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Abstract

We consider the hard-core model on a finite square grid graph with stochastic Glauber
dynamics parametrized by the inverse temperature β. We investigate how the transition between
its two maximum-occupancy configurations takes place in the low-temperature regime β → ∞
in the case of periodic boundary conditions. The hard-core constraints and the grid symmetry
make the structure of the critical configurations for this transition, also known as essential
saddles, very rich and complex. We provide a comprehensive geometrical characterization of
these configurations that together constitute a bottleneck for the Glauber dynamics in the
low-temperature limit. In particular, we develop a novel isoperimetric inequality for hard-
core configurations with a fixed number of particles and show how the essential saddles are
characterized not only by the number of particles but also their geometry.
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1 Introduction

We consider a stochastic model, known in the literature as hard-core lattice gas model [10, 35], where
particles have a non-negligible radius and therefore cannot overlap. Assuming a finite volume, the
hard-core constraints are modeled with a finite undirected graph Λ. More specifically, particles
can reside on the sites of Λ and edges connect the pairs of sites in Λ that cannot be occupied
simultaneously. In other words, any hard-core configuration is an independent set of Λ. In this
paper, we take Λ as a square grid graph with periodic boundary conditions. The resulting hard-
core particle configurations are then those whose occupied sites have all the corresponding four
neighboring sites empty, see Fig. 1 for an example of such configurations.
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This interacting particle system evolves according to a stochastic dynamics that is fully character-
ized by the Hamiltonian or energy function in (2.3) and is parametrized by the inverse temperature β.
In particular, the appearance and disappearance of particles are modeled via a Glauber-type update
Markov chain {Xt}t∈N with Metropolis transition probabilities induced by the Hamiltonian, see (2.4)
later for more details. The stochastic process is reversible with respect to the corresponding Gibbs
measure µβ, cf. (2.2), which is then its equilibrium distribution. Specifically, for any independent
set I on the graph Λ, the hard-core configuration with particles precisely on the vertices in I has
stationary probability proportional to eβ|I|. Taking β = 0, this process can thus be used to sample
uniformly independent sets of Λ.

Considering a regime with large β, on the other hand, the same Markov chain can also be seen
as a randomized scheme with local updates to find maximum independent sets, which is an NP-hard
problem [45]. Indeed, in the low-temperature regime (i.e., β → ∞), the most likely states in view
of µβ for this interacting particle system are those with a maximum number of particles. These
configurations correspond to the maximum independent sets of Λ and we will refer to them as stable
states. On the square grid graph Λ of even length, there are two such stable states, corresponding to
the two chessboard-like patterns.

When β grows large, however, it takes a very long time for the system to move from one stable
state to the other, since such a transition involves visiting intermediate configurations that are very
unlikely in terms of µβ. Such transitions become thus rare events and, as a consequence, the stochastic
process also takes a very long time to converge to stationarity, exhibiting so-called slow/torpid mixing
[31, 54]. It is natural to expect such slow mixing of hard-core dynamics for a large β, since fast mixing
in this regime would imply that the NP-hard problem of finding maximum independent sets could
be solved or approximated efficiently.

Several papers [19, 31–33, 36, 39, 42, 44, 53] studied the slow mixing of the hard-core model by
identifying how the mixing times of the Glauber dynamics scale on other graphs, depending on the
type of graph, the size, the boundary conditions or the maximum vertex degree. The common main
idea behind this line of work has been to identify as precisely as possible the subset of configurations
that constitutes a bottleneck for the dynamics to transition from one stable state to another. Some
of these approaches also heavily rely on geometric features exhibited by the configurations in this
bottleneck part of the state space, like the so-called fault lines in [53] and fat contours in [36].

In this paper, we look at a complementary aspect of the hard-core model in the low-temperature
regime, focusing on the hitting times between its stable states and the “bottleneck configurations”
visited along these trajectories. The asymptotic behavior of the first hitting time between the
maximum-occupancy configurations of this model in the low-temperature regime β → ∞ has already
been studied in [47]. Denoting by τe

o
the first hitting time of Markov chain {Xt}t∈N corresponding

to hard-core dynamics on a grid graph Λ, in [47] the authors showed that there exists a constant
Γ(Λ) > 0 such that for every ǫ > 0,

lim
β→∞

Pβ

(

eβ(Γ(Λ)−ǫ) < τe

o
< eβ(Γ(Λ)+ǫ)

)

= 1 (1.1)

and

lim
β→∞

1

β
logEτe

o
= Γ(Λ). (1.2)

In particular, the authors showed in the same article how this constant Γ(Λ), which characterizes
the order of magnitude of the first hitting time between the two stable configurations, depends on
the grid sizes and boundary conditions by means of an extension of the setting in [43].

However, instead of directly using the general strategy proposed in [43], which allows to jointly
derive the asymptotic behavior of the transition time as β → ∞ together with a characterization of
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the critical configurations, the authors of [47] adopted a novel combinatorial method to estimate the
energy barrier between the two stable states of the model, which is disentangled with respect to the
description of the critical configurations. Consequently, the geometrical description of the critical
configurations had yet to be addressed.

The main motivation of this paper is to fill this knowledge gap. Indeed, the geometrical char-
acterization of the critical configurations, also known as essential saddles, is a relevant goal both
from a probabilistic and a physical point of view since it provides insightful details of the dynamical
behavior of the system. This represents a crucial point in describing the trajectories that the system
follows with high probability during the transition from one stable state to the other. We remark
that in several models analyzed in the context of Freidlin-Wentzell Markov chains evolving under
Glauber dynamics, the essential gate, i.e., the set of the critical configurations, was unique [1] but,
in general, there may exist many minimal sets that are crossed with high probability during the
phase transition, either distinct or overlapping (see e.g. [5, 6] for this description in the case of the
conservative Kawasaki dynamics). Interestingly, this is what happens also for our model despite
evolving under the non-conservative Glauber dynamics. This peculiar feature relies on the hard-core
constraints and on the intrinsic symmetry of the system due to the existence of two stable states.
This is also the case of Glauber dynamics for the Ising and Potts models when there is no external
magnetic field (see, e.g., [12]). In statistical physics, the study of such transition between stable
states is usually referred to as tunneling. When the particle system does not have an intrinsic sym-
metry or the symmetry of the system is broken, e.g., by an external magnetic field, the situation
drastically changes. For interacting particle systems with a single stable state, the main object of
investigation then becomes their metastability, i.e., the transition from the metastable state(s) to the
stable one. Generally speaking, interacting particle systems that exhibit tunneling behavior have a
much larger and complex set of essential saddles. This is precisely the case for the hard-core model
on a square grid graph Λ, with the additional complication that the only admissible configurations
are its independent sets.

In order to geometrically characterize the critical configurations, we associate with each cluster of
particles its contour, that is, a union of edges on the dual graph of Λ. The equivalent representation
of a configuration using its Peierls contour is a powerful tool that has been extensively used in the
literature to study the phase transition of the hard-core model, identify sharper bounds for the critical
temperature βc, and to obtain high-fugacity expansion of macroscopic quantities of the model; we
refer the interested reader to, e.g., [18, 38].

As part of our proof strategy, we provide some results regarding the model-dependent isoperimet-
ric inequality for the hard-core model on grid graphs. In particular, we show that for a fixed area,
the unique clusters that minimize the perimeter have a rhomboidal shape. However, the energy land-
scape is much more complex as the periodic boundary conditions give rise to other types of clusters
with minimal perimeter for a given area, such as the configurations having a column containing a
fixed number of particles.

We remark that our analysis yields a comprehensive geometrical description of the configurations
in the bottleneck part of the state space, together with an overview of the exact structure of the
bottleneck subset itself. However, pairing this analysis with precise counting arguments is beyond
the scope of the present paper. Hence, we do not explore the energy-entropy tradeoff of the hard-core
model or shine more light on its phase transition.

In order to link geometrical properties of hard-core configurations with the properties of the
stochastic process {Xt}t∈N, in this paper we adopt the framework of the pathwise approach, introduced
in the context of metastability by [24], later developed in [50, 51], and summarized in the monograph
[52]. A modern version of this approach can be found in [26, 27, 43, 47]. The pathwise approach
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Figure 1: Example of a hard-core configuration on the 14×14 square grid with periodic boundary conditions.
On the left, the occupied sites in Vo (resp. in Ve) are highlighted in black (resp. in red). On the
right, we depict the same configuration using a different visual convention, in which we highlight
the odd clusters that the configuration has by drawing only the empty sites in Ve (in white), the
occupied sites in Vo (in black), and a black line around each odd cluster representing its contour.

has been widely adopted for studying the low-temperature behavior of finite-volume models with
single-spin-flip Glauber dynamics, e.g. [1, 2, 11–14, 25, 49, 55, 56], with Kawasaki dynamics, e.g.
[4–7, 37, 46], and with parallel dynamics, e.g. [28–30]. The more involved infinite-volume limit at low
temperature was studied via this approach in [3, 34, 37]. A different method to study the limiting
behavior of interacting particle systems is the so-called potential-theoretic approach, initiated in [22]
and later summarized in the monograph [23] (see, for instance, [20, 21, 48] for the application of
this approach to specific models both in finite and infinite volume). Since these two approaches
rely on different definitions of metastable states, they are not completely equivalent. The situation
is particularly delicate for infinite-volume systems, irreversible systems, and degenerate systems, as
discussed in [15, 26, 27]. More recent approaches are developed in [8, 9, 16, 17, 40, 41].

The paper is organized as follows. In Section 2, we provide a detailed model description and state
our main result regarding the geometric features of the critical configurations, Theorem 2.1. The rest
of the paper is then devoted to the proof of this result. First, Section 3 provides some preliminary
definitions and auxiliary results, and then finally the proof of the main theorem is given in Section 4.
For the sake of clarity, the proofs of some auxiliary lemmas are deferred to a later section, namely
Section 5. Lastly, Section 6 concludes the paper and discusses some future work.

2 Model description and main results

We consider the stochastic evolution of the hard-core model on finite two-dimensional square lattices.
More precisely, given an integer L ≥ 2 we consider the L × L square grid graph Λ = (V, E) with
periodic boundary conditions, which we will refer to as L × L toric grid graph. We denote by E the
edge set of the grid graph Λ and by V the collection of its N = L2 sites. We identify each site v ∈ Λ
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by its coordinates (v1, v2), that is, we take V := {0, . . . , L − 1} × {0, . . . , L − 1} as set of sites. In the
rest of the paper, we will assume that L is an even integer, which guarantees that Λ is a bipartite
graph, and that L ≥ 6, to avoid pathological trivial cases.

A particle configuration on Λ is described by associating a variable σ(v) ∈ {0, 1} with each site
v ∈ Λ, indicating the absence (0) or the presence (1) of a particle on that site. Let X ⊂ {0, 1}N be
the collection of hard-core configurations on Λ, i.e.,

X := {σ ∈ {0, 1}N | σ(v)σ(w) = 0, ∀ (v, w) ∈ E}, (2.1)

i.e., the particle configurations on Λ with no particles residing on neighboring sites.
A site of Λ is called even (respectively odd) if the sum of its two coordinates is even (respectively

odd) and we denote by Ve and Vo the collection of even sites and that of odd sites of Λ. Clearly
|Ve| = |Vo| = L2/2. We denote by e (o, respectively) the particle configuration on Λ with particles
at each site in Ve (Vo, respectively), i.e.,

e(v) :=







1 if v ∈ Ve,

0 if v ∈ Vo,
and o(v) :=







0 if v ∈ Ve,

1 if v ∈ Vo.

Both e and o are hard-core configurations due to the assumption that L is even.
Fig. 1 shows an example of a hard-core configuration. Throughout the paper, all figures are

drawn using the following conventions. They all depict hard-core configurations on a 14 × 14 grid
with periodic boundary conditions. The occupied (empty) sites in Vo (Ve, respectively) are shown in
black (white), and we draw a black line around each odd cluster representing its contour. We tacitly
assume that all the even (odd) sites outside the odd region are occupied (empty, respectively) but
they are not displayed to avoid cluttering the figures. See Section 3.1 for more precise definitions of
odd clusters and odd regions.

Consider the Gibbs measure on X given by

µβ(σ) :=
e−βH(σ)

Zβ,Λ

, σ ∈ X , (2.2)

where H is the Hamiltonian H : X → R that is taken to be proportional to the number of present
particles, namely

H(σ) := −
∑

v∈V

σ(v), (2.3)

with Zβ,Λ :=
∑

σ∈X e−βH(σ) being the normalizing constant. The two hard-core configurations on the
L × L toric grid graph Λ introduced above have energy equal to

H(e) = H(o) = −
L2

2
,

which is the minimum value the Hamiltonian can take on X [47].
We assume the interacting particle system described evolves according to stochastic Glauber-type

dynamics described by a single-step update Markov chain {Xβ
t }t∈N on X with transition probabilities

between any pair of configurations σ, σ′ ∈ X given by

Pβ(σ, σ′) :=







q(σ, σ′)e−β[H(σ′)−H(σ)]+ , if σ 6= σ′,

1 −
∑

η 6=σ Pβ(σ, η), if σ = σ′,
(2.4)
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where [·]+ = max{·, 0} and q is the connectivity matrix that allows only single-step updates, i.e., for
every σ, σ′ ∈ X we set

q(σ, σ′) :=















1
N

, if |{v ∈ V : σ(v) 6= σ′(v)}| = 1,

0, if |{v ∈ V : σ(v) 6= σ′(v)}| > 1.

1 −
∑

η 6=σ q(σ, η), if σ = σ′.

(2.5)

The resulting dynamics Pβ is reversible with respect to the Gibbs measure µβ given in (2.2). The
triplet (X , H, q) is usually referred to as energy landscape and (2.4) as Metropolis transition proba-
bilities.

The connectivity matrix q given in (2.5) is irreducible, i.e., for any pair of configurations σ, σ′ ∈ X ,
σ 6= σ′, there exists a finite sequence ω of configurations ω1, . . . , ωn ∈ X such that ω1 = σ, ωn = σ′

and q(ωi, ωi+1) > 0, for i = 1, . . . , n − 1. We will refer to such a sequence as a path from σ to σ′ and
denote it by ω : σ → σ′. Given a path ω = (ω1, . . . , ωn), we define its height Φω as

Φω := max
i=1,...,n

H(ωi). (2.6)

The communication energy between two configurations σ, σ′ ∈ X is the minimum value that has to
be reached by the energy in every path ω : σ → σ′, i.e.,

Φ(σ, σ′) := min
ω:σ→σ′

Φω = min
ω:σ→σ′

max
η∈ω

H(η). (2.7)

Let X s ⊂ X denote the set of global minima of the Hamiltonian H on X , to which we will refer
to as stable states. In [47] it has been proved that for the hard-core model on a finite L × L square
grid graph the following statements hold:

(i) There are exactly two stable states
X s = {e, o}; (2.8)

(ii) The communication energy between the two stable states is equal to

Φ(e, o) − H(e) = L + 1; (2.9)

(iii) The corresponding energy landscape has no deep wells, i.e.,

max
σ∈X

[Φ(σ, {e, o}) − H(σ)] ≤ L < Φ(e, o) − H(e). (2.10)

Together, these facts imply that the value of the constant appearing in the asymptotic statements (1.1)
and (1.2) for the first hitting time τe

o
is Γ(Λ) = L + 1.

2.1 Essential saddle characterization

Our results give insight into the way the transitions between e and o most likely occur in the low-
temperature regime. This is usually described by identifying the optimal paths, saddles, and essential
saddles that we define as follows.

• S(e, o) is the communication level set between e and o defined by

S(e, o) := {σ ∈ X | ∃ ω ∈ (e → o)opt, : σ ∈ ω and H(σ) = Φω = Φ(e, o)},

where (e → o)opt is the set of optimal paths from e to o realizing the minimax in Φ(e, o), i.e.,

(e → o)opt := {ω : e → o | Φω = Φ(e, o)}.
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• The configurations in S(e, o) are called saddles. Given an optimal path ω ∈ (e → o)opt, we
define the set of its saddles S(ω) as S(ω) := {σ ∈ ω | H(σ) = Φω = Φ(e, o)}. A saddle
σ ∈ S(e, o) is called essential if either

(i) ∃ ω ∈ (e → o)opt such that S(ω) = {σ}, or

(ii) ∃ ω ∈ (e → o)opt such that σ ∈ S(ω) and S(ω′) 6⊆ S(ω) \ {σ} ∀ ω′ ∈ (e → o)opt.

A saddle σ ∈ S(e, o) that is not essential is called unessential saddle or dead-end, i.e., for
any ω ∈ (e → o)opt such that ω ∩ {σ} 6= ∅ we have that S(ω) \ {σ} 6= ∅ and there exists
ω′ ∈ (e → o)opt such that S(ω′) ⊆ S(ω) \ {σ}.

• The essential gate G(e, o) ⊂ X is the collection of essential saddles for the transition e → o.

The aim of the present paper is to accurately identify the set G(e, o) of essential saddles for the
transition from e to o for the Metropolis dynamics of the hard-core model on a L × L grid with
periodic boundary conditions.

The set G(e, o) will be described as the union of six disjoint sets, each characterized by config-
urations with specific geometrical features. Although we refer the reader to Section 4 for a precise
definition of these sets (cf. Definitions 4.2–4.6), we provide here some intuitive descriptions of the
geometrical features of the configurations in these sets. We denote by

• Cir(e, o), Cgr(e, o), and Ccr(e, o) the collections of configurations with a unique cluster of par-
ticles in odd sites of rhomboidal shape with exactly two adjacent even empty sites as in Fig. 2
and Fig. 3 (left). Roughly speaking, Cir(e, o) contains the configurations with (L

2
−1)2 occupied

odd particles and L2 +2 empty even sites; Cgr(e, o) (resp. Ccr(e, o)) contains the configurations
obtained from Cir(e, o) (resp. Cgr(e, o)) by removing some occupied even sites attached to the
rhombus and growing along one (resp. the longest) side by adding some particles in the nearest
odd sites of the rhombus.

Figure 2: An example of a configuration in Cir(e, o) (on the left) and one in Cgr(e, o) (on the right).
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Figure 3: An example of a configuration in Ccr(e, o) (on the left) and one in Csb(e, o) (on the right).

Figure 4: An example of a configuration in Cmb(e, o) (on the left) and one in Cib(e, o) (on the right).

• Csb(e, o), Cmb(e, o), and Cib(e, o) the collections of configurations with a unique cluster of parti-
cles at odd sites with at most two additional empty even sites as in Fig. 3 (right) and in Fig. 4.
In particular, Csb(e, o) contains the configurations with L

2
− 1 particles arranged in an odd

column with two other empty even sites; Cmb(e, o) contains the configurations obtained from
Csb(e, o) such that there is at least one column or row with L

2
particles arranged in odd sites.

Cib(e, o) contains the configurations obtained from Csb(e, o) without having column or row with
L
2

particles.
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