compare the globally optimal reversible
policy P (xrev), where Ẽ is again the set of failing edges cor-
responding to labels 1, 2, 3, 8, and 9, with failure probability
0.5, with the locally optimal non-reversible policy P (xnon-rev).
To find P (xrev), we use the IPOPT algorithm with tolerance
10−4. For finding P (xnon-rev), we apply SPSA in (48), with
ProjX π̂

ε
[x], and orthonormal basis B in δ̃E(x) spanning the null

space of A as in (31). We terminate the algorithm if condition

|EE [S(Q(x
(l)
i−1, E), C

π̂)]− EE [S(Q(x
(l)
i−1, E), C

π̂))]| < 10−3

is met, which we verify every l = 10.000 iterations. The
remaining hyperparameters are reported in Table I.

To test the validity of our solution in a surveillance context,
we performed 500 simulations with sampled graphs Gl =
(V, El), for l = 1, . . . , 500, with edge failure probability 0.5 for
every (i, j) ∈ E . As in the previous experiment, 500 intruders
appear uniformly at random in a network node and reside
there for 45 time units. We initialize the surveillance agent
uniformly at random on the graph at time t = 0 and after each
time unit, the surveillance agent instantaneously transitions to
an adjacent node according to the surveillance policy Q(x, El)
We report the results for these 500 simulations in Table II, for
the globally optimal reversible solution P (xrev) and locally
optimal non-reversible solution P (xnon-rev). Analogously to
the previous experiment with fixed support, we see that the
number of intruders caught increases with a lower objective
value for the surveillance policy; the non-reversible policy
outperforms the reversible policy.

VIII. CONCLUSION AND FUTURE WORK

We have shown how to find Markov chains minimizing a
weighted sum of mean first passage times, which generalizes
existing metrics in the literature used in the connectivity anal-
ysis of the corresponding network. Previous studies strongly
relied on reversible Markov chains (or undirected graphs),
aiming to formulate and solve a convex problem. Our work
shows that a strictly better solution for minimizing the sum of
mean first passage times can be found when the reversibility
constraint is dropped, hence considering Markov chain opti-
mization on directed graphs. To solve this more general class
of problems, we extended SPSA to Markov chain optimization
that does not require the reversibility constraint. Furthermore,
we showed how SPSA can efficiently solve the minimization
of weighted mean first passage times in the case of random
and potentially correlated failure of network edges. Finally, we
evaluated a locally optimal non-reversible Markov chain as a
surveillance policy and showed that it outperforms reversible
Markov chain policies, both when edges are safe, as well as
when edge failure occurs.

The generalized SPSA algorithm that we propose can be
applied to other problems that involve optimization on the
probability simplex, such as portfolio optimization [41], and
other resource allocation problems [42]. In the specific context
of surveillance, future work will explore an online version of
the surveillance policy optimization in which the empirical
frequency of intruder presence is progressively learned rather
than being assumed to be a uniform stationary distribution.

APPENDIX

A. Infeasibility SPSA

To illustrate why standard SPSA does not work, let us
consider the following Markov chain on the complete graph
G with N = 3 nodes and stochastic matrix

P (x) =

0
1
2

1
2

1
2 0 1

2
1
2

1
2 0

 .
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A standard application of SPSA for J(x) = S(P (x), C), for
some C ∈ RN×N

≥0 and realization ∆ = (1, 1,−1, 1, 1, 1) yields

P (x+ η∆) =

 0 1
2 + η 1

2 + η
1
2 − η 0 1

2 + η
1
2 + η 1

2 + η 0

 ̸∈ P,

for any small η > 0. It follows that Π diverges and therefore
D, M , and S(P (x+ η∆), C) (and S(P (x− η∆), C)) is not
well defined.

B. Projection on X1

We illustrate here how to project on

X 1 =
{
x ∈ R|E| :

∑
ℓ∈Ei

xℓ = 1, ∀ i ∈ V, π̂P (x) = π̂
}
,

which spans a linear subspace in R|E|. We can perform an
orthogonal projection on the subspace X1 for a given point x
via

ProjX 1 [x] =

= Bπ̂
(
(Bπ̂)⊤Bπ̂

)−1
(Bπ̂)⊤

(
x− (Aπ̂)†bπ̂

)
+ (Aπ̂)†bπ̂,

= Bπ̂(Bπ̂)⊤
(
x− (Aπ̂)†bπ̂

)
+ (Aπ̂)†bπ̂,

where (Aπ̂)† = (Aπ̂)⊤(Aπ̂(Aπ̂)⊤)−1 is the pseudo-inverse
of Aπ̂ and the latter equality follows from the fact that
(Bπ̂)⊤Bπ̂ =

(
(Bπ̂)⊤Bπ̂

)−1
= I , as Bπ̂ contains an orthonor-

mal basis.

C. Proof of Lemma II.1

Observe that if the weighted graph (G , x), where x ∈ X sym,
is strongly connected, the Markov chain P (x) via (3) satisfies
(R), i.e., P (x) ∈ Prev [10]. Moreover, it has stationary
distribution

πi(P (x)) =

∑
j∈Ei

x(i,j)∑
(i,j)∈E x(i,j)

. (52)

Now, we show that any P ∈ Prev has a representation x ∈
X (sym,1), such that P = P (x) where P (x) via (3). Indeed, it
is enough to take x(i,j) = πi(P )Pij for all (i, j) ∈ E so that
P (x) ∈ Prev via (3), which shows that P (x) is surjective.
More specifically, we can show this representation is unique.
To that end, use (52) and the constraint

∑
(i,j)∈E x(i,j) = 1 to

observe that any x ∈ X (sym,1) has fixed values πi(P (x)) =∑
j∈Ei

x(i,j), for all i ∈ V , as follows from the fact that any
candidate x ∈ X (sym,1) must have π(P (x)) = π(P ). As a
result, x(i,j) must be uniquely determined, as shown by

Pij(x) =
x(i,j)∑

j∈Ei
x(i,j)

= Pij .

This uniqueness implies that x is a unique representation
for P via P (x). Moreover, since x is strongly connected
as follows from the irreducibility of P ∈ Prev, the map-
ping P (x) is a bijection from X (sym,1) ∩ {x ∈ X sym :
(G , x) is strongly connected} to Prev.

D. Proof of Proposition III.1

The optimization problem (16) has been studied in detailed
in [43], in which the authors proved that the optimal solution
P̂ is a Hamiltonian cycle, see Theorem 2 therein. The same
paper also shows that

∑
i̸=j Mij = N(N−1)

2 for all i, from
which it easily follows that

S(P̂ , C 1̄) =

N∑
i=1

∑
j ̸=i

Mij = N
N(N − 1)

2
=

N3 −N2

2
.

E. Proof of Proposition III.2

Consider the family of complete undirected graphs (G , x)
with x ∈ X sym. The complete graph with N nodes, with
xℓ = 1, for all ℓ ∈ E, has been shown to have total effective
graph resistance Rtot(x) = N − 1, see [6]. Using this fact
in combination with (8) and (9) provides the lower bound in
(19), that is

S(P̂ , C 1̄) = N(N − 1)(N − 1) = N3 − 2N2 +N.

The upper bound in (19) follows from the fact that the
Hamiltonian graph with maximal Rtot(x) is a circular graph
(as adding edges to G cannot increase Rtot(x), [10]). In [44],
it has been shown that for a circular graph (G , x) of size N ,
Rtot(x) =

N3−N
12 , where xℓ = 1 if ℓ ∈ E is part of the circle

and xℓ = 0 otherwise. Since (G , x) is a circular graph, we
have

∑
ℓ∈E xℓ = N . Rewriting (8) yields:

S(P̂ , C 1̄) = 2N

(
N3 −N

12

)
=

N4 −N2

6
.

F. Proof of Theorem IV.2

Assume x ∈ Xε and let J(u) denote the linearly
(re)parameterized version of J(x(u)), where P (x(u)) =∑

ℓ=(i,j)∈E xℓ(u)eie
⊤
j if x(u) ≥ 0, with ei denoting the ith

(column) basis vector, and x(u) = A†b + Bu, such that
u ∈ R|E|−r and b as in (23). Expanding J(u ± η∆), for
u = B†(x−A†b) = B⊤(x−A†b), yields

J(u± η∆) = J(u) + η

|E|−r∑
i=1

∂ui
J(u)∆i

± η2

2

|E|−r∑
i,j=1

∂J(u)

∂ui
∂uj

∆i∆j

+
η3

6

|E|−r∑
i,j,k=1

∂J(u)

∂ui∂uj∂uk

∆i∆j∆k +O(η4).

We can use the expansion to estimate partial derivatives
∂ul

J(u), for any l, as we show in the following. Basic
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algebra shows that for a given ∆ ∈ {−1, 1}d, and some
y, y′ ∈ [u− η∆, u+ η∆];

J(u+ η∆)− J(u− η∆)

2η∆l
=

=

|E|−r∑
i=1

∂uiJ(u)
∆i

∆l

+
η2

6

|E|−r∑
i,j,k=1

( ∂J(y)

∂ui
∂uj

∂uk

− ∂J(y′)

∂ui
∂uj

∂uk

)∆i∆j∆k

∆l
.

Note that by (A0) it holds that the 3rd order derivative is
bounded (for a proof, use the fact that X is compact together
with Weierstrass theorem). Then, taking the expectation over
∆ ∼ Radd (i.e., each ∆i i.i.d. uniform over {−1, 1}) by
assumption (A1), we obtain:

E∆

[
J(u+ η∆)− J(u− η∆)

2η∆l

]
= ∂ul

J(u) +O(η2),

i.e., effectively estimating ∂ul
J(u). Now using that x(u) =

A†b+Bu, and so

x(u± η∆) = A†b+B[u± η∆] = x(u)± ηB∆,

and ∂ul
x(u) = ∂vlBu = vl, we obtain

E∆

[
J(x+ ηB∆)− J(x− ηB∆)

2η∆l

]
= ∂vlJ(x) +O(η2).

Combining all elements in vector form

|E|−r∑
l=1

−vl · E∆

[
J(x+ ηB∆)− J(x− ηB∆)

2η∆l

]
+O(η2)

=

|E|−r∑
l=1

vl · E∆

[
J(x− ηB∆)− J(x+ ηB∆)

2η∆l

]
+O(η2)

= E∆

[
J(x− ηB∆)− J(x+ ηB∆)

2η
B∆

]
+O(η2)

= E∆

[
δ̃(x)

]
+O(η2) = δ′(x), (53)

where we use in the second equality that ∆i = ∆−1
i , for all i

and ∆, by (A1).

G. Proof of Theorem IV.3

The proof follows a basic stochastic approximation argu-
mentation assuming the projected ODE on a convex and
bounded set X given by:

∂ProjX(xt)/∂t = lim
h→0

ProjX(xt − hg(x))/h,

where {xt : t ≥ 0} is the trajectory of the ODE, and g(x)
is the gradient of some function J(x). Let g̃(x) be a (biased)
gradient estimator of g(x), so that

E [g̃(x(k))] = E [g̃(x(k))|x(0), . . . , x(k − 1)]

= g(x(k)) + β(x(k)).

The following conditions from [45], see Section 5.2.1, can be
applied to ensure convergence:
(C1) supk E[∥g̃(x(k))∥22] < ∞;

(C2) g(x) is continuous;
(C3)

∑∞
k=0 α(k) = ∞,

∑∞
k=0 α(k)

2 < ∞;
(C4)

∑∞
k=0 α(k)∥β(x(k))∥2 < ∞, w.p. 1;

(C5) J(x) and the constraints imposing Xε are twice contin-
uously differentiable.

Conditions (C1) – (C5) are also sufficient in the case
where g(x) is a projected gradient on a smooth manifold or,
equivalently, the steepest descent direction. In our setting, let
J(x) = S(P (x), C), and X = Xε. Given that Xε is smooth,
we can consider g(x) = −δ′(x) as in (24) to be the projected
(negative) gradient of some smooth surrogate function H(x),
for which H(x) = J(x), for all x ∈ Xε, but it is defined on
Xε ∪X⊥

ε , where X⊥
ε is the orthogonal complement of Xε. In

that setting,

δ′(x) = lim
h→0

ProjXε
(xt − h∇H(x))/h.

Now, assume that

E∆

[
δ̃(x(k))

]
= E∆

[
δ̃(x(k))|x(0), . . . , x(k − 1)

]
= δ′(x(k)) + β(x(k)),

where β(x(k)) = E[δ̃(x(k))] − δ′(x(k)) = O(η2) indicates
the bias, see (53). Observe that J(x) is differentiable ev-
erywhere and therefore uniformly Lipschitz continuous with
Lipschitz constant κ by the smoothness of J and compact-
ness of Xε. To show that (C1) is satisfied, observe that
|J(x(k) ± η(k)B∆(k)) − J(x(k))| < ∞ as follows from
choosing η(k) via (A3), so that P (x(k) ± η(k)B∆(k)) > 0
and so is irreducible. Then, δ̃(x(k)) can be bounded by

|δ̃i(x(k))| ≤
|J(x(k) + η(k)B∆(k))− J(x(k))|

2η(k)|∆i(k)|

+
|J(x(k)− η(k)B∆(k))− J(x(k))|

2η(k)|∆i(k)|

≤ ∥η(k)B∆(k)∥2κ
2η(k)|∆i(k)|

+
∥ − η(k)B∆(k)∥2κ

2η(k)|∆i(k)|

=
∥∆(k)∥2
|∆i(k)|

κ = κ
√

|E| − r, (54)

for i = 1, . . . , |E| and all k ∈ N, where the latter equality
follows from (A2). Condition (C2) follows from the fact
that J(x) = S(P (x), C) is smooth. Condition (C3) is easily
verified by basic calculus for the assumed sequence {α(k)} =
{α/(α0+k+1)γa}, for 1

2 < γa ≤ 1. Similarly, (C4) is verified
using the fact that the bias β(x(k)) = O(η2) is fixed and∑∞

k=0 α(k)∥β(x(k))∥2 < ∞ for {η(k)} = {η/(k + 1)γη},
where γη > (1 − γa)/2. Finally, (C5) follows from J(x) =
S(P (x), C) smooth and the affine constraints imposing Xε.

It remains to show for which η it holds that x±ηB∆ ∈ X ,
for all ∆ ∈ {−1, 1}|E|−r and all x ∈ Xε. Given that x±B∆
preserves the equality constraints in X , it is enough that 0 <
ηB∆ < ε for all ∆ ∈ {−1, 1}|E|−r. To this end, observe that
∥∆∥2 =

√
|E| − r and so ∥B∆∥2 =

√
|E| − r, since B is

an orthonormal basis. It follows that η∥B∆∥2 < ε implies
η < ε/∥B∆∥2 = η < ε/

√
|E| − r, see (A3).
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H. Proof of Theorem V.3

We verify conditions (C1) – (C5) as in the proof of
Theorem IV.3. Let J(x) = EE [S(Q(x, E), C)], g(x) = δ′E(x)
as in (44). Similarly to the proof of Theorem IV.3, assume
that

E∆

[
EE

[
δ̃E(x(k))

]]
= E∆

[
EE

[
δ̃E(x(k)|x(0), . . . , x(k − 1)

]]
= δ′E(x(k)) + β(x),

where β(x(k)) is a random variable. Condition (C1) is verified
given that the graph collection is finite, S(Q(x, E), C) is
smooth everywhere and therefore uniformly Lipschitz for all
E = (E1, . . . , EL), L ∈ N. This can be bounded similarly to
that in (54). Furthermore, (C2) easily follows from inspecting
(44). Conditions (C3) and (C4) follow the same arguments as
shown in the proof of Theorem IV.3, and (C5) follows from
δ′E(x) smooth and the affine constraints imposing Xε.
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for a differential-drive mobile robot in dynamic environments,” Sensors,
vol. 23, no. 17, p. 7421, 2023.

[36] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in 2010 Proceedings IEEE INFOCOM. IEEE, 2010,
pp. 1–9.

[37] J. K. Moore et al., “cyipopt,” https://cyipopt.readthedocs.io/en/stable/
index.html/.

[38] B. T. Polyak, “New stochastic approximation type procedures,” Automat.
i Telemekh, vol. 7, no. 98-107, p. 2, 1990.

[39] D. Ruppert, “Efficient estimations from a slowly convergent robbins-
monro process,” Cornell University Operations Research and Industrial
Engineering, Tech. Rep., 1988.

[40] M. Chen, “Generating nonnegatively correlated binary random variates,”
The Stata Journal: Promoting communications on statistics and Stata,
vol. 15, no. 1, p. 301–308, Apr. 2015. [Online]. Available:
http://dx.doi.org/10.1177/1536867X1501500118

[41] E. Jondeau and M. Rockinger, “Optimal portfolio allocation under higher
moments,” European Financial Management, vol. 12, no. 1, pp. 29–55,
2006.

[42] M. Patriksson, “A survey on the continuous nonlinear resource allocation
problem,” European Journal of Operational Research, vol. 185, no. 1,
pp. 1–46, 2008.

http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://cyipopt.readthedocs.io/en/stable/index.html/
https://cyipopt.readthedocs.io/en/stable/index.html/
http://dx.doi.org/10.1177/1536867X1501500118


16

[43] V. Borkar and L. Miclo, “On the fastest finite markov processes,” Journal
of Mathematical Analysis and Applications, vol. 481, no. 2, p. 123488,
2020.
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